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ABSTRACT

Concerns for personal information privacy could be pro-
duced during information collection, transmission and han-
dling. In information handling, privacy could be compro-
mised from both inside and outside of organizations. Within
an organization, private data are generally protected by
organizations’ privacy policies and the corresponding plat-
forms for privacy practices. However, private data could
still be misused intentionally or unintentionally by individ-
uals who have legitimate accesses to them. In general, ac-
tivities of a database operator form a stochastic process,
and at different time, privacy intrusion behavior may show
different features. In particular, one’s past activities can
help determine the natures of his/her current practices. In
this paper, we propose to use dynamic Bayesian networks to
model such temporal environments and detect any privacy
intrusions happened within them.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion—Privacy protection; 1.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving— Uncertainty, "fuzzy”, and
probabilistic reasoning; 1.5.4 [Pattern Recognition]: Ap-
plications—Plan recognition

General Terms

Management, Design, Security

Keywords

Privacy intrusion, intrusion detection, probabilistic reason-
ing, dynamic Bayesian networks
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Privacy is “the right to be left alone” [46]. Before the
1960s, people were mainly concerned about their (1) bodily
privacy, (2) territorial privacy, and (3) communication pri-
vacy. With the advent of information technology (IT), con-
cerns to information privacy appeared and increased quickly
in the 1960s and 1970s [23]. Information privacy involves
personal information collection and handling. Today, with
rapid advancements in IT and its broad applications, pri-
vacy concerns have been produced in many aspects of our
lives such as e-commerce, healthcare, financial services, wire-
less communication, video surveillance, biometrics, and data
profiling [10]. It is expected that personal information must
be: (1) obtained fairly and lawfully, (2) used only for the
original specified purpose, (3) accessible to the subject, (4)
kept secure and accurate, and (5) destroyed after its pur-
pose is completed [16, 24, 17]. Private information process-
ing following the five requirements is called fair information
practices [35].

Information collection is essential for an enterprise to con-
duct its business. If privacy concerns are not properly solved,
information losses may become financial losses. Therefore,
information privacy has not only been a human rights issue,
but has also been a social issue, an economic issue, as well
as a science and technology issue [41].

The platform for Privacy Preferences (P3P) [11] has been
widely used for encoding enterprises’ privacy policies. P3P
enables users to check websites’ privacy policies before al-
lowing websites to collect their personal information. How-
ever, the promises published using P3P may not be enforced
throughout the business by enterprises. Especially, P3P is
too coarse to express an internal enforceable privacy policy
[40]. The Platform for Enterprise Privacy Practices (E-P3P)
[27, 6] has been proposed to enable enterprises to enforce
their policies properly. Enterprise Privacy Authorization
Language (EPAL) [5] is the successor of E-P3P.

Though EPAL or E-P3P helps organizations enforce their
policies, it is still the responsibility of the organizations, in
particular their employees, to respect the applicable poli-
cies [7]. After one’s information has been collected by an
organization, privacy protection generally depends on how
the organization and its employees are going to follow and
enforce the organization’s privacy policies. In particular,
employees who have legitimate access to the database could
use private information for illegal purposes. That is, users
still need to trust the organization in protection of their
personal data, especially when data could be across orga-



nization boundaries. On the other hand, the organization
is accountable for misuse of private information by its em-
ployees (e.g. this is one of the ten basic principles outlined
in Canada’s PIPEDA — Personal Information Protection
and Electronic Documents Act — fully enforced on January
1, 2004). Therefore, the organization is obliged to identify
possible misuses of private data by its employees.

Methods have been proposed to enhance the protection
of private data after they have been disclosed to organi-
zations [30, 1, 21]. These methods are based on public
key encryption and/or require users to trust the “trusted
agents”. However, the “trusted agents” could compromise
private data, and the decrypted private data could still be
misused. Another work [3] proposed a roadmap for a frame-
work involving policy creation, enforcement, analysis and
auditing. Regarding the auditing of the privacy policies, it
suggested to develop a new policy language which should
be able to specify auditing requirements for data accesses
so that audit trails can be generated. In [8], such a policy
language was indeed presented which supports the specifi-
cation of conditions and obligations. However, how to audit
was not discussed.

