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Abstract

Distributed electricity producers, such as small
wind farms and solar installations, pose several
technical and economic challenges in Smart Grid
design. One approach to addressing these chal-
lenges is through Broker Agents who buy electricity
from distributed producers, and also sell electric-
ity to consumers, via a Tariff Market–a new market
mechanism where Broker Agents publish concur-
rent bid and ask prices. We investigate the learn-
ing of pricing strategies for an autonomous Broker
Agent to profitably participate in a Tariff Market.
We employ Markov Decision Processes (MDPs)
and reinforcement learning. An important concern
with this method is that even simple representations
of the problem domain result in very large num-
bers of states in the MDP formulation because mar-
ket prices can take nearly arbitrary real values. In
this paper, we present the use of derived state space
features, computed using statistics on Tariff Mar-
ket prices and Broker Agent customer portfolios,
to obtain a scalable state representation. We also
contribute a set of pricing tactics that form building
blocks in the learned Broker Agent strategy. We
further present a Tariff Market simulation model
based on real-world data and anticipated market dy-
namics. We use this model to obtain experimen-
tal results that show the learned strategy perform-
ing vastly better than a random strategy and signifi-
cantly better than two other non-learning strategies.

1 Introduction

Smart Grid refers to a loosely defined set of technologies
aimed at modernizing the power grid using digital communi-
cations [Gellings et al., 2004] [Amin and Wollenberg, 2005].
Prevailing power grid technology was mostly designed for
one way flow of electricity from large centralized power
plants to distributed consumers such as households and indus-
trial facilities. A key goal of Smart Grid design is to facilitate
two-way flow of electricity by enhancing the ability of dis-
tributed small-scale electricity producers, such as small wind
farms or households with solar panels, to sell energy into the
power grid. However, the production capacity of many such

producers is often significantly less predictable compared to
large power plants because they rely on intermittent resources
like wind and sunshine. The stability of the power grid is crit-
ically dependent on having balanced electricity supply and
demand at any given time. Therefore, we need additional
control mechanisms that facilitate supply-demand balancing.
Moreover, automating the control mechanisms can improve
reliability and reduce response time and operating costs.

One approach to addressing these challenges is through the
introduction of Broker Agents, who buy electricity from dis-
tributed producers and also sell electricity to consumers [Ket-
ter et al., 2010]. Broker Agents interact with producers and
consumers through a new market mechanism, Tariff Market,
where Broker Agents acquire a portfolio of producers and
consumers by publishing concurrent prices for buying and
selling electricity. The Tariff Market design, explained fur-
ther in Section 2, incentivizes Broker Agents to balance sup-
ply and demand within their portfolio. Broker Agents that
are able to effectively maintain that balance, and earn profits
while doing so, contribute to the stability of the grid through
their continued participation.

In this work, we study the learning of pricing strategies for
autonomous Broker Agents in Tariff Markets. We develop an
automated Broker Agent that learns its strategy using Markov
Decision Processes (MDPs) and reinforcement learning. We
contribute methods for representing the Tariff Market domain
and Broker Agent goal as a scalable MDP for Q-learning. We
also contribute a set of pricing tactics that form actions in
the learned MDP policy. We further contribute a simulation
model driven by real-world data, which we use to evaluate
the learned strategy against a set of non-learning strategies
and find highly favorable results.

2 Tariff Market and Broker Agent Goal

Figure 1 provides an overview of the Smart Grid Tariff Mar-
ket domain. A Tariff Market integrates with the national
power grid through a Wholesale Market where electricity can
be traded in larger quantities.

Let T be a Tariff Market consisting of four types of entities:

1. Consumers, C = {Cn : n = 1..N} where each Cn rep-
resents a group of households or industrial facilities;

2. Producers, P = {Pm : m = 1..M} where each Pm

represents a group of households or industrial facilities;
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Figure 1: Overview of the Smart Grid Tariff Market domain.

