
Pricing of Partially Compatible Products

David Kempe∗

University of Southern
California

clkempe@usc.edu

Adam Meyerson
University of California, Los

Angeles

awm@cs.ucla.edu

Nainesh Solanki
MediaDefender Inc.†

naineshsolanki@gmail.com

Ramnath K. Chellappa
Emory University†

ram@bus.emory.edu

ABSTRACT
In this paper, we examine a duopolistic market where the
two firms compete to sell a system of components. Compo-
nents are digital (firms have unlimited supply at no marginal
cost), and customers are homogeneous in their component
preferences. Each customer will assemble a utility maximiz-
ing system by purchasing each necessary component from
one of the two firms. While components from the same firm
are always compatible, pairwise compatibility of components
from rival firms may vary; in addition to utility due to the
quality of the system purchased, customers have negative
utility for purchasing incompatible parts. We investigate
algorithms and hardness results for profit-maximizing deci-
sions of the firms with regards to their price-setting, compo-
nent value-enhancing and compatibility-enabling strategies.

The users’ behavior can be modeled as a minimum cut
computation, and the company’s strategies require address-
ing novel and interesting questions about graph cuts and
flows. We develop a polynomial-time algorithm for find-
ing profit-maximizing prices if the qualities and compatibil-
ities are fixed. On the other hand, we show that finding
profit-maximizing quality improvements is equivalent to the
Maximum Size Bounded Capacity Cut problem, and thus
NP-complete. Finally, for the problem of improving com-
patibilities to maximize the price, we give polynomial ap-
proximation hardness results even in very restricted cases,
but show that if all components have uniform prices, and
quality differences are small, then an approximation can be
found in polynomial time.
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†Work done while the author was at the University of South-
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1. INTRODUCTION
For firms operating in an environment where a collection

of products or components needs to work together, decisions
regarding a component’s compatibility with that of a rival
are of strategic importance. Any price-setting behavior in
such a market needs to take into account the end-consumers’
disutility from purchasing partially compatible components
from two or more rival firms. The complexity of decision-
making in such a market can be further compounded if firms
can also affect purchasing behavior by altering a compo-
nent’s generic value to the end-user.

Modeling such decisions has largely been the domain of
research in economics [6, 7, 8, 18, 22, 23] wherein compati-
bility choices have been characterized as adoption of a par-
ticular standard, de jure or de facto. While this research
has generally suggested that firms are better off by aligning
with the leading industry standard, the results do not easily
generalize to a market wherein firms produce multiple com-
ponents, and there are partial incompatibilities rather than
full or no compatibility.

In this paper, we address the following general version of
the problem. Two companies each produce their own ver-
sions of each of a number of products. The versions pro-
duced by the two companies serve in principle the same
function; for instance, each company may be producing an
operating system, a word processor, a spreadsheet, and a
graphics program. While the components serve the same
function, they may differ in the reliability, user interface, fea-
tures, efficiency, or other parameters, and thus, a user may
have different valuations for the versions by the two com-
panies. We assume that the products are digital ; in other
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words, the companies have unbounded supply and there is
no per-unit production cost.

In principle, components by the two companies are inter-
changeable; however, they will frequently not be fully com-
patible, and as a result, the total system valuation may be
lower than the sum of individual valuations of the combined
components. Thus, users will tend to use inferior products
from one company in order to avoid the utility decrease due
to incompatibility. The companies will be aware of those
user tendencies, and exploit them in their pricing decisions
and product planning. For instance, a well-known operat-
ing system sells widely for a positive price, even though it
has freely available and (by most accounts) technologically
superior competition. The reason is that most application
software is at best partially compatible with the free com-
petition.

In this paper, we study several aspects of this problem.
We generally assume a duopoly, i.e., only two companies are
competing. Furthermore, we assume that the market is ho-
mogenous, i.e., all consumers have identical utilities. This is
a strong assumption; however, even under this assumption,
the problem leads to surprising and interesting strategic de-
cisions.