A privacy intrusion detection system [45] has been pro-
posed to find and prevent any misuses of private data col-
lected by an organization. Nevertheless, the authors of the
paper simply suggested to detect abmormal activities by
comparing an operator’s activities with the normal user or
system behavior profiles. They did not specify how to effec-
tively handle uncertainties involved in operators’ activities
(e.g. an operator’s occasionally assessing a database for an
extended time could be demanded by the job, but could also
be for illegal purposes) and how to effectively reduce such
uncertainties using dependencies’ among operators’ activ-
ities (e.g. an operator needs to access a database for an
extended time while he/she is processing tax returns at tax
return peak period and he/she does process a lot of returns
daily).

Bayesian networks (BNs) [36] can properly model such un-
certainties and dependencies to effectively reason about the
states of domains [48, 25, 28]. A Bayesian network model
[2] has been proposed to detect internal privacy intrusion by
organizations’ employees. However, Bayesian networks as-
sume the problem domains are static. They model domains
with coarser granularity without recognizing temporal de-
pendencies among domain events. That is, the effects of
old domain states on the current domain state cannot be
properly modeled using BNs.

Privacy intrusions happen in dynamic environments, and
even they themselves could be time-series data. In this pa-
per, we propose to use dynamic Bayesian networks (DBNs)
[14] to detect internal privacy intrusion originated within or-
ganizations. Dynamic Bayesian networks can capture richer
and more realistic domain dependencies [13]. They have
been applied in dynamic domains for domain state mon-
itoring [33, 32, 29], activity or plan recognition [4], fore-
casting [12], speech recognition [31, 13], medical diagnosis
[22], and fault or defect detection [44, 39]. Nevertheless,
their application to intrusion detection is rare reported [9,
26, 20]. Hidden Markov models (HMMs) [38] — considered
simplest DBNs — have been applied in network intrusion
detection by modeling time series on networks [47, 34]. How-

!There may also exist uncertainties on dependencies,
though.

ever, HMMs use a single variable to represent domain states
at a time instant, which cannot properly take advantage of
conditional independencies among domain events. Hence,
inference with HMMs would be significantly slow [42]. An
extended HMM, called a factorial HMM [19], was once used
for network traffic classification [49]. However, in the ex-
tended two Markov chain HMM, at each time instant, only
4 variables were used to model domain state, which still
could not explore domain independencies fully. In general,
DBNs are generalized HMMs being able to fully represent
domain independencies and perform inference efficiently [51,
18, 4].

To our best knowledge, this is the first work of applying
general dynamic Bayesian networks to intrusion detection,
in particular, privacy intrusion detection. Besides online
real-time privacy intrusion detection, the method can also
be applied to offline privacy intrusion auditing.

The paper is organized as follows. In Section 2, we give
a review on dynamic Bayesian networks. In Section 3, we
describe a scenario where privacy intrusion could happen
and propose a DBN model to detect any possible intrusion
instances happened in it. In Section 4, we discuss the ap-
proach further. Conclusions are made in Section 5.

2. DYNAMIC BAYESIAN NETWORKS

Dynamic Bayesian networks (DBNs) are graphical models
for probabilistic inference in dynamic domains, which are
extended from Bayesian networks (BNs) for static domains.
DBNs provide us an easy and compact way to specify the
conditional independencies in dynamic domains.

