
Rule-Based Specification of Auction Mechanisms

Kevin M. Lochner and Michael P. Wellman

University of Michigan
Artificial Intelligence Laboratory

1101 Beal Av
Ann Arbor, MI 48109-2110, USA
�klochner,wellman�@umich.edu

Abstract

Machine-readable specifications of auction mecha-
nisms facilitate configurable implementation of compu-
tational markets, as well as standardization and formal-
ization of the auction design space. We present an im-
plemented rule-based scripting language for auctions,
which provides constructs for specifying temporal con-
trol structure, while supporting orthogonal definition of
mechanism policy parameters. Through a series of ex-
amples, we show how the language can capture much of
the space of single-dimensional auctions, and can be ex-
tended to cover other novel designs.

1. Introduction

Technological and financial innovation adding to the
complexity of commerce opportunities has placed new de-
mands on allocating institutions. Standard market proce-
dures may not adequately serve these complex trade situa-
tions, which call for increasingly sophisticated mechanisms,
or auctions, for determining market outcomes. At the same
time, the Internet medium coupled with advances in com-
putational power has opened the door to previously infeasi-
ble auction designs. In consequence, recent years have seen
a surge of academic interest in auction design [6, 9, 14],
in conjunction with the increasing deployment of auctions
(albeit slower than anticipated in the bubble years) in elec-
tronic marketplaces [17] and deregulated commodity mar-
kets [8]. These research efforts have led to numerous inno-
vations in auction design, addressing such issues as incen-
tive compatibility [10], computational efficiency [15], and
timeliness of market operation [5].

As the relevant design space expands, there is increas-
ing need for languages to express auction mechanisms [7,
12, 13, 21, 22]. Specifying an auction mechanism in a

high-level, special-purpose language serves several impor-
tant functions:

1. The specification can be executed to implement the
auction mechanism.

2. High-level specifications support rapid deploy-
ment and testing of mechanisms. A series of mecha-
nisms may be quickly deployed through modification
and extension of existing mechanisms.

3. Publication of auction definitions promotes trans-
parency, validation, and standardization of inter-
faces.

4. Precise definition of standard auction constructs facili-
tates communication among auction designers and an-
alysts, and dissemination of design knowledge.

5. Machine-readable auction definitions can be inter-
preted by automated trading agents, who may adapt
their behavior accordingly.

6. Formal mechanism descriptions can be manipulated
computationally, enabling automated search and anal-
ysis of the design space [3, 11].

Our auction specification effort is motivated primarily by
the implementation imperative, although we attempt to re-
spect the other motivations, in hopes of ultimately accru-
ing their benefits. Following the approach previously taken
in the Michigan Internet AuctionBot [20], we emphasize
configurability of auction service, thus attempt to build in
the structures common across the wide auction mechanism
space, yet provide sufficient latitude to accommodate novel
designs.

Our approach builds on the parametrization of auction
design space defined by Wurman et al. [21]. In attempting
to extend this parametric specification to a wider variety of
designs, we experienced a decreasing orthogonality as we
introduced parameters. In other words, it became increas-
ingly necessary to introduce parameters switching on and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

816

off whole areas of the design space, thus diluting the bene-
fit of previous specification effort. Parameters defining the
auction control structure—the temporal pattern of auction
events, seem particularly ill-suited to parametric descrip-
tion. In general, the timing of a particular action within an
auction may depend on arbitrary features of the auction his-
tory. For specification of such functional dependence, con-
trol structures reminiscent of programming languages may
be more effective than simple parameter settings.

For example, consider the survival auction [5], which
proceeds in rounds with the lowest bidder eliminated at
the end of each round, until a single bidder remains. In
this case the set of eligible bidders must be modified over
the duration of the auction. Capturing this auction with a
parametrization would seem to require a dedicated param-
eter indicating the survival auction, with auxiliary parame-
ters defining the length of rounds, bidding rules, etc. As we
see below, rule-based definition of the survival auction leads
to a more transparent encoding, where the repeated-round
structure is reflected in the representation, and the process
of eliminating bidders is apparent from the rule specifica-
tion.

