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ABSTRACT
In this paper we develop a novel probabilistic model of computa-
tional trust that explicitly deals with correlated multi-dimensional
contracts. Our starting point is to consider an agent attempting to
estimate the utility of a contract, and we show that this leads to a
model of computational trust whereby an agent must determine a
vector of estimates that represent the probability that any dimen-
sion of the contract will be successfully fulfilled, and a covariance
matrix that describes the uncertainty and correlations in these prob-
abilities. We present a formalism based on the Dirichlet distribution
that allows an agent to calculate these probabilities and correlations
from their direct experience of contract outcomes, and we show that
this leads to superior estimates compared to an alternative approach
using multiple independent beta distributions. We then show how
agents may use the sufficient statistics of this Dirichlet distribution
to communicate and fuse reputation within a decentralised reputa-
tion system. Finally, we present a novel solution to the problem
of rumour propagation within such systems. This solution uses the
notion of private and shared information, and provides estimates
consistent with a centralised reputation system, whilst maintaining
the anonymity of the agents, and avoiding bias and overconfidence.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents

General Terms
Algorithms, Design, Theory

Keywords
multi-dimensional trust, rumour propogation, Dirichlet distribution

1. INTRODUCTION
The role of computational models of trust within multi-agent sys-
tems in particular, and open distributed systems in general, has re-
cently generated a great deal of research interest. In such systems,
agents must typically choose between interaction partners, and in
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this context trust can be viewed to provide a means for agents to
represent and estimate the reliability with which these interaction
partners will fulfill their commitments. To date, however, much of
the work within this area has used domain specific or ad hoc trust
metrics, and has focused on providing heuristics to evaluate and
update these metrics using direct experience and reputation reports
from other agents (see [8] for a review).

Recent work has attempted to place the notion of computational
trust within the framework of probability theory [6, 11]. This ap-
proach allows many of the desiderata of computational trust models
to be addressed through principled means. In particular: (i) it al-
lows agents to update their estimates of the trustworthiness of a
supplier as they acquire direct experience, (ii) it provides a natu-
ral framework for agents to express their uncertainty this trustwor-
thiness, and, (iii) it allows agents to exchange, combine and filter
reputation reports received from other agents.

Whilst this approach is attractive, it is somewhat limited in that it
has so far only considered single dimensional outcomes (i.e. whether
the contract has succeeded or failed in its entirety). However, in
many real world settings the success or failure of an interaction may
be decomposed into several dimensions [7]. This presents the chal-
lenge of combining these multiple dimensions into a single metric
over which a decision can be made. Furthermore, these dimensions
will typically also exhibit correlations. For example, a contract
within a supply chain may specify criteria for timeliness, quality
and quantity. A supplier who is suffering delays may attempt a
trade-off between these dimensions by supplying the full amount
late, or supplying as much as possible (but less than the quantity
specified within the contract) on time. Thus, correlations will natu-
rally arise between these dimensions, and hence, between the prob-
abilities that describe the successful fulfillment of each contract di-
mension. To date, however, no such principled framework exists
to describe these multi-dimensional contracts, nor the correlations
between these dimensions (although some ad hoc models do exist
– see section 2 for more details).

To rectify this shortcoming, in this paper we develop a proba-
bilistic model of computational trust that explicitly deals with cor-
related multi-dimensional contracts. The starting point for our work
is to consider how an agent can estimate the utility that it will derive
from interacting with a supplier. Here we use standard approaches
from the literature of data fusion (since this is a well developed
field where the notion of multi-dimensional correlated estimates is
well established1) to show that this naturally leads to a trust model
where the agent must estimate probabilities and correlations over

1In this context, the multiple dimensions typically represent the
physical coordinates of a target being tracked, and correlations arise
through the operation and orientation of sensors.
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multiple dimensions. Building upon this, we then devise a novel
trust model that addresses the three desiderata discussed above. In
more detail, in this paper we extend the state of the art in four key
ways:

1. We devise a novel multi-dimensional probabilistic trust model
that enables an agent to estimate the expected utility of a con-
tract, by estimating (i) the probability that each contract di-
mension will be successfully fulfilled, and (ii) the correla-
tions between these estimates.

2. We present an exact probabilistic model based upon the Dirich-
let distribution that allows agents to use their direct experi-
ence of contract outcomes to calculate the probabilities and
correlations described above. We then benchmark this solu-
tion and show that it leads to good estimates.

3. We show that agents can use the sufficient statistics of this
Dirichlet distribution in order to exchange reputation reports
with one another. The sufficient statistics represent aggre-
gations of their direct experience, and thus, express contract
outcomes in a compact format with no loss of information.

4. We show that, while being efficient, the aggregation of con-
tract outcomes can lead to double counting, and rumour prop-
agation, in decentralised reputation systems. Thus, we present
a novel solution based upon the idea of private and shared in-
formation. We show that it yields estimates consistent with a
centralised reputation system, whilst maintaining the anonymity
of the agents, and avoiding overconfidence.

The remainder of this paper is organised as follows: in section 2 we
review related work. In section 3 we present our notation for a sin-
gle dimensional contract, before introducing our multi-dimensional
trust model in section 4. In sections 5 and 6 we discuss communi-
cating reputation, and present our solution to rumour propagation
in decentralised reputation systems. We conclude in section 7.