A DBN consists of a finite number of BNs, each of which
(called a slice of the DBN) corresponds to a particular time
instant (or interval). BNs corresponding to successive in-
stants are connected through arcs that represent how the
state of the domain evolves over time. Like BNs, the struc-
tures of DBNs are directed acyclic graphs (DAGs), where
each node represents a domain variable of interest at some
time instant, and each directed arc represents the depen-
dency between the two nodes it connects. The strength of
each dependency is quantified by a conditional probability
distribution (CPD) specifying the probabilities of the child
being in specific values given the values of its parents. For
simplicity, a DBN is generally assumed to satisfy the Marko-
vian property: the state of the domain at time ¢ + 1 is in-
dependent of the states of the domain prior to time ¢, given
the state of the domain at time ¢. In particular, like in a BN,
each node in a DBN is conditionally independent of its non-
descendants given its parents. These properties allow us to
solve complex problems by cheaper local computations.

In a DBN, we also generally assume the nodes, the depen-
dencies among nodes, and the strength of the dependencies
at slice ¢ are identical to those at slice j. In particular,
we assume the dependency and its strength between a pair
of nodes across two consecutive instants won’t change over
time. Hence, a DBN can be described by a two-slice DBN
(2TBN) and the entire DBN can be obtained by unrolling
the 2TBN.

Consider an example where an old man named Bob lives
in a city far from the town his friend Peter lives. They
talk with each other by phone every evening. Bob usually
walks around if the weather of his city is good, and stays
home otherwise. Peter does not know the weather condition
of Bob’s city, but can judge it from Bob’s activities on that



day. The example can be represented by a DBN as shown in
Figure 1. Note that the simplest DBN is actually an HMM
for illustration purpose, which is not suitable for modeling
complex domain as discussed above. We are going to show
how general DBNs are used in privacy intrusion detection
in Section 3.
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Figure 1: A DBN on the weather and an old man’s
activities.

In the DBN, each node represents a random variable, and
each arrowed arc represents the causal dependencies between
the two nodes connected. The subscript of a variable indi-
cates the corresponding time instant. Hence, in the DBN,
each instant is represented by two random boolean variables,
W; and A; (1 = 0,1,2,...). The variable W; represents the
weather condition of Bob’s city on day i, taking the value
good when the weather is good and bad otherwise. The vari-
able A; represents Bob’s activities on day 4, taking the value
out when Bob walks around, and in otherwise. Note that
it is possible that Bob walks around while the weather is
bad and vice versa. Nevertheless, Bob’s activities are highly
dependent on the weather conditions. The arrowed arc be-
tween two successive slices represents the evolution of the
weather condition. The weather will very probably remain
good next day if it is good today and bad if bad.

The DBN can be fully described by its first two slices: the
structure and parameters of each new slice repeat those of
the preceding one. The parameters are specified in Tables 1
and 2. The parameters specified in Table 2 will be repeated
slice by slice. Therefore, to describe a DBN, the first one
and a half slices are actually enough (i.e. 1.5TBN).

In Bayesian probability theory, probabilities are subjec-
tive corresponding to the degree of belief of the reasoners in
the truth of the statements. The degree of belief is different
from the degree of truth. People with different prior knowl-
edge could correctly obtain different results from Bayesian
probability theory.

Table 1: The prior belief about the weather condi-
tion.

Wo P(Wo)
good 0.75
bad 0.25

In the DBN as shown in Figure 1, variable A;, represent-
ing the observation on day i, is often called information,
evidential or observable variable. Variable W;, representing
the actual weather condition on day ¢, is called a hypothesis
or unobservable variable. DBNs can, based on evidence col-
lected from information variables, help efficiently evaluate
the probabilistic state of hypothesis variables.

In our case, with the model, Peter is able to determine the
probabilities of the weather being good on some days given
Bob’s activities for a few days. For instance, by talking over

Table 2: The prior belief about the relationship be-
tween the weather condition and Bob’s activities,
and_the evolution of the weather condition.