The remaining sections describe a simple and extensi-
ble rule-based language we have designed and implemented
for the specification of auction mechanisms. The language
combines parameter specification with rule-based invoca-
tion of auction behaviors, providing sufficient flexibility to
capture a wide range of known and conceivable auctions.
Following explanation of our auction specification frame-
work in the next section, we present the details of our lan-
guage excution environment and address some technical de-
tails for coordinating groups of related auctions. Several ex-
ample scripts serve to demonstrate the current capabilities
of the language.

2. Auction Specification Framework

The general class of auctions comprises all mediated
mechanisms that determine market-based allocations (i.e.,
exchanges of goods and services for money) as a function
of agent messages. These messages, or bids, are typically
composed of offers specifying deals in which the agent is
willing to engage. Although the form and content of bids,
along with the auction’s behavior given such bids, can vary
widely among auction mechanisms, there are several com-
mon constructs we can define across the entire space [21].

Upon receiving a new or revised bid, the auction deter-
mines whether the bid is admissible given its current state.
If so, the bid is admitted to the order book, a repository
representing the current collection of active offers. At some
point (depending on the auction rules, of course), the mar-
ket clears, producing a set of exchanges matching compati-
ble offers in the order book according to the auction’s clear-

ing policy. Along the way, the auction may send messages to
participants providing information about auction state (of-
ten in highly summarized form), according to its informa-
tion revelation policy. Since this information often—though
not invariably—includes current price quotes (i.e., indica-
tions of what the hypothetical clearing prices would be in
the current state), we refer to both the action and revealed
information as a quote.

Following Wurman et al. [21], we maintain that the sub-
stantial differences among auction mechanisms can be char-
acterized by their policies for the three major activities de-
scribed above: processing bids, clearing, and revealing in-
formation. We further decompose the specification of these
policies into

1. their functional implementation (i.e., the how), and

2. their timing (the when).

In our approach, the how is specified primarily through pa-
rameter settings, and the when through rule condition pat-
terns.

We have implemented an auction engine capable of read-
ing and implementing these auction definitions, or auc-
tion scripts. We call this auction system AB3D, in refer-
ence to the two previous implementation generations of our
AuctionBot (“AB”) [20]. The “3D” highlights our three-
dimensional characterization of auction policy space, and
also suggests the underlying motivation for our redevelop-
ment: to support multidimensional market mechanisms.

3. The AB3D Scripting Language

An AB3D auction script comprises a sequence of state-
ments, of four types:

1. initialization of auction parameters,

2. rules that trigger auction events and parameter
changes,

3. declarations of user variables, and

4. bid rules defining additional bid admissibility require-
ments.

The language also supports the organization of statements
into distinct phases or rounds, denoting named regimes of
auction control.

3.1. Parameters

Static auction policies are characterized by prede-
fined parameters, conditioning the criteria for admitting
bids, matching offers, and summarizing state informa-
tion in quotes. Extension of the auction system to im-
plement a novel mechanism generally requires introduc-
ing new parameters, or new values for existing parameters,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

817

along with new software modules selected by the corre-
sponding parameter values. For example, one commonly
adopted element of bidding policy is a “beat-the-quote”
(btq) rule, which requires that any new or revised of-
fer meet or exceed the standing offer (as represented by the
quote), in some well-defined way (which might further de-
pend on the bidding format). Wurman et al. [21] describe
this policy element, as well as many others straightfor-
wardly encoded as AB3D parameters.

In the AB3D scripting language, parameter values are
initialized and revised through assignment statements, ex-
pressed using the set keyword. The statement

set param expr

dictates that the parameter param be (re)assigned the value
of expression expr. For example, the statement

set bid btq 1

activates the beat-the-quote requirement, thus instructing
the auction that bids must be favorably compared with the
price quote as prerequisite to admission to the order book.

Parameters may be implicitly defined through default
values; others must be specified explicitly. As the parame-
ters are not entirely orthogonal, some may be relevant or re-
quired conditional on the values of others. Similarly, AB3D
may disallow certain value combinations, halting or behav-
ing in an unspecified way when predefined constraints are
violated.

Assignments may appear unconditionally as initializa-
tions or reassignments as part of a control structure, or con-
ditionally as part of rules. The latter facility provides for
qualitative modification of auction policy while the auction
is active.

3.2. Rules

Whereas the static features of auction policy may be best
characterized parametrically, such an approach is quite lim-
ited for specifying the dynamic control of auction events.
For this purpose we employ a simple rule language, allow-
ing that auction events be conditioned on arbitrary functions
of auction state. These functions may also be parametrized,
thus providing the benefits of both constructs.