Formally, for each of n components i, and each company
` = 1, 2, we are given a non-negative valuation ν`,i ≥ 0. In
addition, for each ordered pair i, i′ of products, there is an
incompatibility penalty γi,i′ ≥ 0, incurred by any user who
combines company 1’s version of component i with company
2’s version of component i′. Notice that these γi,i′ will not
necessarily be symmetric or binary: it is quite frequent that
incompatibility manifests itself with only some lacking func-
tionality, or additional hassle in importing file formats. Af-
ter prices p`,i have been set for all components, the users will
choose the system maximizing their total utility: the sum
of all qualities, minus all incurred incompatibility penalties
and the prices. Given these utility-maximizing decisions by
the users, the company will be interested in maximizing its
profit. Here, we assume that the components are digital (i.e.,
they exist in unlimited supply and cause no marginal cost
to the companies); thus, a company’s profits equal the sum
of prices of all components sold. We focus on the following
three questions:

1. Given knowledge of all incompatibilities and user pref-
erences (product qualities), as well as the competitor’s
prices, what prices should a company choose to maxi-
mize its profit?

2. In the same scenario as above, suppose that the prod-
uct prices are given, and the company has a budget B
for improving the quality of its products. How should
the budget be divided over the products to maximize
the revenue from sales?

3. If product prices and utilities are fixed, but a com-
pany can unilaterally alter compatibilities (for instance
by writing conversion tools or emulators, or by de-
liberately introducing novel formats or system-specific
bugs), how should a company use these means to max-
imize its profit?

While our work focuses on the best-response strategy for a
company, the scenario naturally suggests other game-theoretic
questions as well, including notions of equilibria in a re-
peated game and the auction-theoretic view of extracting

truthful valuations from customers. These topics are dis-
cussed briefly in Section 6.

1.1 Our Results
Perhaps most surprisingly, the first and most natural prob-

lem, choosing profit-maximizing best-response prices, can be
solved in polynomial time. The algorithm relies on a non-
trivial reduction to minimum cuts, based on insights into a
novel variant of the inverse minimum cut problem.

Theorem 1. Profit-maximizing prices in a duopoly with
identical consumers can be found in polynomial time.

While seemingly similar, the situation is less positive for
the scenario with a quality-improvement budget. We can
show that the problem is equivalent, under approximation-
preserving reductions, to the Maximum-Size Bounded Ca-
pacity Cut (MaxSBCC) problem defined in [15, 24]. It is
thus NP-complete. Neither approximation hardness results
nor non-trivial approximations are known for the MaxSBCC
problem. Using techniques of Feige and Krauthgamer [9],
Svitkina and Tardos give an (O(log2 n), 1) bicriteria approx-
imation algorithm for the MaxSBCC problem [24]. Thus, by
multiplying the budget by O(log2 n), it is possible to obtain
a profit no worse than the actual optimum with the original
budget.

Finally, for the problem of unilaterally changing incom-
patibilities, we obtain a two-fold result.

Theorem 2. 1. If incompatibilities can be both increased
and decreased, then the problem is equivalent to Knap-

sack. In particular, there is a pseudo-polynomial al-
gorithm and a PTAS.

2. If incompatibilities can be only decreased (i.e., products
can be made more compatible, for instance by adding
conversion tools or emulators), then in general, the
optimum revenue is hard to approximate to within a
polynomial factor Ω(n1−ε) for each ε > 0. However, if
all prices of company 1’s products are the same, and
the quality differences are integers between 1 and some
bound C, then a 1/C-approximation can be obtained in
polynomial time.

The proofs for both the hardness result and approxima-
tion algorithm rely on a novel duality between special types
of flows, termed S-exclusive flows, and s-t cuts S that can
be turned into minimum cuts.

1.2 Related Work
The impact of incompatibilities on prices, product bundling,

and profits, as well as the emergence of standards, have been
studied in the past in the economics literature (see, e.g., [6,
7, 8, 18, 22, 23]). These papers assume that components
are either fully compatible, adhering to a uniform standard,
or fully incompatible, in which case the systems sold are
entirely purchased from the same company. In addition,
these papers make strong probabilistic assumptions about
consumer preferences (such as assuming that users have in-
dependently uniform preferences over products), in order to
derive closed-form solutions, and frequently only give solu-
tions for two components.

Most of the models [6, 7, 18, 22] predict that the ulti-
mate result in equilibrium would be complete compatibility,
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in the presence (or even absence) of positive network exter-
nalities (outside incentives such as support, resale, etc., en-
couraging consumers to purchase identical systems). Thus,
it appears that traditional economic models are not ade-
quate to describe the actual outcome of strategic choices in
component markets with partial compatibility [13]. In par-
ticular, they do not make predictions, or provide algorithms,
for determining optimal prices in any given fixed instance of
consumer valuations.