3. Broker Agents, B = {Bk : k = 1..K} where each Bk

buys electricity from P and sells it to C and also buys
and sells electricity in the Wholesale Market;

4. Service Operator, O, a regulated monopoly, which man-
ages the physical infrastructure for the regional grid.

We also define the set of Customers, Q = C ∪ P . We
assume that the performance of a Broker Agent is evaluated
over a finite set of timeslots, T = {t : t = 0..T}. In the Smart
Grid domain, a tariff is a public contract offered by the Broker
Agent that can be accepted or not, without modification of
terms, by a subset of the Customers, Q. While a tariff can in
reality consist of several attributes specifying contract terms
and conditional prices, we represent each tariff using a single
price. At each timeslot, t, each Broker Agent, Bk, publishes
two tariffs, a Producer tariff with price pBk

t,P , and a Consumer
tariff with price pBk

t,C . These tariff prices are visible to all
agents in the environment.

Each Broker Agent holds a portfolio, Ψt = Ψt,C∪Ψt,P , of
Consumers and Producers who have accepted one of its tar-
iffs for the current timeslot, t. The simulation model assigns
each Customer to one Broker Agent based on the Customer’s
preferences. Each Consumer is assumed to consume a fixed
amount of electricity, κ, per timeslot and each Producer is as-
sumed to produce electricity at a multiplicative factor, ν; i.e.,
each Producer generates νκ units of electricity per timeslot.

At each timeslot, the profit, πBk
t of a Broker Agent is the

net proceeds from Consumers, Ψt,C , minus the net payments
to Producers, Ψt,P , and the Service Operator, O:

πBk
t = pBk

t,CκΨt,C − pBk

t,P νκΨt,P − φt|κΨt,C − νκΨt,P |
The term |κΨt,C − νκΨt,P | represents the supply-demand
imbalance in the portfolio at timeslot, t. This imbalance is
penalized using the balancing fee, φt, which is specified by
the Service Operator, O, at each timeslot.

The goal of a Broker Agent is to maximize its cumula-
tive profit over all timeslots, T . We also consider an alter-
nate competitive setting where the winner amongst the Broker
Agents is determined as:

argmax
Bk∈B

∑

t∈T
πBk
t (1)

3 Data-driven Simulation Model

We have developed a simulation model that is driven by
real-world hourly electricity prices from a market in Ontario,
Canada [IESO, 2011]. Each timeslot in simulation defines the
smallest unit of time over which the tariff prices offered by a
Broker Agent must be held constant. However, when con-
sidering the price to offer at each timeslot, a Broker Agent
may use forecasted prices over a longer time horizon, H .
For instance, the Broker Agent can take the average of the
forecasted market prices over the next week and offer that
as his Producer tariff price for the next timeslot. Indeed this
is the approach we take in our model to simulate each Broker
Agent. The Consumer tariff price is then computed by adding
a variable profit margin, μ. Figure 2 shows four Producer tar-
iff price sequences over 240 timeslots; these are four of fifty
distinct sequences derived from the real-world hourly data.
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Figure 2: Sample Producer price sequences for 4 data-driven
simulated Broker Agents over 240 timeslots.

Each Customer is represented by a Customer Model, which
given an unordered set of tariffs returns a ranking according
to its preferences. Customer Models do not simply rank the
tariffs by their prices. Some Customers may not actively eval-
uate their available tariff options and therefore continue with
their possibly suboptimal ranking. To capture this inertia, we
take two steps: (i) if all the tariffs that a Customer Model
evaluated at timeslot t− 1 are still offered at the same prices
in timeslot t, then it simply returns the same ranking as in the
previous timeslot; and (ii) if the tariffs have changed, a Cus-
tomer Model only considers switching to a different Broker
Agent with a fixed probability, q.

Moreover, some Customers may choose tariffs with less
favorable prices because other tariff attributes, such as the
percentage of green energy or the lack of early withdrawal
penalties, may be preferable. To address this, each Customer
Model ranks the price-ordered tariffs according to a discrete
distribution, X . For example, in an environment with five
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Broker Agents, B1 to B5, we have:

X = {Xk :
∑

k

Pr(Xk = k) = 1, k = 1..5}

With probability X1, the Customer Model chooses the tariff
with the best price; with probability X2, it chooses the second
best tariff, and so on.