An AB3D rule takes the form:

when—while (conditions) �actions�

In this rule, conditions is a conjunction of boolean-valued
predicate expressions, written as a sequence of such expres-
sions separated by and keywords, enclosed by parentheses.
An individual predicate expression evaluates to true or false
depending on the current auction state. If all are true, the
rule is triggered, and actions are executed. Each action on
the actions list (delimited by semicolons, enclosed in curly
braces) corresponds to an auction activity, such as quoting

or clearing, or an internal event such as assigning a param-
eter. The keyword when or while designates whether a rule
is to be invoked only on becoming true (when), or continu-
ally until the condition no longer holds (while).

Multiple rules with the same actions essentially repre-
sent a disjunction of their corresponding conditions. Arbi-
trary boolean combinations can thus be expressed in this
manner.

Condition expressions reference state variables—either
predefined auction state variables or user-defined script
variables. Auction state variables represent summary mea-
sures significant to auction operation, designated by auc-
tion developers for exposure to the auction script interpreter.
Examples of state variables routinely provided by AB3D
auctions include the current time (time), the last time a
clear was executed (lastClearTime), and the number
of bidders currently eligible to bid (numBuyers and num-
Sellers). A typical condition expression using such vari-
ables would be to compare the current time with some other
state variable. For example, an auction can specify a prede-
fined duration (say, 500 seconds) with a rule of the form:

when (time � auctionStartTime + 500)
�close�

Though the previous rule may be slightly more intu-
itive than a parameterized representation, it could certainly
be captured under parameterization without difficulty. Con-
sider an auction that requires a clear to be performed when-
ever a bid is admitted (causing the state variable valid-
Bid to become true), but only before a predefined period of
time:

when (validBid and
time � auctionStartTime + 500)

�clear�

If this pattern of conditions is sufficiently common, then
it too could be captured in a dedicated parameter. How-
ever, as we consider further state variables, the number of
boolean combinations grows exponentially, as would the
number of parameters required to capture the policy possi-
bilities. The rule language enables this expressiveness with-
out the associated blowup in primitives.

Periodic events are a common feature of auction mecha-
nisms, as in the call market example provided in Section 6.
In the AB3D scripting language, internal state variables ref-
erencing the last execution time of any given action provide
a natural way to specify periodic events. For example, an
auction that performs a clear every 100 seconds would in-
clude the following rule:

when (time � lastClearTime + 100)
�clear�

Assignment within a rule action is a powerful construct,
enabling dynamic modification of auction behavior. For ex-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

818

ample, the US Treasury auctions its “T-bills” in a uniform-
price auction, after which winning bidders may trade the
bills in a secondary market [1]. The script listed in Figure 1
defines such a two-phase mechanism, comprised of an as-
cending auction for the first 1000 seconds, followed by a
continuous double auction (CDA) [4] for the second 1000.

defAuction twoPhase �
set bid btq 1
set pricing fn uniform
set pricing k 0
when (time = auctionStartTime + 1000)
�clear; quote;
set pricing fn chronological;
set bid btq 0�

when (time � auctionStartTime + 1000
and validBid)

�clear; quote�
when (time = auctionStartTime + 2000)
�close�

�

Figure 1. A two-phase auction: ascending fol-
lowed by CDA aftermarket.

Our two-phase example employs several parameters con-
trolling the clearing policy for a multiunit auction. The
pricing fn parameter identifies the criterion to be used
for determining prices. A value of chronological indicates
that price is determined according to the relative submis-
sion times of the matching bids comprising an exchange.
Let �� be the price of the earlier bid, and �� the price of the
later (by the fact that they match, we know the buy price
is at least as great as the sell, but either could be earlier).
The value � � ��� �� of the pricing k parameter dictates
how the transaction price, ��, is selected from the compati-
ble range:

�� � �� � ���� � ����

For CDAs, a new bid transacts with a standing bid in the or-
der book at the price specified by the standing bid. Thus, the
CDA policy has chronological pricing with � � �.

A uniform pricing function produces a single price gov-
erning a collection of simultaneous exhanges. In general
(for a multiunit auction with divisible offers) there will be a
range of possible clearing prices [19], delimited by the bid
and ask quotes. Designating the bid by �� and the ask by ��,
the �-double auction [16] selects within this range accord-
ing to the linear interpolation above. Note that we econo-
mize on parameters by reusing the interpolation parameter

� for both the uniform (for which it was named) and chrono-
logical cases.

