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ABSTRACT
Keyword auctions lie at the core of the business models of
today’s leading search engines. Advertisers bid for place-
ment alongside search results, and are charged for clicks on
their ads. Advertisers are typically ranked according to a
score that takes into account their bids and potential click-
through rates. We consider a family of ranking rules that
contains those typically used to model Yahoo! and Google’s
auction designs as special cases. We find that in general
neither of these is necessarily revenue-optimal in equilib-
rium, and that the choice of ranking rule can be guided
by considering the correlation between bidders’ values and
click-through rates. We propose a simple approach to deter-
mine a revenue-optimal ranking rule within our family, tak-
ing into account effects on advertiser satisfaction and user
experience. We illustrate the approach using Monte-Carlo
simulations based on distributions fitted to Yahoo! bid and
click-through rate data for a high-volume keyword.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Economics, Theory

Keywords
sponsored search, search engines, keyword auctions

1. INTRODUCTION
Major search engines like Google, Yahoo!, and MSN sell

advertisements by auctioning off space on keyword search
results pages. For example, when a user searches the web for
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“iPod”, the highest paying advertisers (for example, Apple
or Best Buy) for that keyword may appear in a separate
“sponsored” section of the page above or to the right of the
algorithmic results. The sponsored results are displayed in a
format similar to algorithmic results: as a list of items each
containing a title, a text description, and a hyperlink to a
web page. Generally, advertisements that appear in a higher
position on the page garner more attention and more clicks
from users. Thus, all else being equal, advertisers prefer
higher positions to lower positions.

Advertisers bid for placement on the page in an auction-
style format where the larger their bid the more likely their
listing will appear above other ads on the page. By conven-
tion, sponsored search advertisers generally bid and pay per
click, meaning that they pay only when a user clicks on their
ad, and do not pay if their ad is displayed but not clicked.
Overture Services, formerly GoTo.com and now owned by
Yahoo! Inc., is credited with pioneering sponsored search
advertising. Overture’s success prompted a number of com-
panies to adopt similar business models, most prominently
Google, the leading web search engine today. Microsoft’s
MSN, previously an affiliate of Overture, now operates its
own keyword auction marketplace. Sponsored search is one
of the fastest growing, most effective, and most profitable
forms of advertising, generating roughly $7 billion in revenue
in 2005 after nearly doubling every year for the previous five
years.

The search engine evaluates the advertisers’ bids and allo-
cates the positions on the page accordingly. Notice that, al-
though bids are expressed as payments per click, the search
engine cannot directly allocate clicks, but rather allocates
impressions, or placements on the screen. Clicks relate only
stochastically to impressions. Until recently, Yahoo! ranked
bidders in decreasing order of advertisers’ stated values per
click, while Google ranks in decreasing order of advertisers’
stated values per impression. In Google’s case, value per
impression is computed by multiplying the advertiser’s (per-
click) bid by the advertisement’s expected click-through rate,
where this expectation may consider a number of unspeci-
fied factors including historical click-through rate, position
on the page, advertiser identity, user identity, and the con-
text of other items on the page. We refer to these rules as
“rank-by-bid” and “rank-by-revenue”, respectively.1

We analyze a family of ranking rules that contains the Ya-
hoo! and Google models as special cases. We consider rank-

1These are industry terms. We will see, however, that rank-
by-revenue is not necessarily revenue-optimal.
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ing rules where bidders are ranked in decreasing order of
score eqb, where e denotes an advertiser’s click-through rate
(normalized for position) and b his bid. Notice that q = 0
corresponds to Yahoo!’s rank-by-bid rule and q = 1 cor-
responds to Google’s rank-by-revenue rule. Our premise is
that bidders are playing a symmetric equilibrium, as defined
by Edelman, Ostrovsky, and Schwarz [3] and Varian [11].
We show through simulation that although q = 1 yields
the efficient allocation, settings of q considerably less than
1 can yield superior revenue in equilibrium under certain
conditions. The key parameter is the correlation between
advertiser value and click-through rate. If this correlation is
strongly positive, then smaller q are revenue-optimal. Our
simulations are based on distributions fitted to data from
Yahoo! keyword auctions. We propose that search engines
set thresholds of acceptable loss in advertiser satisfaction
and user experience, then choose the revenue-optimal q con-
sistent with these constraints. We also compare the poten-
tial gains from tuning q with the gains from setting reserve
prices, and find that the former may be much more signifi-
cant.