Recently, there has been a lot of work in the theoretical
computer science community on the general areas of prod-
uct pricing and auctions. Several papers [1, 4, 12] have
studied combinatorial optimization problems resulting from
constraints on the sets of items that consumers are interested
in purchasing. In addition, a lot of attention has been given
to the design of incentive-compatible mechanisms [3, 17, 25],
specifically in the design of profit-maximizing auctions [10,
11, 12]. In the present paper, incentive-compatibility and
the elicitation of bids is not a concern, although they pose a
promising direction for future research. The most relevant
techniques in deriving algorithms in the setting of this pa-
per come from the areas of unbalanced graph cuts [9, 15, 24]
and inverse minimum-cut problems [2, 26].

Overview of the paper
We begin by defining the problem formally, and proving sev-
eral useful basic facts, in Section 2. We then proceed with
the reduction between the quality improvement problem and
MaxSBCC in Section 3. Based on that reduction, we present
the polynomial-time algorithm for pricing in Section 4. Sec-
tion 5 discusses the algorithms and hardness results for the
problem of altering compatibilities. We conclude with many
open problems and future directions in Section 6.

2. PRELIMINARIES
We assume that there are n products (also called com-

ponents) i = 1, 2, . . . , n. We are focusing on the case of a
duopoly with digital goods, i.e., each product is produced
by each of two companies, at no marginal costs and with
unbounded supply. Each product i by each company ` has
an associated valuation ν`,i ≥ 0 for the user (also called
its quality). A system consists of one version of each prod-
uct, i.e., purchasing each of the products i = 1, . . . , n from
either company 1 or company 2. We can thus identify a sys-
tem with the set S ⊆ {1, . . . , n} of components purchased
from company 1; S is then purchased from company 2.

The total valuation of a system is determined by the indi-
vidual components’ valuations, but it is also affected by in-
compatibilities. Specifically, if a system combines two com-
ponents i ∈ S and i′ /∈ S, then the total quality of the
system decreases by the incompatibility penalty γi,i′ ≥ 0.
Notice that it is possible that γi,i′ 6= γi′,i, as there is no rea-
son a priori to believe that, for instance, company 1’s word
processor and company 2’s operating system are exactly as
incompatible as company 1’s operating system and company
2’s word processor.

We assume that all components produced by the same
company are fully compatible. This assumption is without
loss of generality, so long as the company-internal incompat-
ibilities are smaller than the ones between components of dif-
ferent companies. (Then, subtracting the company-internal
incompatibilities does not affect the optimal solution.) The

total system valuation to a user is then

ν(S) =
X

i∈S

ν1,i +
X

i/∈S

ν2,i −
X

i∈S,i′ /∈S

γi,i′ .

If company 1 charges price p1,i ≥ 0 for component i,
and company 2 charges p2,i, then we assume that the users
choose the system S maximizing the utility

U(S) = ν(S) −
X

i∈S

p1,i −
X

i/∈S

p2,i.

The system S maximizing U(S) can be characterized in
terms of the minimum cut of a graph. Define a graph G with
node set V = {s, t, v1, . . . , vn}, and directed edges (s, vi)
of capacity ν1,i + p2,i and (vi, t) of capacity ν2,i + p1,i, as
well as directed edges (vi, vj) of capacity γi,j . Table 1 gives
example qualities, prices, and incompatibilities for a three-
component system, and Figure 1 shows the corresponding
graph.

Component ν1,i ν2,i p1,i p2,i

Operating System 2 4 1 0
Spreadsheet 3 1 2 2
Word Processor 4 3 2 1

↓ Comp. 1 | Comp. 2 → OS SS WP
Operating System 0 2
Spreadsheet 3 0
Word Processor 1 1

Table 1: Example prices and incompatibilities

s t

OS

SS

WP

2

5

5

5

3

5

21

1

3

Figure 1: The corresponding graph G

Lemma 3. A system S maximizes U(S) if and only if (S+
s, S + t) is a minimum cut in G.

Proof. The capacity of any cut (S+s, S+t) in G is exactly
X

i∈S

(ν2,i + p1,i) +
X

i/∈S

(ν1,i + p2,i) +
X

i∈S,i′ /∈S

γi,i′

=
X

i

(ν1,i + ν2,i) −
`

X

i∈S

ν1,i +
X

i/∈S

ν2,i

−
X

i∈S,i′ /∈S

γi,i′ −
X

i∈S

p1,i −
X

i/∈S

p2,i

´

=
X

i

(ν1,i + ν2,i) − U(S).