3.3. User-Defined Variables

User-defined variables add a degree of flexibility to the
language, allowing for more general forms of auction con-
trol structures. For example, user-defined variables may be
used as counters in looping constructs, with each iteration
incrementing or decrementing the variable until a target
value is achieved. Such a construct can be used to spec-
ify a predefined number of periods comprising the auction.
The following set of declarations and rules would generate
seven rounds of 60 seconds.

declare userTime auctionStartTime
declare counter 0
when (time � userTime + 60)
�set userTime time;
set counter counter + 1;�

when (counter=7) �close�

By introducing and assigning user-defined variables (us-
ing the same set construct used for parameters), script
writers can implement arbitrary computable functions.

Often an auction will have variables that are defined for
each bidder, for example a user-specific credit limit. For
this special case of user-defined variables, AB3D provides a
bidder-indexed array construct, created (and optionally ini-
tialized to a value) with a statement of the form:

bidderAttribute ATTRIBUTENAME [val]

Bidder attributes can be referenced either by the bid-
der ID: ATTRIBUTENAME(ID), or if the rule is asso-
ciated with a bid submission by the keyword bidder:
ATTRIBUTENAME(bidder). For example, we can de-
clare a credit limit and assign every bidder an initial value
of 99 with the following statement: bidderAttribute
credit 99.

3.4. Bid Rules

In the same way that we found rule-based methods nec-
essary to reduce the complexity of parametrization in the
case of auction control logic, we have found instances
where it makes sense to allow rule-based definition of bid
admissibility requirements. In addition to the parametrized
bid rules provided by the AB3D scripting language, users
may use the bidRule statement as a functional method
of defining bidding requirements. For example an auction
may allow only a single bid per user in a given round. To

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

819

achieve this, a script may include the bidderAttribute has-
bid which is set to 1 on valid bid submission, along with
the following bid rule: bidRule(hasbid(bidder)).

4. Composite Auctions

Often it is useful to define a group of loosely cou-
pled auctions, which operate independently except for some
specified points of interaction. For example, in a simultane-
ous ascending auction [8], a collection of related auctions is
synchronized in time, yet each separately processes bids, is-
sues quotes, and clears to produce transactions. In some ver-
sions, member auctions may further coordinate through ac-
tivity rules, in which eligibility to bid in one auction may be
conditioned on status in another.

To support such groupings, AB3D provides a general
construct for specifying composite auctions, and facilities
for coordinating their constituent subauctions. We define
and name composite auctions using the keyword super-
Auction (in lieu of defAuction), and use the label
subAuction to define an enclosed subauction.

4.1. Rounds

The defRound construct may be used to define com-
monly used sets of rules and parameters within an auction in
a manner analogous to an auction definition. Once a round
is defined within a script, a subauction can load the asso-
ciated set of rules and parameters with the statement set
round ROUNDNAME. Once the round parameter has been
set, the subauction will admit bids only during an invoked
round of the superauction, and will do so according to the
rules defined by ROUNDNAME. A round is invoked by the
superauction with the round action and terminated with
endRound.

4.2. Synchronization

The superauction may require rules conditioned on pred-
icates that must hold true across all subauctions. To achieve
this we provide the higher level predicate synchro-
nized, indicating that the predicate must hold true
in all subauctions for the corresponding rule to be in-
voked. For example, the following rule would terminate a
round on bidder inactivity of 50 seconds across all subauc-
tions:

when(synchronized
(time � lastBidTime + 50)

�endRound�

4.3. Shared Variables

Auctions often impose bidding eligibility conditions, for
example credit limits or activity rules as mentioned above.
In a composite auction, the eligibility conditions will typ-
ically depend on activity across all subauctions. To sup-
port the required information flow, AB3D provides a shared
variable facility for composite auctions. To enforce credit
limits, for example, subauctions must compare a bid offer
amount to the current limit before admission, and if the bid
is valid, debit the limit appropriately before bids from the
same bidder are considered at other subauctions. The credit
limit variable must thus be shared across subauctions.