2. RELATED WORK
The need for a multi-dimensional trust model has been recognised
by a number of researchers. Sabater and Sierra present a model of
reputation, in which agents form contracts based on multiple vari-
ables (such as delivery date and quality), and define impressions as
subjective evaluations of the outcome of these contracts. They pro-
vide heuristic approaches to combining these impressions to form
a measure they call subjective reputation.

Likewise, Griffiths decomposes overall trust into a number of
different dimensions such as success, cost, timeliness and qual-
ity [4]. In his case, each dimension is scored as a real number
that represents a comparative value with no strong semantic mean-
ing. He develops an heuristic rule to update these values based
on the direct experiences of the individual agent, and an heuristic
function that takes the individual trust dimensions and generates a
single scalar that is then used to select between suppliers. Whilst,
he comments that the trust values could have some associated con-
fidence level, heuristics for updating these levels are not presented.

Gujral et al. take a similar approach and present a trust model
over multiple domain specific dimensions [5]. They define multi-
dimensional goal requirements, and evaluate an expected payoff
based on a supplier’s estimated behaviour. These estimates are,
however, simple aggregations over the direct experience of several
agents, and there is no measure of the uncertainty. Nevertheless,
they show that agents who select suppliers based on these multiple
dimensions outperform those who consider just a single one.

By contrast, a number of researchers have presented more princi-
pled computational trust models based on probability theory, albeit
limited to a single dimension. Jøsang and Ismail describe the Beta

Reputation System whereby the reputation of an agent is compiled
from the positive and negative reports from other agents who have
interacted with it [6]. The beta distribution represents a natural
choice for representing these binary outcomes, and it provides a
principled means of representing uncertainty. Moreover, they pro-
vide a number of extensions to this initial model including an ap-
proach to exchanging reputation reports using the sufficient statis-
tics of the beta distribution, methods to discount the opinions of
agents who themselves have low reputation ratings, and techniques
to deal with reputations that may change over time.

Likewise, Teacy et al. use the beta distribution to describe an
agent’s belief in the probability that another agent will success-
fully fulfill its commitments [11]. They present a formalism using
a beta distribution that allows the agent to estimate this probability
based upon its direct experience, and again they use the sufficient
statistics of this distribution to communicate this estimate to other
agents. They provide a number of extensions to this initial model,
and, in particular, they consider that agents may not always truth-
fully report their trust estimates. Thus, they present a principled
approach to detecting and removing inconsistent reports.

Our work builds upon these more principled approaches. How-
ever, the starting point of our approach is to consider an agent that
is attempting to estimate the expected utility of a contract. We show
that estimating this expected utility requires that an agent must esti-
mate the probability with which the supplier will fulfill its contract.
In the single-dimensional case, this naturally leads to a trust model
using the beta distribution (as per Jøsang and Ismail and Teacy et
al.). However, we then go on to extend this analysis to multiple
dimensions, where we use the natural extension of the beta distri-
bution, namely the Dirichlet distribution, to represent the agent’s
belief over multiple dimensions.

3. SINGLE-DIMENSIONAL TRUST
Before presenting our multi-dimensional trust model, we first intro-
duce the notation and formalism that we will use by describing the
more familiar single dimensional case. We consider an agent who
must decide whether to engage in a future contract with a supplier.
This contract will lead to some outcome, o, and we consider that
o = 1 if the contract is successfully fulfilled, and o = 0 if not2.

In order for the agent to make a rational decision, it should con-
sider the utility that it will derive from this contract. We assume
that in the case that the contract is successfully fulfilled, the agent
derives a utility u(o = 1), otherwise it receives no utility3. Now,
given that the agent is uncertain of the reliability with which the
supplier will fulfill the contract, it should consider the expected
utility that it will derive, E[U ], and this is given by:

E[U ] = p(o = 1)u(o = 1) (1)

where p(o = 1) is the probability that the supplier will successfully
fulfill the contract. However, whilst u(o = 1) is known by the
agent, p(o = 1) is not. The best the agent can do is to determine
a distribution over possible values of p(o = 1) given its direct
experience of previous contract outcomes. Given that it has been
able to do so, it can then determine an estimate of the expected
utility4 of the contract, E[E[U ]], and a measure of its uncertainty
in this expected utility, Var(E[U ]). This uncertainty is important
since a risk averse agent may make a decision regarding a contract,

2Note that we only consider binary contract outcomes, although
extending this to partial outcomes is part of our future work.
3Clearly this can be extended to the case where some utility is de-
rived from an unsuccessful outcome.
4Note that this is often called the “expected expected utility”, and
this is the notation that we adopt here [2].
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not only on its estimate of the expected utility of the contract, but
also on the probability that the expected utility will exceed some
minimum amount. These two properties are given by:

E[E[U ]] = p̂(o = 1)u(o = 1) (2)

Var(E[U ]) = Var(p(o = 1))u(o = 1)2 (3)

where p̂(o = 1) and Var(p(o = 1)) are the estimate and uncer-
tainty of the probability that a contract will be successfully ful-
filled, and are calculated from the distribution over possible values
of p(o = 1) that the agent determines from its direct experience.
The utility based approach that we present here provides an attrac-
tive motivation for this model of Teacy et al. [11].