W; A | P(AW)|| Wi Wiga | P(Wipi|[Wh)

good in 0.10 good good | 0.75

good out | 0.90 good bad | 0.25

bad in 0.80 bad good | 0.65

bad out | 0.20 bad bad | 0.35

phone, Peter knows Bob’s activities in last 3 days are as
follows: walked around on day 0, stayed home on day 1,
and walked around on day 2. By inference using the model,
Peter knows it is 88.29% that the weather on day 0 was
good, 65.35% on day 1 bad, and 78.52% day 2 good. The
model can also predict that the weather on next day will be
good by 66.41%, and Bob will walk around by 66.48%.

In the domain of privacy intrusion detection, informa-
tion variables are associated with measurable properties of
database and operators’ activities (for online monitoring)
or logged events (for auditing). Unobservable variables are
associate with immeasurable properties of database or op-
erators’ activities. In this paper, we assume there are two
hypothesis variables: the one used to denote whether a pri-
vacy intrusion is occurring (has occurred) or not (has not),
and the other one used to denote what tasks an employee is
(was) working on.

3. PRIVACY INTRUSION DETECTION

Privacy intrusion could happen in many industries where
employees have chances to manipulate databases with pri-
vate information such as health care, revenue agencies, fi-
nancial services, etc. In different industries, the DBN pri-
vacy intrusion detection models could be different in vari-
ables and their dependencies due to different private data
contents and data manipulation processes in different do-
mains. However, the working principles of DBN privacy
intrusion detection will be the same. In this section, as an
example, we present a DBN model for privacy intrusion de-
tection in the government’s revenue agencies.

3.1 TheProblem and the Method

In a government’s revenue service, a representative is granted

access to some information in the revenue database. For
example, a representative usually has rights to retrieve tax-
payers’ personal information such as income, family compo-
sition, contact details, etc. Suppose the revenue service has
a privacy policy that does not allow its employees to disclose
such personal information to any third parties. Neverthe-
less, a representative could violate the policy by secretly
disclosing such personal information to somebody else who
is interested in that (e.g. a marketing agent). Current tech-
niques such as access control or EPAL can do nothing in
preventing such privacy invasion.

In [45], a set of features used to recognize anomaly ac-
tivities were summarized as shown in Table 3, where “DB”
represents database and “RDs” denotes records. Once the
threshold regarding an activity is violated, the respective ac-
tion will be taken to slow down or stop the possible anomaly
activity.

However, simply observing the time an operator stays in



a database or the number of times an operator logins a
database is not sufficient to determine privacy intrusion with
high certainty, which may cause false alarms easily instead.
In particular, in [45], all these features are evaluated indi-
vidually. We believe the detection can be made with more
certainty when all these features are considered in a compre-
hensive way. A Bayesian network (BN) model [2] has been
proposed to properly combine contributions of all these fea-
tures in detecting privacy intrusion. Especially, a measure
about the degree of suspiciousness of intrusion is introduced
through the BN model.

Table 3: Features used to recognize anomaly activi-
ties.

Features Thresholds Objects
Working Hours 8:00-17:00 Database
Duration in DB 10 minutes Database
Duration on RDs | 3 minutes Records
Amount of RDs 100 Records
Modification 0 Records
Frequency on DB | 10 Database
Frequency on RDs | 3 Records

Nevertheless, BNs are proposed for modeling static do-
mains, which lack facilities to model historical information.
In general, the activities of a representative in a revenue
agency form a stochastic process. For example, a represen-
tative could be assigned some job which needs significant
access time to database in the following several days. In
particular, in different days, the representative may need
to handle different tasks in some order. Depending on the
specific task, he/she may or may not need to access some
records, or to perform some operations. Operations for a
task may be causally related with each other. All these
dynamic information may tell us much more about a repre-
sentative’s activities, hence help us reason about the privacy
intrusion with more certainty.

Dynamic Bayesian networks (DBNs) provide effective fa-
cilities to model time series data to reason about the states
of dynamic domains. In the next Subsection, with an ex-
ample we show how DBNs can be used to detect possible
internal privacy intrusion within a revenue agency.