In Section 2 we give a formal model of keyword auctions,
and establish its equilibrium properties in Section 3. In Sec-
tion 4 we note that giving agents bidding credits can have
the same effect as tuning the ranking rule explicitly. In Sec-
tion 5 we give a general formulation of the optimal keyword
auction design problem as an optimization problem, in a
manner analogous to the single-item auction setting. We
then provide some theoretical insight into how tuning q can
improve revenue, and why the correlation between bidders’
values and click-through rates is relevant. In Section 6 we
consider the effect of q on advertiser satisfaction and user
experience. In Section 7 we describe our simulations and
interpret their results.

Related work. As mentioned the papers of Edelman
et al. [3] and Varian [11] lay the groundwork for our study.
Both papers independently define an appealing refinement
of Nash equilibrium for keyword auctions and analyze its
equilibrium properties. They called this refinement “lo-
cally envy-free equilibrium” and “symmetric equilibrium”,
respectively. Varian also provides some empirical analysis.

The general model of keyword auctions used here, where
bidders are ranked according to a weight times their bid, was
introduced by Aggarwal, Goel, and Motwani [1]. That paper
also makes a connection between the revenue of keyword
auctions in incomplete information settings with the revenue
in symmetric equilibrium. Iyengar and Kumar [5] study
the optimal keyword auction design problem in a setting
of incomplete information, and also make the connection
to symmetric equilibrium. We make use of this connection
when formulating the optimal auction design problem in our
setting.

The work most closely related to ours is that of Feng,
Bhargava, and Pennock [4]. They were the first to realize
that the correlation between bidder values and click-through
rates should be a key parameter affecting the revenue per-
formance of various ranking mechanisms. For simplicity,
they assume bidders bid their true values, so their model
is very different from ours and consequently so are their
findings. According to their simulations, rank-by-revenue
always (weakly) dominates rank-by-bid in terms of revenue,
whereas our results suggest that rank-by-bid may do much
better for negative correlations.

Lahaie [8] gives an example that suggests rank-by-bid
should yield more revenue when values and click-through
rates are positively correlated, whereas rank-by-revenue should
do better when the correlation is negative. In this work we
make a deeper study of this conjecture.

2. MODEL
There are K positions to be allocated among N bidders,

where N > K. We assume that the (expected) click-through
rate of bidder s in position t is of the form esxt, i.e. separable
into an advertiser effect es ∈ [0, 1] and position effect xt ∈
[0, 1]. We assume that x1 > x2 > . . . > xK > 0 and let
xt = 0 for t > K. We also refer to es as the relevance of
bidder s. It is useful to interpret xt as the probability that
an ad in position t will be noticed, and es as the probability
that it will be clicked on if noticed.

Bidder s has value vs for each click. Bidders have quasi-
linear utility, so that the utility to bidder s of obtaining
position t at a price of p per click is

esxt(vs − p).

A weight ws is associated with agent s, and agents bid for
position. If agent s bids bs, his corresponding score is wsbs.
Agents are ranked by score, so that the agent with highest
score is ranked first, and so on. We assume throughout that
agents are numbered such that agent s obtains position s.

An agent pays per click the lowest bid necessary to retain
his position, so that the agent in slot s pays

ws+1
ws

bs+1. The
auctioneer may introduce a reserve score of r, so that an
agent’s ad appears only if his score is at least r. For agent
s, this translates into a reserve price (minimum bid) of r/ws.