4 An MDP-based Broker Agent

Let BL be the Learning Broker Agent for which we develop
an action policy using the framework of MDPs and reinforce-
ment learning. The MDP for BL is defined as:

MBL = 〈S,A, δ, r〉

where:
• S = {si : i = 1..I} is a set of states,
• A = {aj : j = 1..J} is a set of actions,
• δ(s, a) → s′ is a transition function, and
• r(s, a) is a reward function.

π : S → A then defines an MDP action policy. Consider
the example of Figure 2 again, which shows the Producer tar-
iff prices for 4 Broker Agents over 240 timeslots. Assume
that our Learning Broker Agent, BL, is participating in a Tar-
iff Market along with these four Broker Agents, B1 to B4.
(K = |B| = 5 in this example but the following analysis can
be extended to any value of K.)

A natural approach to representing the state space, S,
would be to capture two sets of features that are potentially
important to how BL would set its tariff prices:

1. the tariff prices offered by all the Broker Agents in the
Tariff Market;

2. the number of Consumers and Producers in its current
portfolio, ΨBL .

Tariff prices are difficult to represent because prices in the
real world are continuous over R+. We avoid the complexity
of having to use function approximation methods by restrict-
ing the range of prices from 0.01 to 0.20, which represent a
realistic range of prices in US dollars per kWh of electricity
[DoE, 2010], and discretizing the prices in 0.01 increments to
obtain 20 possible values for each tariff price.

With this simplification, if we were to model the Learning
Broker Agent’s MDP, MBL , to represent each combination of
price values for 5 brokers at 2 tariff prices each, we would still
have 2010, or over 10 trillion, states in S to represent just the
current tariff prices. To address this state explosion problem,
we consider various statistics of the tariff prices such as the
mean, variance, minimum and maximum prices for a given
timeslot, t. However, since these statistics also vary over the
valid price range, we would still have over 64 million states.

So, we apply the following heuristic to further reduce the
state space. We define minimum and maximum Producer and
Consumer tariff prices over the set of Broker Agents not in-
cluding the Learning Broker Agent, BL:

pmin
t,C = min

Bk∈B\{BL}
pBk

t,C

pmax
t,C = max

Bk∈B\{BL}
pBk

t,C

Figure 3 shows the minimum and maximum prices cor-
responding to the four Producer tariff prices in Figure 2.
We then introduce another simplification that drastically re-
duces the number of states. We define a derived price
feature, PriceRangeStatus, whose values are enumerated as
{Rational, Inverted}. The Tariff Market is Rational from
BL’s perspective if:

pmin
t,C ≥ pmax

t,P + μL

where μL is a subjective value representing the margin re-
quired by BL to be profitable in expectation. It is Inverted
otherwise. We can now characterize the entire range of tariff
prices offered by the other Broker Agents using just 4 states.
Note that we do not discard the computed price statistics. We
use their values in the implementation of some actions in A
but we will not use them to discriminate the state space in S;
therefore our MDP policy does not depend on them.
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Figure 3: Minimum and maximum prices offered by the other
Broker Agents at each timeslot.

We now address the second set of desired features in the
state space; i.e., the number of Consumers and Producers in
BL’s portfolio, ΨBL

t . The number of Consumers and Pro-
ducers can be any positive integer in I

+ which if represented
naı̈vely would result in a very large number of MDP states.
We take a similar approach as above to reduce the state space
by defining a PortfolioStatus feature that takes on a value
from the set {Balanced, OverSupply, ShortSupply}.

In the final representation, the state space S is the set de-
fined by all valid values of the elements in the following tuple:

S = 〈PRSt−1 ,PRSt ,PSt−1 ,PSt ,
−→pt 〉

where:
• PRSt−1 and PRSt are the PriceRangeStatus

values from BL’s perspective at t− 1 and t,
• PSt−1 and PSt are BL’s PortfolioStatus at times-

lots t− 1 and t, and
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• −→pt is a vector of price statistics that are not used to
discriminate the states for the MDP policy, but are
included in the state tuple so that they can be used
by the MDP actions, A.