Hence, maximizing U(S) is equivalent to minimizing the ca-
pacity of (S + s, S + t).
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Remark 4. If we were to study competition between more
than two companies, then the resulting optimization problem
for a user would be to assign labels (or colors) to the nodes
of a graph, where edge-specific penalties are incurred for la-
beling adjacent nodes with different colors. The resulting
optimization problem for the user is NP-complete for any
fixed number L ≥ 3 of companies. It is akin to the problem
of metric labeling studied in [5, 19].

The above formulation of course immediately implies an
algorithm for a consumer to choose an optimal system: com-
pute the minimum s-t cut of G, and purchase the compo-
nents on the s-side from company 1, and those on the t-side
from company 2.

Using the cut-based characterization, we can thus refor-
mulate the optimization problem in terms of changing edge
costs so as to maximize the total value of nodes on the s
side of the cut. Recall that we are focusing on the case
where company 2 has already determined all its prices and
product qualities, and company 1 is seeking a best-response
strategy. (The questions of repeated, alternating iterations
of this game, equilibria, or dominating strategies, are briefly
discussed in Section 6.)

1. The budgeted improvement problem consists of increas-
ing the capacity of edges out of s by a total of at most
B so as to maximize the total price p1,S of products
on the s-side of the resulting minimum cut.

2. The pricing problem asks to assign prices p1,i to nodes
so that in the minimum cut with edge capacities (vi, t)
determined by the p1,i values, the total price of com-
ponents on the s-side is maximized.

3. The compatibility alteration problem asks to change (or
decrease, in the case of solely improving compatibility)
the capacities of edges not incident with s or t so as
to maximize the total price p1,S of components on the
s-side of the minimum cut.

The problem thus bears some similarity with the inverse
minimum cut problem [2, 26], in which the edge capacities
of a given graph G are to be altered as little as possible
(measured as the sum of changes over all edges) so as to
ensure that a given cut (S, S) becomes the minimum s-t cut.
Notice, though, that our formulation differs in two critical
aspects: we only allow certain limited changes, and the goal
is not to obtain one particular cut, but to maximize the total
price of components on the s-side.

3. BUDGETED IMPROVEMENT PROBLEM
We first consider the problem of improving product val-

uations with a limited budget, so as to maximize the total
revenue of products sold. As argued above, this is equivalent
to being given a graph with non-negative edge capacities ce,
as well as node prices pi := p1,i. The goal is to add a total
of at most B units of capacity to edges leaving the source s,
so as to ensure that in the resulting graph, the total price
pS for the s-side S of the minimum s-t cut is maximized.

In deriving an equivalent formulation, the following lemma
is crucial, relating the necessary capacity increase to the dif-
ference in cut capacities. To the best of our knowledge, this
lemma has not appeared elsewhere.

Lemma 5. Let G = (V, E) be a graph with capacities ce,
and let (S∗, S∗) be a minimum s-t cut of G, of capacity C∗.
Let S ⊇ S∗ define an s-t cut (S, S) of capacity C ≥ C∗.
Then, by increasing the edge capacities out of s by a total
of at most C − C∗, it is possible to ensure that there is
a minimum cut (S′, S′) with respect to the new capacities,
with S′ ⊇ S.

In words, this lemma is saying that in order to ensure that
at least all of S ends up on the s-side of a minimum cut with
altered capacities, it is enough to increase capacities out of
s by a total of at most the difference between the capacities
of (S, S) and the original minimum cut capacity.

Proof. Consider adding a new, parallel, edge ei = (s, i) for
each node i ∈ S\S∗, with capacity cei

= C−C∗. In the new
graph, the capacity of each s-t cut (A, A) with S 6⊆ A must
be at least C, while the capacity of each cut (A, A) with
S ⊆ A stays unchanged. In particular, the new minimum
s-t cut must be some (S′, S′) with S′ ⊇ S.

Because (S, S) is a cut of capacity C, the maximum flow
f in the new graph can have value at most C. Also, because
the previous maximum flow f∗ had value C∗, the new flow
f can be obtained from f∗ by adding an augmenting flow
f −f∗ of value C−C∗. In particular, the total flow f on the
newly added edges ei is at most C − C∗. By reducing the
capacities of the newly added edges ei to the flow c′ei

:= fei
,

f will certainly remain a maximum flow, and hence, (S, S)
will remain a minimum cut. At the same time, the total
amount of capacity added is

P

i c′ei
=

P

i fei
≤ C − C∗.

This completes the proof of the lemma.