In general, an AB3D rule may both depend on and mod-
ify a variable defined at the superauction scope. To ensure
that no other subauctions test or modify the given vari-
able while the rule is being processed, we provide a lock
construct, which enforces serialization of rules dependent
on a given variable across all subauctions. If a rule con-
taining the predicate lock(VAR) is evaluated, all rules
dependent on VAR will not be processed until the ini-
tial rule has been fully processed. For bid rules contain-
ing the lock construct, the lock will be invoked on all rules
containing the validBid predicate. For example, the state-
ment bidRule(lock(bidderEligibility) and
bidderEligibility(bidder) � 1) will lock the
bidderEligibility variable when rules containing valid-
Bid are invoked, and will require positive bidderEligibil-
ity for a bid to be admitted. Such a bid rule combined with
the rule

when(validBid)
�set bidderEligibility(bidder)

bidderEligibility(bidder) - 1;�

will lock, test, and decrement the bidderEligibility variable
when a bid is admitted.

5. AB3D Operation

Figure 2 depicts the main functional components of
AB3D, along with the information flows among them. The
auction engine interprets the auction script, modifying the
behavior of the message processor and order book accord-
ing to specified parameters and rules. The message queue
serves to synchronize bids and auction events, ensuring that
bids are processed in the order received, and in the cor-
rect temporal relation to scheduled actions such as price
quotes and clears. Information passes to agents through a
data cache, designed to conserve communication bandwidth
at the primary message processor by routinely pushing com-
monly needed data.

On launch of an auction script, the order book and mes-
sage processor are initialized according to parameter set-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

820

Message Queue

Bids

Bidding Agents

 Data Cache

Auction Script

Time−
Independent
Conditions

Order
Book

Bids/

Conditions
Temporal

Bid Submissions

Message Processor
Transactions
Bid Status
Quotes

Auction Status
Rules

Conditions
Inactivity

Auction Engine

Active

Figure 2. AB3D architecture.

tings. The interpreter parses the rules, generating data struc-
tures employed by the condition matching process. To en-
sure timely triggering of rules when their conditions be-
come satisfied, we provide special recognition procedures
for three categories of conditions:

1. temporal conditions

2. those referencing inactivity properties,

3. nontemporal conditions.

Each requires its own methods based on the ways in which
such conditions can become satisfied.

Conditions involving temporal predicates are organized
in the same queue employed to process bids. On initial read-
ing of the auction script, the interpreter calculates the time
that each such condition will become true. A corresponding
message object timestamped with this time is inserted into
the queue, as illustrated in Figure 3. The message proces-
sor continually monitors the queue, processing the earliest-
timestamped message in turn, with ties broken arbitrarily,
as long as this timestamp precedes the absolute clock time.
The auction logical time is the earlier of this clock time, and
the timestamp of the in-process message, if any.

To process a bid message, the AB3D engine verifies that
the bid is admissible according to current policies (speci-
fied in parameters and bid rules), and if so, maintains them
in the active order book. Outcomes of bid processing (i.e.,
admittance or rejection notices) are transmitted to the bid-
der through the data cache.

To process a rule-condition message, the engine evalu-
ates whether the associated condition is currently true. If so,

70

Message Queue

123

120

100

80

Bid

Bid

close

Rule

clear

quote

Rule

time = gameStartTime + 120

Bid

time lastClearTime + 20
90

time = gameStartTime + 90

Figure 3. The message queue sequences
bids and potential auction trigger events.

it checks the status of other conditions of the rule (if any),
and if all hold, executes the associated rule actions. Other-
wise, for all time-dependent conditions of the rule that do
not hold, it recalculates the earliest logical time at which
each may become true, and inserts corresponding messages
with the respective timestamps.

Conditions dependent on inactivity (e.g., bidder inac-
tivity would be the length of time since the last admitted
bid) are maintained in separate queues within the Message
Queue, one for each inactivity property, with predicates or-
dered in ascending values of inactivity. A pointer in each
queue is maintained to the condition with shortest inactiv-
ity that has not expired. The inactivity period of the next
unexpired inactivity condition is added to the timestamp of
the last activity time (e.g. the time of the last admitted bid),
producing a scheduled processing time. The entire rule as-
sociated with an inactivity condition will be delivered to the
Message Processor if this timestamp precedes the timstamp
of the next message with absolute timestamp. For example,
in Figure 3 the predicatetime � lastClearTime+20
is scheduled to be processed at time 80, indicating that the
last clear operation was performed at time 60.