Now, in the case of binary contract outcomes, the beta distribu-
tion is the natural choice to represent the distribution over possible
values of p(o = 1) since within Bayesian statistics this well known
to be the conjugate prior for binomial observations [3]. By adopting
the beta distribution, we can calculate p̂(o = 1) and Var(p(o = 1))
using standard results, and thus, if an agent observed N previous
contracts of which n were successfully fulfilled, then:

p̂(o = 1) =
n + 1

N + 2

and:

Var(p(o = 1)) =
(n + 1)(N − n + 1)

(N + 2)2(N + 3)

Note that as expected, the greater the number of contracts the agent
observes, the smaller the variance term Var(p(o = 1)), and, thus,
the less the uncertainty regarding the probability that a contract will
be successfully fulfilled, p̂(o = 1).

4. MULTI-DIMENSIONAL TRUST
We now extend the description above, to consider contracts be-
tween suppliers and agents that are represented by multiple di-
mensions, and hence the success or failure of a contract can be
decomposed into the success or failure of each separate dimen-
sion. Consider again the example of the supply chain that spec-
ifies the timeliness, quantity, and quality of the goods that are to
be delivered. Thus, within our trust model “oa = 1” now indi-
cates a successful outcome over dimension a of the contract and
“oa = 0” indicates an unsuccessful one. A contract outcome, X ,
is now composed of a vector of individual contract part outcomes
(e.g. X = {oa = 1, ob = 0, oc = 0, . . .}).

Given a multi-dimensional contract whose outcome is described
by the vector X , we again consider that in order for an agent to
make a rational decision, it should consider the utility that it will
derive from this contract. To this end, we can make the general
statement that the expected utility of a contract is given by:

E[U ] = p(X)U(X)T (4)

where p(X) is a joint probability distribution over all possible con-
tract outcomes:

p(X) =

⎛
⎜⎜⎜⎝

p(oa = 1, ob = 0, oc = 0, . . .)
p(oa = 1, ob = 1, oc = 0, . . .)
p(oa = 0, ob = 1, oc = 0, . . .)

...

⎞
⎟⎟⎟⎠ (5)

and U(X) is the utility derived from these possible outcomes:

U(X) =

⎛
⎜⎜⎜⎝

u(oa = 1, ob = 0, oc = 0, . . .)
u(oa = 1, ob = 1, oc = 0, . . .)
u(oa = 0, ob = 1, oc = 0, . . .)

...

⎞
⎟⎟⎟⎠ (6)

As before, whilst U(X) is known to the agent, the probability dis-
tribution p(X) is not. Rather, given the agent’s direct experience
of the supplier, the agent can determine a distribution over possible
values for p(X). In the single dimensional case, a beta distribution
was the natural choice over possible values of p(o = 1). In the
multi-dimensional case, where p(X) itself is a vector of probabil-
ities, the corresponding natural choice is the Dirichlet distribution,
since this is a conjugate prior for multinomial proportions [3].

Given this distribution, the agent is then able to calculate an es-
timate of the expected utility of a contract. As before, this estimate
is itself represented by an expected value given by:

E[E[U ]] = p̂(X)U(X)T (7)

and a variance, describing the uncertainty in this expected utility:

Var(E[U ]) = U(X)Cov(p(X))U(X)T (8)

where:

Cov(p(X)) � E[(p(X) − p̂(X))(p(X) − p̂(X))T ] (9)

Thus, whilst the single dimensional case naturally leads to a trust
model in which the agents attempt to derive an estimate of proba-
bility that a contract will be successfully fulfilled, p̂(o = 1), along
with a scalar variance that describes the uncertainty in this proba-
bility, Var(p(o = 1)), in this case, the agents must derive an es-
timate of a vector of probabilities, p̂(X), along with a covariance
matrix, Cov(p(X)), that represents the uncertainty in p(X) given
the observed contractual outcomes. At this point, it is interesting
to note that the estimate in the single dimensional case, p̂(o = 1),
has a clear semantic meaning in relation to trust; it is the agent’s
belief in the probability of a supplier successfully fulfilling a con-
tract. However, in the multi-dimensional case the agent must deter-
mine p̂(X), and since this describes the probability of all possible
contract outcomes, including those that are completely un-fulfilled,
this direct semantic interpretation is not present. In the next sec-
tion, we describe the exemplar utility function that we shall use in
the remainder of this paper.

4.1 Exemplar Utility Function
The approach described so far is completely general, in that it ap-
plies to any utility function of the form described above, and also
applies to the estimation of any joint probability distribution. In
the remainder of this paper, for illustrative purposes, we shall limit
the discussion to the simplest possible utility function that exhibits
a dependence upon the correlations between the contract dimen-
sions. That is, we consider the case that expected utility is depen-
dent only on the marginal probabilities of each contract dimension
being successfully fulfilled, rather than the full joint probabilities:

U(X) =

⎛
⎜⎜⎜⎝

u(oa = 1)
u(ob = 1)
u(oc = 1)

...