3.2 An Example

Suppose John works in a revenue agency as a represen-
tative. His office hours are 8:00am-17:00pm every weekday.
His duties include audit of tax returns and/or applications,
and collection of outstanding accounts receivables and/or
delivery of benefits. He usually first audit a set (less than
100) of returns/applications, then print and send out collec-
tion/delivery letters corresponding to the reviewed accounts.

In general, auditing takes more time than printing and
sending collection/delivery letters. Hence, John spends more
time on auditing than on collection/delivery. While audit-
ing, he accesses databases and records more frequently, and
spends more time on both databases and records. He may
modify records as the consequences of auditing. He usually
turns to printing/sending corresponding collection/delivery
letters before 100 returns/applications have been audited.
While on auditing, he is probably trying to intrude clients’
privacy if he spends less than usual time on databases but
accesses more than usual records.

While printing/sending collection/delivery letters, he ac-
cesses databases and records less frequently, and spends less
time on databases and records. He usually does not need
to modify any records at this time. In collection/delivery
period, he is probably trying to intrude clients’ privacy if he
spends more than usual time on databases or accesses more
than usual records.

John almost does not work out of his office hours. If he
does, the probability he intrudes clients’ private information
becomes higher than that he does within his office hours.
His probability of privacy intrusion will be adjusted by his
working behaviours: the probability will become lower and
lower if he has been working without suspected intrusion
operations, and become higher if he performs suspected op-
erations.

The example can be modeled with a DBN. As we dis-
cussed above, a DBN can be described by its first 2 (or 1.5)
slices. The first two slices of the DBN is shown in Figure
2, where each dotted box denotes one slice, and arcs across
boxes indicate the evolution of domain states. In each slice,
“F_d” denotes “usage frequency of databases”, “F_r” “us-
age frequency of records”, “T'_r” “time spent on records”,
“M _r “modification of records”, “T'k” “task” (audit or col-
lection/delivery), “Intr” “intrusion of privacy” (true or false),
“Hrs” “working hours” (8am-17pm or not), “A_r” “amount
of records”, and “T'_d” “time on databases”. The digits (0 or
1) following these labels indicate the respective slice number
(e.g. Tkl represents “the task at slice 1”). The arc between
TkO and Tk1 represents the evolution of John’s tasks: John
will highly probably (80%) audit in the next period if he au-
dits currently, and will more probably (75%) collect/deliver
if he collects/delivers currently. The arc between Intr0 and
Intrl represents the evolution of John’s privacy intrusion:
John will more probably intrude clients’ privacy in the future
if he does currently (or did in the past), and will less prob-
ably intrude clients’ privacy if he does not currently (or did
not in the past). The more recent the intrusion happened,
the more the intrusion probability will be raised. The longer
the intrusion has not happened, the less the intrusion prob-
ability will become. The parameters are specified in Tables
4,5, 6,7 and 8.
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Figure 2: A Dynamic Bayesian network for privacy
intrusion detection.

In these tables, “aud” denotes “audit”, and “col” “col-
lection/delivery”. “10-” denotes less than 10, and “10+”
more than 10. Similarly, “3-” and “100-” denotes less than
3 and 100 respectively, and “0+”, “3+” and “1004” more
than 0, 3 and 100 respectively. “8-17" indicates the office
hours between 8:00am and 5:00pm, and “-~8-17” indicates
the time other than office hours. The dots (.’s) in P(Intro|.)



Table 6: Conditional probability distribution table for F_d;, F_r;, M _r;, T_r;, and Hrs; (1 > 1).

Tk; || Fd; P(F.d;|Tk;)| Fori P(F_r;|Tks)| M_r; P(M_r;|Tk;) Tr; P(T_r;|Tk;)| Hrs; P(Hrsi|Tk;)
aud || 10- 045 3- 0.35 0 0.10 3- 0.25 8-17 0.95
aud || 104+ 0.55 3+ 0.65 0+ 0.90 3+ 0.75 -8-17 0.05
col 10-  0.99 3- 0.95 0 0.99 3- 0.90 8-17 0.99
col 10+ 0.01 3+ 0.05 0+ 0.01 3+ 0.10 -8-17 0.01

Table 7: Prior probabilistic knowledge about Intro.