To handle non-temporal conditions, the system main-
tains an index of referenced nontemporal state variables,
and checks associated rule conditions whenever these are
modified. At such time, the full set of conditions are eval-
uated, with execution of actions if warranted, similar to the
procedure described for temporal state variables above.

6. Example Scripts

Call markets and continuous double auctions are com-
mon mechanisms to the financial world. A continuous dou-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

821

ble auction clears any time that matching bids exist in the
order book, and often does not include any bidding require-
ments. A CDA may therefore be defined by the following
script:

defAuction CDA �
set pricing fn chronological
set pricing k 0
when (validBid) �clear; quote�

�

A clear performed when no matching bids exist in the or-
der book has no effect on the state of the order book, there-
fore the clear operation may be attempted whenever a suc-
cessful bid is admitted.

A call market is a double auction with periodic uniform
clearing. The following is the AB3D scripting language rep-
resentation of this auction, assuming a clear period of 30
seconds and a clearing price at the midpoint between the
bid and ask quotes:

defAuction callMarket �
set pricing fn uniform
set pricing k .5
when (time = auctionStartTime + 30)
�clear; quote�

when (time = lastClearTime + 30)
�clear; quote�

�

We now present an example of a more complex auction
mechanism. Consider again the survival auction, proceed-
ing in rounds, with the lowest bidder eliminated in each
round until a single bidder remains. Two rules capture the
dynamic behavior of the auction: one specifying the peri-
odic elimination of bidders, a second specifying the con-
dition for terminating the auction. Note that in the this ex-
ample, lowBuyer is an exposed parameter pointing to the
buyer with the weakest standing bid.

defAuction survival �
set buyers allBidders
set bid btq 1
set pricing fn chronological
set pricing k 0
declare roundTime time
when (time � roundTime + 600)
�quote;
set buyers buyers-lowBuyer;
set roundTime time�

when (numbuyers = 1) � close�
�

Alternatively, the round construct may be used to gener-
ate this behavior, where one bidder is eliminated at the end
of each round until a single bidder remains.

To show the reader how rounds may be used in compos-
ite auctions, the following script defines such an auction in-
tended to be a simplification of the FCC spectrum auctions.
The superauction contains two subauctions, with eligibil-
ity rules restricting bidders to bid on only as many units as
they were bidding on previously:

superAuction simultaneousAscending �
bidderAttribute elig 2
bidderAttribute nextElig 0
defRound SARound �

set pricing fn uniform
set pricing k 0
set bid btq 1
bidderAttribte valid 0
bidRule(lock(elig) and

elig(bidder)�1)
when(validBid and valid(bidder)=0)
�set valid(bidder) 1;
set elig(bidder) elig(bidder)-1;
set nextElig(bidder)

nextElig(bidder)+1�
�
subAuction auction1
�set Round SARound�

subAuction auction2
�set Round SARound�

when(synchronized(
time � lastBidTime + 100))
�set elig nextElig;
set nextElig 0;
endRound�

�
declare roundnum 1
while(roundnum < 4)
�round;
set roundnum roundnum + 1�

when(roundnum = 4)�
�clear; close�

�

7. Conclusions

The increasing sophistication of auction mechanisms,
coupled with further development in automated bidding
agents, demands a structured method of auction represen-
tation. The AB3D scripting language provides a flexible
medium for specifying a broad range of auction mecha-
nisms. Its main innovation is rule-based invocation of auc-
tion events and policy revisions, supporting dynamically
flexible auction behavior. By combining orthogonal param-
eters with rule-based control, we achieve many of the ad-
vantages of formal auction specification in a general and ex-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

822

pressively convenient environment. We illustrate the use of
our auction scripting language with a variety of simple ex-
amples, including standard mechanisms and innovative de-
signs from the literature.

The scripting language is one important facility of our
new configurable auction server, AB3D. Although the sys-
tem as a whole remains a work in progress (e.g., we are
currently working to extend it to support multiattribute auc-
tions), we have implemented and used several mechanisms
specified by AB3D scripts, for example the three auction
types employed in the TAC Classic travel market [18],
and another employed in a different resource-allocation
game [2]. AB3D also supports specification of configura-
tions of multiple auctions and the surrounding market envi-
ronment (e.g., goods, agent endowments, and preferences),
and thus provides a useful tool for our research on market
mechanisms and agent strategies.