〈pBL

t,C , p
BL

t,P , p
max
t,C , pmin

t,C , pmax
t,P , pmin

t,P 〉

We explicitly include PRSt−1 and PSt−1 to highlight states
where the environment has just changed, so that the agent can
learn to react to such changes quickly.

Next, we define the set of MDP actions A as:

A = {Maintain,Lower ,Raise,Revert , Inline,MinMax}
where each of the enumerated actions defines how the Learn-
ing Broker Agent, BL, sets the prices, pBL

t+1,C and pBL

t+1,P for
the next timeslot, t+ 1. Specifically:

• Maintain publishes the same prices as in timeslot, t,
• Lower reduces both the Consumer and Producer prices

by 0.01 relative to their values at t,
• Raise increases both the Consumer and Producer prices

by 0.01 relative to their values at t,
• Revert increases or decreases each price by 0.01 towards

the midpoint, mt = � 1
2 (p

max
t,C + pmin

t,P )�
• Inline sets the new Consumer and Producer prices as
pBL

t+1,C = 	mt +
μ
2 
 and pBL

t+1,P = �mt − μ
2 �

• MinMax sets the new Consumer and Producer prices as
pBL

t+1,C = pmax
t,C and pBL

t+1,P = pmin
t,P

The transition function, δ, is defined by numerous stochas-
tic interactions within the simulator. The reward function, r,
unknown to the MDP, is calculated by the environment us-
ing the profit rule for a single Broker Agent, restated here for
convenience:

rBk
t = pBk

t,CκΨt,C − pBk

t,P νκΨt,P − φt|κΨt,C − νκΨt,P |

Since this is a non-deterministic MDP formulation with un-
known reward and transition functions, we use the Watkins-
Dayan [1992] Q-learning update rule:

Q̂t(s, a) ← (1−αt)Q̂t−1(s, a)+αt[rt+γ max
a′

Q̂t−1(s
′, a′)]

where:
αt = 1/(1 + visitst(s, a))

We vary the exploration-exploitation ratio to increase ex-
ploitation as we increase the number of visits to a state. When
exploiting the learned policy, we randomly select one of the
actions within 10% of the highest Q-value.

5 Experimental Results

We configured the simulation model described in Section 3
as follows. The load per Consumer, κ, was set to 10kWh
and the multiplicative factor for production capacity, ν, was
also set to 10. The probability distribution X used to model
Customer preferences for ranking the price-ordered tariffs is
fixed at {35, 30, 20, 10, 5}. The environment was initialized
with 1000 Consumers and 100 Producers, so that supply and
demand are balanced in aggregate. However, this does not

result in a zero-sum game since all or some Broker Agents
could be imbalanced even if the overall system is balanced.
A fixed balancing fee, φt, of $0.02 was used. Since we do
not model the Wholesale Market in this subset of the Smart
Grid domain, Broker Agents cannot trade there to offset the
balancing fees; it is therefore expected and observed that the
average reward for most Broker Agents in our experiments is
negative. The number of timeslots per episode was fixed ar-
bitrarily at 240; varying this number does not materially alter
our results. When presenting aggregated results, we generally
use runs of 100 episodes.

We learn an MDP policy, π, as the strategy for the Learning
Broker Agent, BL. Figure 4 shows the cumulative earnings
of BL compared to the earnings of four data-driven Broker
Agents. It clearly demonstrates the superior performance of
the learned strategy compared to the fixed strategies of the
data-driven Broker Agents.
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Figure 4: Cumulative earnings of the Learning Broker Agent
(upward trending line), relative to four data-driven Broker
Agents, increase steadily after initial learning is completed.

We then consider how the learned strategy performs when
compared to other effective strategies. For this evaluation,
we use two hand-coded strategies presented in Algorithms 1
and 2. The Balanced strategy attempts to minimize supply-
demand imbalance by raising both Producer and Consumer
tariff prices when it sees excess demand and lowering prices
when it sees excess supply. The Greedy strategy attempts
to maximize profit by increasing its profit margin, i.e., the
difference between Consumer and Producer prices, whenever
the market is Rational. Both of these strategies can be char-
acterized as adaptive since they react to market and portfolio
conditions but they do not learn from the past.