3. EQUILIBRIUM
We consider the pure-strategy Nash equilibria of the auc-

tion game. This is a full-information concept. The moti-
vation for this choice is that in a keyword auction, bidders
are allowed to continuously adjust their bids over time, and
hence obtain estimates of their profits in various positions.
As a result it is reasonable to assume that if bids stabi-
lize, bidders should be playing best-responses to each other’s
bids [2, 3, 11]. Formally, in a Nash equilibrium of this game
the following inequalities hold.

esxs

„
vs − ws+1

ws
bs+1

«
≥ esxt

„
vs − wt+1

ws
bt+1

«
∀t > s (1)

esxs

„
vs − ws+1

ws
bs+1

«
≥ esxt

„
vs − wt

ws
bt

«
∀t < s (2)

Inequalities (1) and (2) state that bidder s does not prefer
a lower or higher position to his own, respectively. It can
be hard to derive any theoretical insight into the properties
of these Nash equilibria—multiple allocations of positions
to bidders can potentially arise in equilibrium [2]. Edel-
man, Ostrovsky, and Schwarz [3] introduced a refinement of
Nash equilibrium called “locally envy-free equilibrium” that
is more tractable to analyze; Varian [11] independently pro-
posed this solution concept and called it “symmetric equi-
librium”. In a symmetric equilibrium, inequality (1) holds
for all s, t rather than just for t > s. So for all s and all
t �= s, we have

esxs

„
vs − ws+1

ws
bs+1

«
≥ esxt

„
vs − wt+1

ws
bt+1

«
,
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or equivalently

xs(wsvs − ws+1bs+1) ≥ xt(wsvs − wt+1bt+1). (3)

Edelman et al. [3] note that this equilibrium arises if agents
are raising their bids to increase the payments of those above
them, a practice which is believed to be common in actual
keyword auctions. Varian [11] provides some empirical evi-
dence that Google bid data agrees well with the hypothesis
that bidders are playing a symmetric equilibrium.

Varian does a thorough analysis of the properties of sym-
metric equilibrium, assuming ws = es = 1 for all bidders.
It is straightforward to adapt his analysis to the case where
bidders are assigned arbitrary weights and have separable
click-through rates.2 As a result we find that in symmetric
equilibrium, bidders are ranked in order of decreasing wsvs.
To be clear, although the auctioneer only has access to the
bids bs and not the values vs, in symmetric equilibrium the
bids are such that ranking according to wsbs is equivalent
to ranking according to wsvs.

The smallest possible bid profile that can arise in sym-
metric equilibrium is given by the recursion

xsws+1bs+1 = (xs − xs+1)ws+1vs+1 + xs+1ws+2bs+2.

In this work we assume that bidders are playing the smallest
symmetric equilibrium. This is an appropriate selection for
our purposes: by optimizing revenue in this equilibrium, we
are optimizing a lower bound on the revenue in any sym-
metric equilibrium. Unraveling the recursion yields

xsws+1bs+1 =

KX
t=s

(xt − xt+1)wt+1vt+1. (4)

Agent s’s total expected payment is es/ws times the quan-
tity on the left-hand side of (4). The base case of the recur-
sion occurs for s = K, where we find that the first excluded
bidder bids his true value, as in the original analysis.

Multiplying each of the inequalities (4) by the correspond-
ing es/ws to obtain total payments, and summing over all
positions, we obtain a total equilibrium revenue of

KX
s=1

KX
t=s

wt+1

ws
es(xt − xt+1)vt+1. (5)

To summarize, the minimum possible revenue in symmetric
equilibrium can be computed as follows, given the agents’
relevance-value pairs (es, vs): first rank the agents in de-
creasing order of wsvs, and then evaluate (5).

With a reserve score of r, it follows from inequality (3)
that no bidder with wsvs < r would want to participate
in the auction. Let K(r) be the number of bidders with
wsvs ≥ r, and assume it is at most K. We can impose a
reserve score of r by introducing a bidder with value r and
weight 1, and making him the first excluded bidder (who
in symmetric equilibrium bids truthfully). In this case the
recursion yields

xsws+1bs+1 =

K(r)−1X
t=s

(xt − xt+1)wt+1vt+1 + xK(r)r

and the revenue formula is adapted similarly.

2If we redefine wsvs to be vs and wsbs to be bs, we re-
cover Varian’s setup and his original analysis goes through
unchanged.