⎞
⎟⎟⎟⎠ (10)

Thus, p̂(X) is a vector estimate of the probability of each contract
dimension being successfully fulfilled, and maintains the clear se-
mantic interpretation seen in the single dimensional case:

p̂(X) =

⎛
⎜⎜⎜⎝

p̂(oa = 1)
p̂(ob = 1)
p̂(oc = 1)

...

⎞
⎟⎟⎟⎠ (11)

The correlations between the contract dimensions affect the uncer-
tainty in the expected utility. To see this, consider the covariance
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matrix that describes this uncertainty, Cov(p(X)), is now given by:

Cov(p(X)) =

⎛
⎜⎜⎜⎝

Va Cab Cac . . .

Cab Vb Cbc . . .

Cac Cbc Vc . . .
...

...
...

⎞
⎟⎟⎟⎠ (12)

In this matrix, the “diagonal” terms, Va, Vb and Vc, represent the
uncertainties in p(oa = 1), p(ob = 1) and p(oc = 1) within
p(X). The “off-diagonal” terms, Cab, Cac and Cbc, represent the
correlations between these probabilities. In the next section, we use
the Dirichlet distribution to calculate both p̂(X) and Cov(p(X))
from an agent’s direct experience of previous contract outcomes.

We first illustrate why this is necessary by considering an alter-
native approach to modelling multi-dimensional contracts whereby
an agent naı̈vely assumes that the dimensions are independent, and
thus, it models each individually by separate beta distributions (as
in the single dimensional case we presented in section 3). This
is actually equivalent to setting the off-diagonal terms within the
covariance matrix, Cov(p(X)), to zero. However, doing so can
lead an agent to assume that its estimate of the expected utility of
the contract is more accurate than it actually is. To illustrate this,
consider a specific scenario with the following values: u(oa =
1) = u(ob = 1) = 1 and Va = Vb = 0.2. In this case,
Var(E[U ]) = 0.4(1 + Cab), and thus, if the correlation Cab is
ignored then the variance in the expected utility is 0.4. However, if
the contract outcomes are completely correlated then Cab = 1 and
Var(E[U ]) is actually 0.8. Thus, in order to have an accurate es-
timate of the variance of the expected contract utility, and to make
a rational decision, it is essential that the agent is able to repre-
sent and calculate these correlation terms. In the next section, we
describe how an agent may do so using the Dirichlet distribution.

4.2 The Dirichlet Distribution
In this section, we describe how the agent may use its direct experi-
ence of previous contracts, and the standard results of the Dirichlet
distribution, to determine an estimate of the probability that each
contract dimension will be successful fulfilled, p̂(X), and a mea-
sure of the uncertainties in these probabilities that expresses the
correlations between the contract dimensions, Cov(p(X)).

We first consider the calculation of p̂(X) and the diagonal terms
of the covariance matrix Cov(p(X)). As described above, the
derivation of these results is identical to the case of the single di-
mensional beta distribution, where out of N contract outcomes,
n are successfully fulfilled. In the multi-dimensional case, how-
ever, we have a vector {na, nb, nc, . . .} that represents the number
of outcomes for which each of the individual contract dimensions
were successfully fulfilled. Thus, in terms of the standard Dirichlet
parameters where αa = na +1 and α0 = N +2, the agent can es-
timate the probability of this contract dimension being successfully
fulfilled:

p̂(oa = 1) =
αa

α0

=
na + 1

N + 2

and can also calculate the variance in any contract dimension:

Va =
αa(α0 − αa)

α2

0
(1 + α0)

=
(na + 1)(N − na + 1)

(N + 2)2(N + 3)

However, calculating the off-diagonal terms within Cov(p(X)) is
more complex since it is necessary to consider the correlations be-
tween the contract dimensions. Thus, for each pair of dimensions
(i.e. a and b), we must consider all possible combinations of con-
tract outcomes, and thus we define nab

ij as the number of contract
outcomes for which both oa = i and ob = j. For example, nab

10

represents the number of contracts for which oa = 1 and ob = 0.

Now, using the standard Dirichlet notation, we can define αab
ij �

nab
ij + 1 for all i and j taking values 0 and 1, and then, to calculate

the cross-correlations between contract pairs a and b, we note that
the Dirichlet distribution over pair-wise joint probabilities is:

Prob(pab) = Kab

∏
i∈{0,1}

∏
j∈{0,1}

p(oa = i, ob = j)αab
ij −1

where:
∑

i∈{0,1}

∑
j∈{0,1}

p(oa = i, ob = j) = 1

and Kab is a normalising constant [3]. From this we can derive
pair-wise probability estimates and variances:

E[p(oa = i, ob = j)] =
αab

ij

α0

(13)

V [p(oa = i, ob = j)] =
αab

ij (α0 − αab
ij )

α2

0
(1 + α0)

(14)

where:

α0 =
∑

i∈{0,1}

∑
j∈{0,1}

α
ab
ij (15)

and in fact, α0 = N + 2, where N is the total number of contracts
observed. Likewise, we can express the covariance in these pair-
wise probabilities in similar terms:

C[p(oa = i, ob = j), p(oa = m, ob = n)] =
−αab

ij αab
mn

α2

0
(1 + α0)

Finally, we can use the expression:

p(oa = 1) =
∑

j∈{0,1}

p(oa = 1, ob = j)

to determine the covariance Cab. To do so, we first simplify the
notation by defining V ab

ij � V [p(oa = i, ob = j)] and Cab
ijmn �

C[p(oa = i, ob = j), p(oa = m, ob = n)]. The covariance for the
probability of positive contract outcomes is then the covariance be-
tween

∑
j∈{0,1} p(oa = 1, ob = j) and

∑
i∈{0,1} p(oa = i, ob =

1), and thus:

Cab = C
ab
1001 + C

ab
1101 + C

ab
1011 + V

ab
11 .