Tko Hrso T.dy Are Intro| P(Intrgl.) || Thko Hrso T.dy Are Intro| P(Introl.)
aud 817 (=8-17) 10- 100- true | 0.60 (0.80) || col 817 (=817) 10- 100- true | 0.15 (0.65)
aud 817 (-8-17) 10- 100- false | 0.40 (0.20) || col 817 (-817) 10- 100- false | 0.85 (0.35)
aud 817 (=8-17) 10- 100+ true | 0.70 (0.90) || col 817 (=8-17) 10- 100+ true | 0.25 (0.70)
aud 817 (-8-17) 10- 100+ false | 0.30 (0.10) || col 817 (-817) 10- 100+ false | 0.75 (0.30)
aud 817 (=8-17) 104+ 100- true | 0.25 (0.75) || col 817 (=8-17) 10+ 100- true | 0.60 (0.80)
aud 817 (-8-17) 10+ 100- false | 0.75 (0.25) || col 817 (-817) 10+ 100- false | 0.40 (0.20)
aud 817 (-8-17) 10+ 100+ true | 0.40 (0.85) || col 817 (-817) 10+ 100+ true | 0.65 (0.85)
aud 8-17 (=8-17) 10+ 100+ false | 0.60 (0.15) || col  8-17 (—=8-17) 10+ 100+ false | 0.35 (0.15)

Table 4: Prior probabilistic knowledge about Tk,
Ar; and T d; (i >1).
Tko P(Tko) || Ar;  P(Ar) || Tdi P(T-di)
aud 0.75 100- 0.75 10- 0.50
col 0.25 100+ 0.25 10+ 0.50

Table 5: Probabilistic evolution knowledge about
Tk; (z > 1).

Tki_1 Tk; P(Tk;|Tki—1)
aud aud 0.80
aud col 0.20
col aud 0.25
col col 0.75

and P(Intr;|.) denote the abbreviation of the corresponding
conditions. The conditional probability values in brackets
correspond to the conditions where values in brackets are
used if applicable. For example, in the first row of left part
of Table 7, the probability 0.80 in the bracket corresponds
to P(Intro = true|Hrsg = =8 — 17,Tdy = 10—, Aro =
100-).

Before any observation (evidence) is entered, the DBN
shows that John, currently, is mostly probably (75%) au-
diting returns/applications, and the probability he audits
reduces with time going on (e.g. from 75% on the first pe-
riod to 58.80% on the fourth period). That is, the longer he
audits, the more probable he could turn to collect/deliver.
He usually works within his office hours (with a probability
of about 96% on each day). His privacy intrusion probabil-
ity is 45.44% initially (assuming we are not too confident
about if he could intrude clients’ private information), and
reduces slightly with time going on (e.g. from 45.44% on
the first period to 42.84% on the fourth period). That the
privacy intrusion probability reduces with time going on is
because we assume previous privacy intrusion will increase
one’s future intrusion probability, and one’s non-intrusion

credits will reduce his future intrusion probability.

Assume we start to observe and reason about John’s ac-
tivities from a certain day. John’s activities on one day
corresponds to one slice of the DBN. As mentioned above,
we assume John’s working task Tk; (¢ > 0), and the na-
ture of his activities (whether he intrudes clients’ privacy
Intr; (i > 0)) are not observable. In the first two days, all
evidence indicates he is auditing returns and/or applications
(F-do,1=10+,F _ro,1=3+,M _ro,1=0+, T r0,1=3+). With such
evidence entered, the model indicates that John is highly
probably (99.99% on each day) auditing returns/applications.
Nevertheless, without further intrusion-specific evidence en-
tered, the model cannot tell us too much about privacy
intrusion (the model shows the intrusion probabilities for
the two days are 47.34% and 46.81%, respectively). In this
model, the intrusion-specific variables are A_r;, T_d;, and
Hrs; (i > 0). With evidence on these variables for the first
two days obtained and entered (A_ro;=100-,T7_do,1=10+,
and Hrso,1=8-17), the model indicates that John has very
low probabilities for privacy intrusion (25% and 20% re-
spectively for each day). The intrusion probabilities become
lower because the evidence indicates none of the suspected
activities.