4. BIDDING CREDITS
An indirect way to influence the allocation is to introduce

bidding credits.3 Suppose bidder s is only required to pay
a fraction cs ∈ [0, 1] of the price he faces, or equivalently a
(1 − cs) fraction of his clicks are received for free. Then in
a symmetric equilibrium, we have

esxs

„
vs − ws+1

ws
csbs+1

«
≥ esxt

„
vs − wt+1

ws
csbt+1

«

or equivalently

xs

„
ws

cs
vs − ws+1bs+1

«
≥ xt

„
ws

cs
vs − wt+1bt+1

«
.

If we define w′
s = ws

cs
and b′s = csbs, we recover inequal-

ity (3). Hence the equilibrium revenue will be as if we had
used weights w′ rather than w. The bids will be scaled ver-
sions of the bids that arise with weights w′ (and no credits),
where each bid is scaled by the corresponding factor 1/cs.

This technique allows one to use credits instead of explicit
changes in the weights to affect revenue. For instance, rank-
by-revenue will yield the same revenue as rank-by-bid if we
set credits to cs = es.

5. REVENUE
We are interested in setting the weights w to achieve op-

timal expected revenue. The setup is as follows. The auc-
tioneer chooses a function g so that the weighting scheme is
ws ≡ g(es). We do not consider weights that also depend on
the agents’ bids because this would invalidate the equilib-
rium analysis of the previous section.4 A pool of N bidders
is then obtained by i.i.d. draws of value-relevance pairs from
a common probability density f(es, vs). We assume the den-
sity is continuous and has full support on [0, 1]× [0,∞). The
revenue to the auctioneer is then the revenue generated in
symmetric equilibrium under weighting scheme w. This as-
sumes the auctioneer is patient enough not to care about
revenue until bids have stabilized.

The problem of finding an optimal weighting scheme can
be formulated as an optimization problem very similar to
the one derived by Myerson [9] for the single-item auction
case (with incomplete information). Let Qsk(e, v; w) = 1 if
agent s obtains slot k in equilibrium under weighting scheme
w, where e = (e1, . . . , eN ) and v = (v1, . . . , vN ), and let it
be 0 otherwise.

Note that the total payment of agent s in equilibrium is

esxs
ws+1

ws
bs+1 =

KX
t=s

es(xt − xt+1)
wt+1

ws
vt+1

= esxsvs −
Z vs

0

KX
k=1

esxkQsk(es, e−s, y, v−s; w) dy.

The derivation then continues just as in the case of a single-
item auction [7, 9]. We take the expectation of this payment,

3Hal Varian suggested to us that bidding credits could be
used to affect revenue in keyword auctions, which prompted
us to look into this connection.
4The analysis does not generalize to weights that depend on
bids. It is unclear whether an equilibrium would exist at all
with such weights.
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and sum over all agents to obtain the objective

Z ∞

0

Z ∞

0

"
NX

s=1

KX
k=1

esxkψ(es, vs)Qsk(e, v; w)

#
f(e, v) dv de,

where ψ is the “virtual valuation”

ψ(es, vs) = vs − 1 − F (vs|es)

f(vs|es)
.

According to this analysis, we should rank bidders by “vir-
tual score” esψ(es, vs) to optimize revenue (and exclude any
bidders with negative virtual score). However, unlike in the
incomplete information setting, here we are constrained to
ranking rules that correspond to a certain weighting scheme
ws ≡ g(es). We remark that the virtual score cannot be
reproduced exactly via a weighting scheme.

Lemma 1. There is no weighting scheme g such that the
virtual score equals the score, for any density f .

Proof. Assume there is a g such that eψ(e, v) = g(e)v.
(The subscript s is suppressed for clarity.) This is equivalent
to

d

dv
log(1 − F (v|e)) = h(e)/v, (6)

where h(e) = (g(e)/e−1)−1. Let v̄ be such that F (v̄|e) < 1;
under the assumption of full support, there is always such
a v̄. Integrating (6) with respect to v from 0 to v̄, we find
that the left-hand side converges whereas the right-hand side
diverges, a contradiction.

Of course, to rank bidders by virtual score, we only need
g(es)vs = h(esψ(es, vs)) for some monotonically increasing
transformation h. (A necessary condition for this is that
ψ(es, vs) be increasing in vs for all es.) Absent this regular-
ity condition, the optimization problem seems quite difficult
because it is so general: we need to maximize expected rev-
enue over the space of all functions g.