Thus, given a set of contract outcomes that represent the agent’s
previous interactions with a supplier, we may use the Dirichlet dis-
tribution to calculate the mean and variance of the probability of
any contract dimension being successfully fulfilled (i.e. p̂(oa = 1)
and Va). In addition, by a somewhat more complex procedure we
can also calculate the correlations between these probabilities (i.e.
Cab). This allows us to calculate an estimate of the probability that
any contract dimension will be successfully fulfilled, p̂(X), and
also represent the uncertainty and correlations in these probabilities
by the covariance matrix, Cov(p(X)). In turn, these results may be
used to calculate the estimate and uncertainty in the expected util-
ity of the contract. In the next section we present empirical results
that show that in practise this formalism yields significant improve-
ments in these estimates compared to the naı̈ve approximation us-
ing multiple independent beta distributions.

4.3 Empirical Comparison
In order to evaluate the effectiveness of our formalism, and show
the importance of the off-diagonal terms in Cov(p(X)), we com-
pare two approaches:
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Figure 1: Plots showing (i) the variance of the expected contract
utility and (ii) the information content of the estimates com-
puted using the Dirichlet distribution and multiple independent
beta distributions. Results are averaged over 10

6 runs, and the
error bars show the standard error in the mean.

• Dirichlet Distribution: We use the full Dirichlet distribu-
tion, as described above, to calculate p̂(X) and Cov(p(X))
including all its off-diagonal terms that represent the correla-
tions between the contract dimensions.

• Independent Beta Distributions: We use independent beta
distributions to represent each contract dimension, in order
to calculate p̂(X), and then, as described earlier, we approx-
imate Cov(p(X)) and ignore the correlations by setting all
the off-diagonal terms to zero.

We consider a two-dimensional case where u(oa = 1) = 6 and
u(ob = 1) = 2, since this allows us to plot p̂(X) and Cov(p(X))
as ellipses in a two-dimensional plane, and thus explain the differ-
ences between the two approaches. Specifically, we initially allo-
cate the agent some previous contract outcomes that represents its
direct experience with a supplier. The number of contracts is drawn
uniformly between 10 and 20, and the actual contract outcomes are
drawn from an arbitrary joint distribution intended to induce cor-
relations between the contract dimensions. For each set of con-
tracts, we use the approaches described above to calculate p̂(X)
and Cov(p(X)), and hence, the variance in the expected contract
utility, Var(E[U ]). In addition, we calculate a scalar measure of the
information content, I , of the covariance matrix Cov(p(X)), which
is a standard way of measuring the uncertainty encoded within the
covariance matrix [1]. More specifically, we calculate the determi-
nant of the inverse of the covariance matrix:

I = det(Cov(p(X))−1) (16)

and note that the larger the information content, the more precise
p̂(X) will be, and thus, the better the estimate of the expected util-
ity that the agent is able to calculate. Finally, we use the results
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Figure 2: Examples of p̂(X) and Cov(p(X)) plotted as second
standard error ellipses.

presented in section 4.2 to calculate the actual correlation, ρ, asso-
ciated with this particular set of contract outcomes:

ρ =
Cab√
VaVb

(17)

where Cab, Va and Vb are calculated as described in section 4.2.
The results of this analysis are shown in figure 1. Here we show

the values of I and Var(E[U ]) calculated by the agents, plotted
against the correlation of the contract outcomes, ρ, that constituted
their direct experience. The results are averaged over 106 simula-
tion runs. Note that as expected, when the dimensions of the con-
tract outcomes are uncorrelated (i.e. ρ = 0), then both approaches
give the same results. However, the value of using our formalism
with the full Dirichlet distribution is shown when the correlation
between the dimensions increases (either negatively or positively).
As can be seen, if we approximate the Dirichlet distribution with
multiple independent beta distributions, all of the correlation in-
formation contained within the covariance matrix, Cov(p(X)), is
lost, and thus, the information content of the matrix is much lower.
The loss of this correlation information leads the variance of the
expected utility of the contract to be incorrect (either over or under
estimated depending on the correlation)5, with the exact amount of
mis-estimation depending on the actual utility function chosen (i.e.
the values of u(oa = 1) and u(ob = 1)).