Acknowledgments

Our development of the auction scripting language
was assisted by other members of the AB3D project, es-
pecially Kevin O’Malley, Daniel Reeves, and Shih-Fen
Cheng. Some of the underlying ideas were conceived by
the second author at TradingDynamics, Inc., with bene-
fit of discussions with Yoav Shoham, Eithan Ephrati, and
others. This work was supported in part by NSF grant
IIS-0205435.

References

[1] S. Bikhchandani and C.-F. Huang. The economics of Trea-
sury securities markets. Journal of Economic Perspectives,
7:117–134, 1993.

[2] S.-F. Cheng, M. P. Wellman, and D. Perry. Market-based
resource allocation for information-collection scenarios. In
IJCAI-03 Workshop on Multiagent for Mass User Support,
Acapulco, 2003.

[3] D. Cliff. Explorations in evolutionary design of online auc-
tion market mechanisms. Electronic Commerce Research
and Applications, 2:162–175, 2003.

[4] D. Friedman and J. Rust, editors. The Double Auction Mar-
ket. Addison-Wesley, 1993.

[5] Y. Fujishima, D. McAdams, and Y. Shoham. Speeding
up ascending-bid auctions. In Sixteenth International Joint
Conference on Artificial Intelligence, pages 554–559, Stock-
holm, 1999.

[6] V. Krishna. Auction Theory. Academic Press, 2002.
[7] A. R. Lomuscio, M. Wooldridge, and N. R. Jennings. A clas-

sification scheme for negotiation in electronic commerce. In
F. Dignum and C. Sierra, editors, Agent Mediated Electronic
Commerce: A European Perspective, pages 19–33. Springer-
Verlag, 2000.

[8] P. Milgrom. Putting Auction Theory to Work. Cambridge
University Press, 2004.

[9] N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Economic Behavior, 35:166–196, 2001.

[10] D. C. Parkes. Iterative Combinatorial Auctions: Achieving
Economic and Computational Efficiency. PhD thesis, Uni-
versity of Pennsylvania, 2001.

[11] S. Phelps, S. Parsons, P. McBurney, and E. Sklar. Co-
evolution of auction mechanisms and trading strategies:
Towards a novel approach to microeconomic design. In
GECCO-02 Workshop on Evolutionary Computation in
Multi-Agent Systems, pages 65–72, 2002.

[12] D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated
negotiation from declarative contract descriptions. Compu-
tational Intelligence, 18:482–500, 2002.

[13] J. A. Rodriguez-Aguilar, F. J. Martin, P. Garcia, and
C. Sierra. Competitive scenarios for heterogeneous trading
agents. In Second International Conference on Autonomous
Agents, pages 293–300, Minneapolis, 1998.

[14] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers. MIT Press, 1994.

[15] T. Sandholm and S. Suri. BOB: Improved winner determina-
tion in combinatorial auctions and generalizations. Artificial
Intelligence, 145:33–58, 2003.

[16] M. A. Satterthwaite and S. R. Williams. Bilateral trade with
the sealed bid �-double auction: Existence and efficiency.
Journal of Economic Theory, 48:107–133, 1989.

[17] M. P. Wellman. Online marketplaces. In M. Singh, edi-
tor, Practical Handbook of Internet Computing. CRC Press,
2004.

[18] M. P. Wellman, A. Greenwald, P. Stone, and P. R. Wurman.
The 2001 trading agent competition. Electronic Markets,
13:4–12, 2003.

[19] P. R. Wurman, W. E. Walsh, and M. P. Wellman. Flexible
double auctions for electronic commerce: Theory and imple-
mentation. Decision Support Systems, 24:17–27, 1998.

[20] P. R. Wurman, M. P. Wellman, and W. E. Walsh. The Michi-
gan Internet AuctionBot: A configurable auction server for
human and software agents. In Second International Confer-
ence on Autonomous Agents, pages 301–308, Minneapolis,
1998.

[21] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A
parametrization of the auction design space. Games and Eco-
nomic Behavior, 35:304–338, 2001.

[22] P. R. Wurman, M. P. Wellman, and W. E. Walsh. Specify-
ing rules for electronic auctions. AI Magazine, 23(3):15–23,
2002.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

823