To simplify matters, we now restrict our attention to the
family of weights ws = eq

s for q ∈ (−∞, +∞). It should be
much simpler to find the optimum within this family, since
it is just one-dimensional. Note that it covers rank-by-bid
(q = 0) and rank-by-revenue (q = 1) as special cases.

To see how tuning q can improve matters, consider again
the equilibrium revenue:

R(q) =

KX
s=1

KX
t=s

„
et+1

es

«q

es(xt − xt+1)vt+1. (7)

If the bidders are ranked in decreasing order of relevance,
then et

es
≤ 1 for t > s and decreasing q slightly without

affecting the allocation will increase revenue. Similarly, if
bidders are ranked in increasing order of relevance, increas-
ing q slightly will yield an improvement. Now suppose there
is perfect positive correlation between value and relevance.
In this case, rank-by-bid will always lead to the same alloca-
tion as rank-by-revenue, and bidders will always be ranked
in decreasing order of relevance. It then follows from (7) that
q = 0 will yield more revenue in equilibrium than q = 1.5

5It may appear that this contradicts the revenue-equivalence
theorem [7, 9], because mechanisms that always lead to the
same allocation in equilibrium should yield the same rev-
enue. Note though that with perfect correlation, there are

If a good estimate of f is available, Monte-Carlo simula-
tions can be used to estimate the revenue curve as a function
of q, and the optimum can be located. Simulations can also
be used to quantify the effect of correlation on the location
of the optimum. We do this in Section 7.

6. EFFICIENCY AND RELEVANCE
In principle the revenue-optimal parameter q may lie any-

where in (−∞,∞). However, tuning the ranking rule also
has consequences for advertiser satisfaction and user expe-
rience, and taking these into account reduces the range of
allowable q.

The total relevance of the equilibrium allocation is

L(q) =
KX

s=1

esxs,

i.e. the aggregate click-through rate. Presumably users find
the ad display more interesting and less of a nuisance if
they are more inclined to click on the ads, so we adopt total
relevance as a measure of user experience.

Let ps =
ws+1

ws
bs+1 be the price per click faced by bidder

s. The total value (efficiency) generated by the auction in
equilibrium is

V (q) =

KX
s=1

esxsvs

=

KX
s=1

esxs(vs − ps) +

KX
s=1

esxsps.

As we see total value can be reinterpreted as total profits
to the bidders and auctioneer combined. Since we only con-
sider deviations from maximum efficiency that increase the
auctioneer’s profits, any decrease in efficiency in our setting
corresponds to a decrease in bidder profits. We therefore
adopt efficiency as a measure of advertiser satisfaction.

We would expect total relevance to increase with q, since
more weight is placed on each bidder’s individual relevance.
We would expect efficiency to be maximized at q = 1, since
in this case a bidder’s weight is exactly his relevance.

Proposition 1. Total relevance is non-decreasing in q.

Proof. Recall that in symmetric equilibrium, bidders are
ranked in order of decreasing wsvs. Let ε > 0. Perform an
exchange sort to obtain the ranking that arises with q + ε
starting from the ranking that arises with q (for a description
of exchange sort and its properties, see Knuth [6] pp. 106–
110). Assume that ε is large enough to make the rankings
distinct. Agents s and t, where s is initially ranked lower
than t, are swapped in the process if and only if the following
conditions hold:

eq
svs ≤ eq

t vt

eq+ε
s vs > eq+ε

t vt

which together imply that eε
s > eε

t and hence es > et as
ε > 0. At some point in the sort, agent s occupies some slot

α, β such that vs = αes + β. So the assumption of full sup-
port is violated, which is necessary for revenue equivalence.
Recall that a density has full support over a given domain
if every point in the domain has positive density.
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k while agent t occupies slot k − 1. After the swap, total
relevance will have changed by the amount

esxk−1 + etxk − etxk−1 − esxk

= (es − et)(xk−1 − xk) > 0

As relevance strictly increases with each swap in the sort,
total relevance is strictly greater when using q + ε rather
than q.