In addition, in figure 2 we illustrate an example of the estimates
calculated through both methods, for a single exemplar set of con-
tract outcomes. We represent the probability estimates, p̂(X), and
the covariance matrix, Cov(p(X)), in the standard way as an el-
lipse [1]. That is, p̂(X) determines the position of the center of
the ellipse, Cov(p(X)) defines its size and shape. Note that whilst
the ellipse resulting from the full Dirichlet formalism accurately re-
flects the true distribution (samples of which are plotted as points),
that calculated by using multiple independent Beta distributions
(and thus ignoring the correlations) results in a much larger ellipse
that does not reflect the true distribution. The larger size of this
ellipse is a result of the off-diagonal terms of the covariance matrix
being set to zero, and corresponds to the agent miscalculating the
uncertainty in the probability of each contract dimension being ful-
filled. This, in turn, leads it to miscalculate the uncertainty in the
expected utility of a contract (shown in figure 1 as Var(E[U ]).

5. COMMUNICATING REPUTATION
Having described how an individual agent can use its own direct
experience of contract outcomes in order to estimate the probabil-
5Note that the plots are not smooth due to the fact that given a
limited number of contract outcomes, then the mean of Va and Vb

do not vary smoothly with ρ.
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ity that a multi-dimensional contract will be successfully fulfilled,
we now go on to consider how agents within an open multi-agent
system can communicate these estimates to one another. This is
commonly referred to as reputation and allows agents with limited
direct experience of a supplier to make rational decisions.

Both Jøsang and Ismail, and Teacy et al. present models whereby
reputation is communicated between agents using the sufficient statis-
tics of the beta distribution [6, 11]. This approach is attractive since
these sufficient statistics are simple aggregations of contract out-
comes (more precisely, they are simply the total number of con-
tracts observed, N , and the number of these that were successfully
fulfilled, n). Under the probabilistic framework of the beta distribu-
tion, reputation reports in this form may simply be aggregated with
an agent’s own direct experience, in order to gain a more precise
estimate based on a larger set of contract outcomes.

We can immediately extend this approach to the multi-dimensional
case considered here, by requiring that the agents exchange the suf-
ficient statistics of the Dirichlet distribution instead of the beta dis-
tribution. In this case, for each pair of dimensions (i.e. a and b), the
agents must communicate a vector of contract outcomes, N , which
are the sufficient statistics of the Dirichlet distribution, given by:

N =< n
ab
ij > ∀a, b, i ∈ {0, 1}, j ∈ {0, 1} (18)

Thus, an agent is able to communicate the sufficient statistics of
its own Dirichlet distribution in terms of just 2d(d − 1) numbers
(where d is the number of contract dimensions). For instance, in
the case of three dimensions, N , is given by:

N =< n
ab
00, n

ab
01, n

ab
10, n

ab
11, n

ac
00, n

ac
01, n

ac
10, n

ac
11, n

bc
00, n

bc
01, n

bc
10, n

bc
11 >

and, hence, large sets of contract outcomes may be communicated
within a relatively small message size, with no loss of information.
Again, agents receiving these sufficient statistics may simply ag-
gregate them with their own direct experience in order to gain a
more precise estimate of the trustworthiness of a supplier.

Finally, we note that whilst it is not the focus of our work here,
by adopting the same principled approach as Jøsang and Ismail, and
Teacy et al., many of the techniques that they have developed (such
as discounting reports from unreliable agents, and filtering incon-
sistent reports from selfish agents) may be directly applied within
this multi-dimensional model. However, we now go on to consider
a new issue that arises in both the single and multi-dimensional
models, namely the problems that arise when such aggregated suffi-
cient statistics are propagated within decentralised agent networks.

6. RUMOUR PROPAGATION
WITHIN REPUTATION SYSTEMS

In the previous section, we described the use of sufficient statis-
tics to communicate reputation, and we showed that by aggregating
contract outcomes together into these sufficient statistics, a large
number of contract outcomes can be represented and communi-
cated in a compact form. Whilst, this is an attractive property, it
can be problematic in practise, since the individual provenance of
each contract outcome is lost in the aggregation. Thus, to ensure an
accurate estimate, the reputation system must ensure that each ob-
servation of a contract outcome is included within the aggregated
statistics no more than once.

Within a centralised reputation system, where all agents report
their direct experience to a trusted center, such double counting of
contract outcomes is easy to avoid. However, in a decentralised
reputation system, where agents communicate reputation to one
another, and aggregate their direct experience with these reputation
reports on-the-fly, avoiding double counting is much more difficult.

a1 a2

a3

��������

�

�

N1

N1

N1 + N2

Figure 3: Example of rumour propagation in a decentralised
reputation system.

For example, consider the case shown in figure 3 where three
agents (a1 . . . a3), each with some direct experience of a supplier,
share reputation reports regarding this supplier. If agent a1 were
to provide its estimate to agents a2 and a3 in the form of the suf-
ficient statistics of its Dirichlet distribution, then these agents can
aggregate these contract outcomes with their own, and thus obtain
more precise estimates. If at a later stage, agent a2 were to send
its aggregate vector of contract outcomes to agent a3, then agent
a3 being unaware of the full history of exchanges, may attempt to
combine these contract outcomes with its own aggregated vector.
However, since both vectors contain a contribution from agent a1,
these will be counted twice in the final aggregated vector, and will
result in a biased and overconfident estimate. This is termed ru-
mour propagation or data incest in the data fusion literature [9].