Algorithm 1 Balanced Strategy
if currPortfolioStatus = ShortSupply then

nextAction ← Raise
else

if currPortfolioStatus = OverSupply then
nextAction ← Lower

end if
end if
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Algorithm 2 Greedy Strategy
if currPriceRangeStatus = Rational then

nextAction ← MinMax
else

nextAction ← Inline
end if

Figure 5 compares the mean per-episode earnings and stan-
dard deviation of various strategies compared to those of four
data-driven Broker Agents. The top-left panel shows the per-
formance of a Random strategy (solid dot) where the Broker
Agent simply picks one of the six actions in A randomly. Its
inferior performance indicates that the data-driven strategies
used by the other Broker Agents are reasonably effective. The
Balanced and Greedy strategies in the top-right and bottom-
left panels respectively both show superior performance to
the data-driven strategies. While they each achieve about the
same average earnings, the Balanced strategy has much lower
variance. The bottom right panel shows the Learning Broker
Agent’s strategy, driven by its MDP policy, achieving higher
average earnings than all other strategies, albeit with higher
variance than the Balanced strategy.
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Figure 5: Subplots show earnings for various Broker Agent
strategies. (Solid dots represent the labeled strategies and the
other 4 data points represent 4 data-driven Broker Agents.)

While Figure 5 compares the strategies when played
against fixed data-driven strategies, Figure 6 shows the per-
episode earnings of the various learning, adaptive and ran-
dom strategies when played directly against each other. We
see that the Learning strategy maintains its superior average
earnings performance. The Balanced and Greedy strategies
exhibit similar mean and variance properties as in Figure 5.
Interestingly, the Random strategy now performs better than
the fixed data-driven strategy.

In a winner-take-all competitive setting, it is not enough
to outperform the other strategies on average over many
episodes. It is important to win each episode by having the
highest earnings in that episode. Figure 7 shows the number
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Figure 6: Earnings comparison of various strategies played
against each other; we see that Learning outperforms the rest.

of wins for the Learning strategy in two scenarios. The first
set of dark-colored bars show that the Learned strategy wins
about 45% of the episodes when playing against the fixed
data-driven strategies. The second set of bars show the results
of playing the Learning strategy against the Fixed, Balanced,
Greedy and Random strategies respectively. Remarkably, the
Learning strategy now wins over 95% of the episodes.
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Figure 7: Number of wins for Learning strategy.

We briefly address scalability in Figure 8, which shows the
amount of time required to run 100-episode simulations with
increasing numbers of Broker Agents. We expect typical Tar-
iff Markets to include about 5 to 20 Broker Agents. We ob-
serve linear scaling with up to 50 Broker Agents, leading us
to conclude that the MDP representation we have devised and
the learning techniques we have employed remain computa-
tionally efficient in larger domains.

6 Related Work

Extensive power systems research exists on bidding strate-
gies in electricity markets. David and Wen [2000] provide
a literature review. Contreras et al. [2001] is an example
of auction-based market design typically employed in such
markets. Xiong et al. [2002] and Rahimi-Kian et al. [2005]
describe reinforcement learning-based techniques for bidding
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Figure 8: Simulation time grows linearly with the number of
Broker Agents demonstrating the scalability of our approach.

strategies in such markets. However, much of this research
is related to supplier-bidding in reverse-auction markets with
multiple suppliers and a single buyer. The Tariff Market is
substantially different in that various segments of the Cus-
tomer population have diverse preferences and the population
therefore tends to distribute demand across many suppliers.
Another focus of the prior research is on trading in wholesale
markets where the goal is to match and clear bids and offers
through periodic or continuous double auctions whereas in
the Tariff Market the published tariffs can be subscribed to by
unlimited segments of the Customer population.

The unique characteristics of the Tariff Market present new
challenges in electricity markets research. Ketter et al. [2010]
describe a competition setting and identify opportunities for
guiding public policy. Research related to Smart Grid is often
focused on advanced metering infrastructure (AMI) and cus-
tomer demand response, e.g., Hart [2008], or reinforcement
learning-based control infrastructure for fault management
and stability of power supply, e.g., Anderson et al. [2008]
and Liao et al. [2010]. Braun and Strauss [2008] describe
commercial aggregators as contracting trading entities in a
sense most similar to our definition of Broker Agents. While
they describe the anticipated role of such entities, they do
not address the possibility of autonomous agents playing that
role. To the best of our knowledge, developing reinforcement
learning-based strategies for autonomous Broker Agents in
Smart Grid Tariff Markets is a novel research agenda.