Proposition 2. Total value is non-decreasing in q for
q ≤ 1 and non-increasing in q for q ≥ 1.

Proof. Let q ≥ 1 and let ε > 0. Perform an exchange
sort to obtain the second ranking from the first as in the
previous proof. If agents s and t are swapped, where s was
initially ranked lower than t, then es > et. This follows by
the same reasoning as in the previous proof. Now e1−q

s ≤
e1−q

t as 1 − q ≤ 0. This together with eq
svs ≤ eq

t vt implies
that esvs ≤ etvt. Hence after swapping agents s and t, total
value has not increased. The case for q ≤ 1 is similar.

Since the trends described in Propositions 1 and 2 hold
pointwise (i.e. for any set of bidders), they also hold in ex-
pectation. Proposition 2 confirms that efficiency is indeed
maximized at q = 1.

These results motivate the following approach. Although
tuning q can optimize current revenue, this may come at the
price of future revenue because advertisers and users may
be lost, seeing as their satisfaction decreases. To guarantee
future revenue will not be hurt too much, the auctioneer
can impose bounds on the percent efficiency and relevance
loss he is willing to tolerate, with q = 1 being a natural
baseline. By Proposition 2, a lower bound on efficiency will
yield upper and lower bounds on the search space for q. By
Proposition 1, a lower bound on relevance will yield another
lower bound on q. The revenue curve can then be plotted
within the allowable range of q to find the revenue-optimal
setting.

7. SIMULATIONS
To add a measure of reality to our simulations, we fit

distributions for value and relevance to Yahoo! bid and click-
through rate data for a certain keyword that draws over a
million searches per month. (We do not reveal the identity
of the keyword to respect the privacy of the advertisers.)

We obtained click and impression data for the advertisers
bidding on the keyword. From this we estimated advertiser
and position effects using a maximum-likelihood criterion.
We found that, indeed, position effects are monotonically
decreasing with lower rank. We then fit a beta distribution
to the advertiser effects resulting in parameters a = 2.71
and b = 25.43.

We obtained bids of advertisers for the keyword. Using
Varian’s [11] technique, we derived bounds on the bidders’
actual values given these bids. By this technique, upper and
lower bounds are obtained on bidder values given the bids
according to inequality (3). If the interval for a given value is
empty, i.e. its upper bound lies below its lower bound, then
we compute the smallest perturbation to the bids necessary
to make the interval non-empty, which involves solving a
quadratic program. We found that the mean absolute de-
viation required to fit bids to symmetric equilibrium was
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Figure 1: Empirical marginal distributions of value
and relevance.

always at most 0.08, and usually significantly less, over dif-
ferent days in a period of two weeks.6 We fit a lognormal
distribution to the lower bounds on the bidders’ values, re-
sulting in parameters μ = 0.35 and σ = 0.71.

The empirical distributions of value and relevance together
with the fitted lognormal and beta curves are given in Fig-
ure 1. It appears that mixtures of beta and lognormal dis-
tributions might be better fits, but since these distributions
are used mainly for illustration purposes, we err on the side
of simplicity.

We used a Gaussian copula to create dependence between
value and relevance.7 Given the marginal distributions for
value and relevance together with this copula, we simulated
the revenue effect of varying q for different levels of Spear-
man correlation, with 12 slots and 13 bidders. The results
are shown in Figure 2.8

It is apparent from the figure that the optimal choice of q
moves to the right as correlation decreases; this agrees with
our intuition from Section 5. The choice is very sensitive
to the level of correlation. If choosing only between rank-
by-bid and rank-by-revenue, rank-by-bid is best for positive
correlation whereas rank-by-revenue is best for negative cor-
relation. At zero correlation, they give about the same ex-
pected revenue in this instance. Figure 2 also shows that
in principle, the optimal q may be negative. It may also
occur beyond 1 for different distributions, but we do not
know if these would be realistic. The trends in efficiency
and relevance are as described in the results from Section 6.
(Any small deviation from these trends is due to the ran-
domness inherent in the simulations.) The curves level off
as q → +∞ because eventually agents are ranked purely
according to relevance, and similarly as q → −∞.