One possible solution would be to uniquely identify the source of
each contract outcome, and then propagate each vector, along with
its label, through the network. Agents can thus identify identical
observations that have arrived through different routes, and after
removing the duplicates, can aggregate these together to form their
estimates. Whilst this appears to be attractive in principle, for a
number of reasons, it is not always a viable solution in practise [12].
Firstly, agents may not actually wish to have their uniquely labelled
contract outcomes passed around an open system, since such infor-
mation may have commercial or practical significance that could
be used to their disadvantage. As such, agents may only be willing
to exchange identifiable contract outcomes with a small number of
other agents (perhaps those that they have some sort of reciprocal
relationship with). Secondly, the fact that there is no aggregation
of the contract outcomes as they pass around the network means
that the message size increases over time, and the ultimate size of
these messages is bounded only by the number of agents within the
system (possibly an extremely large number for a global system).
Finally, it may actually be difficult to assign globally agreeable,
consistent, and unique labels for each agent within an open system.

In the next section, we develop a novel solution to the problem of
rumour propagation within decentralised reputation systems. Our
solution is based on an approach developed within the area of target
tracking and data fusion [9]. It avoids the need to uniquely identify
an agent, it allows agents to restrict the number of other agents
who they reveal their private estimates to, and yet it still allows
information to propagate throughout the network.

6.1 Private and Shared Information
Our solution to rumour propagation within decentralised reputation
systems introduces the notion of private information that an agent
knows it has not communicated to any other agent, and shared in-
formation that has been communicated to, or received from, an-
other agent. Thus, the agent can decompose its contract outcome
vector, N , into two vectors, a private one, Np, that has not been
communicated to another agent, and a shared one, Ns, that has
been shared with, or received from, another agent:

N = Np + Ns (19)

Now, whenever an agent communicates reputation, it communi-
cates both its private and shared vectors separately. Both the orig-
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inating and receiving agents then update their two vectors appro-
priately. To understand this, consider the case that agent aα sends
its private and shared contract outcome vectors, Nα

p and Nα
s , to

agent aβ that itself has private and shared contract outcomes N β
p

and N β
s . Each agent updates its vectors of contract outcomes ac-

cording to the following procedure:

• Originating Agent: Once the originating agent has sent both
its shared and private contract outcome vectors to another
agent, its private information is no longer private. Thus, it
must remove the contract outcomes that were in its private
vector, and add them into its shared vector:

N
α
s ← N

α
s +Nα

p

N
α
p ← ∅.

• Receiving Agent: The goal of the receiving agent is to accu-
mulate the largest number contract outcomes (since this will
result in the most precise estimate) without including shared
information from both itself and the other agent (since this
may result in double counting of contract outcomes). It has
two choices depending on the total number of contract out-
comes6 within its own shared vector, Nβ

s , and within that of
the originating agent, Nα

s . Thus, it updates its vector accord-
ing to the procedure below:

– Nβ
s > Nα

s : If the receiving agent’s shared vector rep-
resents a greater number of contract outcomes than that
of the shared vector of the originating agent, then the
agent combines its shared vector with the private vec-
tor of the originating agent:

N
β
s ← N

β
s +Nα

p

N
β
p unchanged.

– Nβ
s < Nα

s : Alternatively if the receiving agent’s shared
vector represents a smaller number contract outcomes
than that of the shared vector of the originating agent,
then the receiving agent discards its own shared vector
and forms a new one from both the private and shared
vectors of the originating agent:

N
β
s ← N

α
s +Nα

p

N
β
p unchanged.

In the case that Nβ
s = Nα

s then either option is appropri-
ate. Once the receiving agent has updated its sets, it uses the
contract outcomes within both to form its trust estimate. If
agents receive several vectors simultaneously, this approach
generalises to the receiving agent using the largest shared
vector, and the private vectors of itself and all the originating
agents to form its new shared vector.

This procedure has a number of attractive properties. Firstly, since
contract outcomes in an agent’s shared vector are never combined
with those in the shared vector of another agent, outcomes that
originated from the same agent are never combined together, and
thus, rumour propagation is completely avoided. However, since
the receiving agent may discard its own shared vector, and adopt
the shared vector of the originating agent, information is still prop-
agated around the network. Moreover, since contract outcomes are
aggregated together within the private and shared vectors, the mes-
sage size is constant and does not increase as the number of in-
teractions increases. Finally, an agent only communicates its own
private contract outcomes to its immediate neighbours. If this agent
6Note that this may be calculated from N = nab

00+nab
01+nab

10+nab
11.

subsequently passes it on, it does so as unidentifiable aggregated in-
formation within its shared information. Thus, an agent may limit
the number of agents with which it is willing to reveal identifi-
able contract outcomes, and yet these contract outcomes can still
propagate within the network, and thus, improve estimates of other
agents. Next, we demonstrate empirically that these properties can
indeed be realised in practise.

6.2 Empirical Comparison
In order to evaluate the effectiveness of this procedure we simu-
lated random networks consisting of ten agents. Each agent has
some direct experience of interacting with a supplier (as described
in section 4.3). At each iteration of the simulation, it interacts with
its immediate neighbours and exchanges reputation reports through
the sufficient statistics of their Dirichlet distributions. We compare
our solution to two of the most obvious decentralised alternatives:

• Private and Shared Information: The agents follow the
procedure described in the previous section. That is, they
maintain separate private and shared vectors of contract out-
comes, and at each iteration they communicate both these
vectors to their immediate neighbours.