On the third day, suppose we observe F_d>=10-,F _ro=3-
M _ry=0, and T_r,=3-. With such evidence entered, the
model indicates that John is highly probably (98.16%) doing
collection/delivery job. Before intrusion-specific evidence is
entered, the model shows that John could intrude private
information with a probability of 33.86% on the day. With
intrusion-specific evidence entered (A_r,=100+, T _d>=10+,
and Hrss=-8-17), the model indicates that John could in-
trude clients’ private information with a probability of 79%.
This is because the evidence indicates highly suspected ac-
tivities. This high intrusion probability will raise John’s
future privacy intrusion probability through intrusion vari-
able dependency between two successive DBN slices. For ex-
ample, his intrusion probability on the fourth day becomes
47.78%, a rise from the initial 42.84% (before any evidence
is entered), and 38.48% before intrusion-specific evidence
on the third day is entered. This rise could significantly
increase the model’s sensitivity to John’s privacy intrusion-



Table 8: Prior probabilistic knowledge about Intr; (i > 1).

Tk; Hrs; Tdi Axr; Intri_i Intr) P(Intr;|.) Tk; Hrs; Td; Ar; Intri_iIntr] P(Intr;|.)
aud 8-17 (=8-17) 10- 100- true true | 0.70 (0.90) || col  8-17 (—8-17) 10- 100- true true | 0.25 (0.75)
aud 817 (—-8-17) 10- 100- true false| 0.30 (0.10) || col  8-17(—8-17) 10- 100- true false| 0.75 (0.25)
aud 8-17 (-8-17) 10- 100- false true | 0.50 (0.70) || col 8-17(—-8-17) 10- 100- false true | 0.05 (0.55)
aud 8-17 (-8-17) 10- 100- false false| 0.50 (0.30) || col ~8-17(—8-17) 10- 100- false false| 0.95 (0.45)
aud 817 (-8-17) 10- 100+ true true | 0.80 (0.95) || col 817 (=8-17) 10- 100+ true true | 0.35 (0.80)
aud 8-17 (—8-17) 10- 100+ true false| 0.20 (0.05) || col 817 (—8-17) 10- 100+ true false| 0.65 (0.20)
aud 817 (—-8-17) 10- 100+ false true | 0.60 (0.85) || col 8-17(—-8-17) 10- 100+ false true | 0.15 (0.60)
aud 8-17 (=8-17) 10- 100+ false false| 0.40 (0.15) || col  8-17(—8-17) 10- 100+ false false | 0.85 (0.40)
aud 8-17 (-8-17) 10+ 100- true  true | 0.35 (0.85) || col 8-17(—8-17) 10+ 100- true true | 0.70 (0.90)
aud 8-17 (-8-17) 10+ 100- true false| 0.65 (0.15) || col 8-17(—-8-17) 10+ 100- true false| 0.30 (0.10)
aud 8-17 (—8-17) 104+ 100- false true | 0.15 (0.65) || col 8-17(—=8-17) 10+ 100- false true | 0.50 (0.70)
aud 8-17 (-8-17) 10+ 100- false false| 0.85(0.35) || col 8-17(—-8-17) 10+ 100- false false | 0.50 (0.30)
aud 817 (—8-17) 104+ 100+ true true | 0.50 (0.50) || col ~8-17 (=8-17) 10+ 100+ true true | 0.75 (0.95)
aud 8-17 (—8-17) 10+ 100+ true  false| 0.50 (0.50) || col 8-17(—8-17) 10+ 100+ true false| 0.25 (0.05)
aud 8-17 (—8-17) 10+ 100+ false  true | 0.30 (0.30) || col 8-17(—-8-17) 10+ 100+ false true | 0.55 (0.75)
aud 8-17 (=8-17) 10+ 100+ false false| 0.70 (0.70) || col 8-17(—8-17) 10+ 100+ false false| 0.45 (0.25)

related activities. For example, with the same evidence as
that on the third day observed on the fourth day, the model
shows that John could intrude private information with a
probability of 90.8%.