7 Conclusion

In this paper we explored the problem of developing pricing
strategies for Broker Agents in Smart Grid markets using Q-
learning. We formalized the Tariff Market domain representa-
tion and the goal of a Broker Agent. We contributed a scalable
MDP formulation including a set of independently applicable
pricing tactics. We contributed a simulation model driven by
real-world data that can also be used for other experiments
in this domain. We demonstrated the learning of an effec-
tive strategy without any prior knowledge about the value of
available actions. We evaluated the learned strategy against
non-learning adaptive strategies and found that it almost al-
ways obtains the highest rewards. These results demonstrate
that reinforcement learning with domain-specific state aggre-
gation techniques can be an effective tool in the development
of autonomous Broker Agents for Smart Grid Tariff Markets.

In future work, we plan to extend our learning to function
in the presence of other agents with varying learning abilities.
We further envision richer domain representations with multi-
attribute tariffs, which would also enable the evaluation of
more complex models in the real world.

Acknowledgements

We would like to thank Wolfgang Ketter and John Collins for
introducing us to the problem domain through the design of
the Power TAC competition and for many useful discussions.
This research was partially sponsored by the Office of Naval
Research under subcontract (USC) number 138803 and the
Portuguese Science and Technology Foundation. The views
contained in this document are those of the authors only.

References

[Amin and Wollenberg, 2005] M. Amin and B. Wollenberg.
Toward a smart grid: Power delivery for the 21st century.
IEEE Power and Energy Magazine, 3(5):3441, 2005.

[Anderson et al., 2008] R. Anderson, A. Boulanger, J. John-
son, and A. Kressner. Computer-Aided Lean Management
for the Energy Industry. PennWell Books, 2008.

[Braun and Strauss, 2008] M. Braun and P. Strauss. Aggre-
gation approaches of controllable distributed energy units
in electrical power systems. International Journal of Dis-
tributed Energy Resources, 4(4):297-319, 2008.

[Contreras et al., 2001] J. Contreras, O. Candiles, J. de la
Fuente, and T. Gomez. Auction design in day-ahead elec-
tricity markets. IEEE Power Systems, 16(3), 2001.

[David and Wen, 2000] A. David and F. Wen. Strategic bid-
ding in competitive electricity markets: a literature survey.
IEEE Power Engineering Society, 2000.

[DoE, 2010] DoE. http://www.eia.doe.gov, 2010.
[Gellings et al., 2004] C. Gellings, M. Samotyj, and

B. Howe. The future’s power delivery system. IEEE
Power Energy Magazine, 2(5):4048, 2004.

[Hart, 2008] D. Hart. Using AMI to realize the Smart Grid.
IEEE Power Engineering Society General Meeting, 2008.

[IESO, 2011] IESO. http://www.ieso.ca, 2011.
[Ketter et al., 2010] W. Ketter, J. Collins, and C. Block.

Smart Grid Economics: Policy Guidance through Com-
petitive Simulation. ERS-2010-043-LIS, 2010.

[Liao et al., 2010] H. Liao, Q. Wu, and L. Jiang. Multi-
objective optimization by reinforcement learning for
power system dispatch and voltage stability. In Innovative
Smart Grid Technologies Europe, 2010.

[Rahimi-Kian et al., 2005] A. Rahimi-Kian, B. Sadeghi, and
R. Thomas. Q-learning based supplier-agents for electric-
ity markets. In IEEE Power Engineering Society, 2005.

[Watkins and Dayan, 1992] C. Watkins and P. Dayan. Q-
learning. Machine Learning, 8, 279-292, 1992.

[Xiong et al., 2002] G. Xiong, T. Hashiyama, and S. Okuma.
An electricity supplier bidding strategy through Q-
Learning. In IEEE Power Engineering Society, 2002.

1451