• Rumour Propagation: The agents do not differentiate be-
tween private and shared contract outcomes. At the first it-
eration they communicate all of the contract outcomes that
constitute their direct experience. In subsequent iterations,
they propagate contract outcomes that they receive from any
of the neighbours, to all their other immediate neighbours.

• Private Information Only: The agents only communicate
the contract outcomes that constitute their direct experience.

In all cases, at each iteration, the agents use the Dirichlet distribu-
tion in order to calculate their trust estimates. We compare these
three decentralised approaches to a centralised reputation system:

• Centralised Reputation: All the agents pass their direct ex-
perience to a centralised reputation system that aggregates
them together, and passes this estimate back to each agent.

This centralised solution makes the most effective use of informa-
tion available in the network. However, most real world prob-
lems demand decentralised solutions due to scalability, modular-
ity and communication concerns. Thus, this centralised solution
is included since it represents the optimal case, and allows us to
benchmark our decentralised solution.

The results of these comparisons are shown in figure 4. Here
we show the sum of the information content of each agent’s co-
variance matrix (calculated as discussed earlier in section 4.3), for
each of these four different approaches. We first note that where
private information only is communicated, there is no change in in-
formation after the first iteration. Once each agent has received the
direct experience of its immediate neighbours, no further increase
in information can be achieved. This represents the minimum com-
munication, and it exhibits the lowest total information of the four
cases. Next, we note that in the case of rumour propagation, the
information content increases continually, and rapidly exceeds the
centralised reputation result. The fact that the rumour propagation
case incorrectly exceeds this limit, indicates that it is continuously
counting the same contract outcomes as they cycle around the net-
work, in the belief that they are independent events. Finally, we
note that using private and shared information represents a compro-
mise between the private information only case and the centralised
reputation case. Information is still allowed to propagate around
the network, however rumours are eliminated.

As before, we also plot a single instance of the trust estimates
from one agent (i.e. p̂(X) and Cov(p(X))) as a set of ellipses on a
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Figure 4: Sum of information over all agents as a function of
the communication iteration.

two-dimensional plane (along with samples from the true distribu-
tion). As expected, the centralised reputation system achieves the
best estimate of the true distribution, since it uses the direct expe-
rience of all agents. The private information only case shows the
largest ellipse since it propagates the least information around the
network. The rumour propagation case shows the smallest ellipse,
but it is inconsistent with the actual distribution p(X). Thus, prop-
agating rumours around the network and double counting contract
outcomes in the belief that they are independent events, results in
an overconfident estimate. However, we note that our solution, us-
ing separate vectors of private and shared information, allows us to
propagate more information than the private information only case,
but we completely avoid the problems of rumour propagation.

Finally, we consider the effect that this has on the agents’ calcu-
lation of the expected utility of the contract. We assume the same
utility function as used in section 4.3 (i.e. u(oa = 1) = 6 and
u(ob = 1) = 2), and in table 1 we present the estimate of the ex-
pected utility, and its standard deviation calculated for all four cases
by a single agent at iteration five (after communication has ceased
to have any further effect for all methods other than rumour prop-
agation). We note that the rumour propagation case is clearly in-
consistent with the centralised reputation system, since its standard
deviation is too small and does not reflect the true uncertainty in
the expected utility, given the contract outcomes. However, we ob-
serve that our solution represents the closest case to the centralised
reputation system, and thus succeeds in propagating information
throughout the network, whilst also avoiding bias and overconfi-
dence. The exact difference between it and the centralised repu-
tation system depends upon the topology of the network, and the
history of exchanges that take place within it.

7. CONCLUSIONS
In this paper we addressed the need for a principled probabilistic
model of computational trust that deals with contracts that have
multiple correlated dimensions. Our starting point was an agent es-
timating the expected utility of a contract, and we showed that this
leads to a model of computational trust that uses the Dirichlet distri-
bution to calculate a trust estimate from the direct experience of an
agent. We then showed how agents may use the sufficient statistics
of this Dirichlet distribution to represent and communicate reputa-
tion within a decentralised reputation system, and we presented a
solution to rumour propagation within these systems.

Our future work in this area is to extend the exchange of rep-
utation to the case where contracts are not homogeneous. That
is, not all agents observe the same contract dimensions. This is
a challenging extension, since in this case, the sufficient statistics
of the Dirichlet distribution can not be used directly. However, by
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Figure 5: Instances of p̂(X) and Cov(p(X)) plotted as second
standard error ellipses after 5 communication iterations.

Method E[E[U ]] ±
√

Var(E[U ])

Private and Shared Information 3.18 ± 0.54
Rumour Propagation 3.33 ± 0.07
Private Information Only 3.20 ± 0.65
Centralised Reputation 3.17 ± 0.42

Table 1: Estimated expected utility and its standard error as
calculated by a single agent after 5 communication iterations.

addressing this challenge, we hope to be able to apply these tech-
niques to a setting in which a suppliers provides a range of services
whose failures are correlated, and agents only have direct experi-
ences of different subsets of these services.
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