4. DISCUSSION

The approach presented in the paper aims to deal with
the general internal attacks on databases for stealing large
amount of private data. It is not generally intended to de-
tect privacy breach of an or a few individuals, though the
model can be made to detect such invasions if the data are
irrelevant to the database operator’s (current) job. It is dif-
ficult to automate the detection of the disclosure of such
small amount of data generally.

The effectivity of the framework counts on the applica-
bility of the features used. In different problem domains,
the features used to detect internal privacy intrusion will be
different. The features proposed in the paper for privacy
intrusion detection in a revenue agency is not complete and
may not be the most effective depending on the specific op-
erator and his task. Features can be obtained manually or
statistically. To obtain features manually, we need to have
a good knowledge about the database operator’s activities.
The more we know about an operator, the more certain
our knowledge about the operator is, the more effective the
framework will be. To increase and make certain our knowl-
edge about an operator’s activities, we could make some
specific regulations regarding procedures and operations he
needs to follow in his routine business. For example, he
should not access or cannot copy some records; print-outs
will be monitored, etc. Obtaining features statistically is a
problem of DBN learning from live data, which will be inves-
tigated in the future. Anyway, feature creation and selection
is an interesting aspect of the future work.

The proposed technique will be particularly effective if the
large amount of data being accessed is irrelevant to the op-
erator’s job since the irrelevancy is an outstanding feature.
More features that can determine the nature of one’s job
will help determine the irrelevance.

Detection of irrelevance between data being accessed and
one’s job can also help prevent users from inferring sensitive

information from (statistical) databases, which is known as
inference control [15, 37, 50]. A user may be able to deduce
sensitive data by making a sequence of non-sensitive queries
that is irrelevant to his job. DBNs can help detect such
irrelevances, and determine if these queries together form
an inference channel [43].

5. CONCLUSION

Private information is usually protected by secure tech-
niques (such as access control and authentication). Data
privacy will be compromised if there is no data security.
However, even when data are “secure”, private information
could still be infringed on. In privacy protection, we are
more concerned about how to protect data when data have
to be disclosed or even when data are “secure”. Many tech-
niques such as P3P and EPAL have been proposed to protect
private information from being unfairly used or processed.
Nevertheless, these techniques may not prevent persons mis-
using their legitimate access rights from invading data pri-
vacy.

It turns out that database operators’ activities could tell
us if they are trying to invade data privacy. Since database
operators’ activities are generally stochastic processes (the
task of a database operator, and hence his specific opera-
tions, could change from time to time; the previous activities
of an operator could be related with his/her current activ-
ities; one’s privacy intrusion history may indicate he/she is
highly interested in private information, etc), we propose to
use dynamic Bayesian networks (DBNs) to detect privacy in-
trusion in such temporal environments. An example is given
in the paper to demonstrate how DBNs can be applied to
privacy intrusion detection.

With DBNSs, the past (historical) activities of an operator
can be used to help determine the nature of his/her current
activities or even help forecast the nature of his/her future
activities. The effects of (contributions from) all historical
and current events to the intrusion probability are coher-
ently combined using the Bayesian probability theory. The
DBN method can be applied to both online privacy intrusion
detection and offline privacy intrusion auditing. To our best
knowledge, this is the first work to apply dynamic Bayesian



networks to the topic.
In the future, we are going to study how to derive a DBN
privacy intrusion detection model from real data.
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