A typical Spearman correlation between value and rele-
vance for the keyword was about 0.4—for different days in
a week the correlation lay within [0.36, 0.55]. Simulation re-
sults with this correlation are in Figure 3. In this instance
rank-by-bid is in fact optimal, yielding 25% more revenue
than rank-by-revenue. However, at q = 0 efficiency and rel-
evance are 9% and 17% lower than at q = 1, respectively.
Imposing a bound of, say, 5% on efficiency and relevance loss
from the baseline at q = 1, the optimal setting is q = 0.6,
yielding 11% more revenue than the baseline.

6See Varian [11] for a definition of mean absolute deviation.
7A copula is a function that takes marginal distributions
and gives a joint distribution with these marginals. It can
be designed so that the variables are correlated. See for
example Nelsen [10].
8The y-axes in Figures 2–4 have been normalized because
the simulations are based on proprietary data. Only relative
values are meaningful.
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Spearman correlation (key at right). Estimated standard errors are less than 1% of
the values shown.
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Figure 3: Revenue, efficiency, and relevance for different parameters q with Spearman correlation
of 0.4. Estimated standard errors are less than 1% of the values shown.

We also looked into the effect of introducing a reserve
score. Results are shown in Figure 4. Naturally, both effi-
ciency and relevance suffer with an increasing reserve score.
The optimal setting is r = 0.2, which gives only an 8% in-
crease in revenue from r = 0. However, it results in a 13%
efficiency loss and a 26% relevance loss. Tuning weights
seems to be a much more desirable approach than introduc-
ing a reserve score in this instance.

The reason why efficiency and relevance suffer more with
a reserve score is that this approach will often exclude bid-
ders entirely, whereas this never occurs when tuning weights.
The two approaches are not mutually exclusive, however,
and some combination of the two might prove better than
either alone, although we did not investigate this possibility.

8. CONCLUSIONS
In this work we looked into the revenue properties of a

family of ranking rules that contains the Yahoo! and Google
models as special cases. In practice, it should be very sim-
ple to move between rules within the family: this simply in-
volves changing the exponent q applied to advertiser effects.
We also showed that, in principle, the same effect could be
obtained by using bidding credits. Despite the simplicity
of the rule change, simulations revealed that properly tun-
ing q can significantly improve revenue. In the simulations,
the revenue improvements were greater than what could be
obtained using reserve prices.

On the other hand, we showed that advertiser satisfac-
tion and user experience could suffer if q is made too small.
We proposed that the auctioneer set bounds on the decrease
in advertiser and user satisfaction he is willing to tolerate,

which would imply bounds on the range of allowable q. With
appropriate estimates for the distributions of value and rele-
vance, and knowledge of their correlation, the revenue curve
can then be plotted within this range to locate the optimum.

There are several ways to push this research further. It
would be interesting to do this analysis for a variety of key-
words, to see if the optimal setting of q is always so sensitive
to the level of correlation. If it is, then simply using rank-by-
bid where there is positive correlation, and rank-by-revenue
where there is negative correlation, could be fine to a first ap-
proximation and already improve revenue. It would also be
interesting to compare the effects of tuning q versus reserve
pricing for keywords that have few bidders. In this instance
reserve pricing should be more competitive, but this is still
an open question.

In principle the minimum revenue in Nash equilibrium
can be found by linear programming. However, many allo-
cations can arise in Nash equilibrium, and a linear program
needs to be solved for each of these. There is as yet no
efficient way to enumerate all possible Nash allocations, so
finding the minimum revenue is currently infeasible. If this
problem could be solved, we could run simulations for Nash
equilibrium instead of symmetric equilibrium, to see if our
insights are robust to the choice of solution concept.

Larger classes of ranking rules could be relevant. For in-
stance, it is possible to introduce discounts ds and rank ac-
cording to wsbs − ds; the equilibrium analysis generalizes to
this case as well. With this larger class the virtual score
can equal the score, e.g. in the case of a uniform marginal
distribution over values. It is unclear, though, whether such
extensions help with more realistic distributions.
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Figure 4: Revenue, efficiency, and relevance for different reserve scores r, with Spearman correlation
of 0.4 and q = 1. Estimates are averaged over 1000 samples.
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