Using this lemma, it becomes rather straightforward to
characterize the maximum profit that can be obtained by
increasing the edge capacities out of s by a total of at most
B. For a particular set S of products (or a superset of it)
can be sold by company 1 if and only if the capacity of the
cut (S+s, S+t) exceeds that of the minimum cut by at most
B. If C∗ denotes the minimum cut’s capacity, we are thus
seeking the set S maximizing pS , subject to the constraint
that the capacity of (S, S) be at most C∗ +B. This problem
is exactly the weighted Maximum-Size Bounded Capacity
Cut (MaxSBCC) problem introduced and studied in [15,
24]. It can be written as an integer linear program as follows
(this formulation will be useful in Section 4):

Maximize
P

i pi · xi

subject to xs = 1, xt = 0
ye ≥ xi − xj for each e = (i, j)
P

e∈E ye · ce ≤ C∗ + B
xi, ye ∈ {0, 1}.

(1)

Here, xi = 1 corresponds to a node being on the s-side
of the cut, and ye = 1 corresponds to edge e being cut.
While it is known [15, 24] that MaxSBCC is NP-hard, even
for unit prices, neither an approximation hardness result
nor non-trivial approximation algorithms are known at this
point.

Using the techniques of Feige and Krauthgamer [9], it is
possible [24] to give an (O(log2 n), 1) bicriteria approxima-
tion algorithm. Thus, by increasing the capacity increase
budget by a factor of O(log2 n), one can obtain a profit no
worse than the best possible with the original budget. How-
ever, single-criteria results are not known at this point.
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4. PRICING PROBLEM
We can use the insights from the previous section to de-

rive a polynomial-time algorithm for determining the prod-
uct prices giving highest total profit. Imagine setting very
high prices pi for all products i, so high that the minimum
cut separates s from the rest of the graph, i.e., company 1
does not sell any products. Now suppose that the prices are
reduced by a total “rebate” of at most R. A reduction in
price is equivalent to an improvement in quality, hence we
can think of improving the quality by at most R. At the
same time, the rebate will decrease the profit by R, so the
new optimization problem becomes

Maximize
P

i pi · xi − R
subject to xs = 1, xt = 0

ye ≥ xi − xj for each e = (i, j)
P

e∈E ye · ce ≤ C∗ + R
xi, ye ∈ {0, 1}.

(2)

At optimality, the “improvement” constraint
P

e∈E ye ·
ce ≤ C∗ + R must be tight (else R could be decreased, for a
better solution), so the maximization problem is equivalent
to

Maximize
P

i pi · xi + C∗ −
P

e∈E ye · ce

subject to xs = 1, xt = 0
ye ≥ xi − xj for each e = (i, j)
xi, ye ∈ {0, 1}.

(3)

The optimization problem is thus to find an s-t cut (S, S)
maximizing

P

i∈S pi−
P

i∈S,j /∈S c(i,j), or equivalently — since

C∗ is a constant — minimizing
P

i/∈S pi +
P

i∈S,j /∈S c(i,j).
But this is exactly the minimum cut in the graph G if we
increase the capacity of all edges (s, i) out of s by pi, or,
equivalently, decrease the capacity of all edges (i, t) into t
by pi. That minimum cut is exactly the optimum system if
all of company 1’s prices are 0. Thus, we have proved the
following lemma:

Lemma 6. With the optimal price setting, company 1 sells
exactly the same set S∗ of products as if it gives away all its
products for free.

Once the optimal sold set S∗ has been determined, we still
need to assign the corresponding prices. One way would be
to set up an exponential-sized linear program, maximizing
the sum of prices on the nodes in S∗, subject to the con-
straint that the capacity of each cut contained in S∗ be at
least the capacity of the cut (S∗, S∗). While this LP has
exponential size, it has a polynomial-time separation oracle
(via a minimum cut computation), and can thus be solved
in polynomial time.

A more efficient approach uses a single Max-Flow com-
putation, following the approach of Lemma 5. First, in the
graph with product prices 0, find a maximum s-t flow. Thus,
the cut (S∗, S∗) will be a minimum cut. Now, add new (par-
allel) edges ei = (i, t) for i ∈ S∗, i 6= s, with some large
capacity, and find a maximum augmenting flow f ′ from s to
t. If we change the capacity of each newly added edge ei to
f ′

ei
, then (S∗, S∗) is a saturated cut, and thus a minimum

cut for the flow f + f ′. On the other hand, because f ′ is a
maximum augmenting flow, it is impossible to increase the
total capacities of the ei for i ∈ S∗ beyond the value of f ′

without having (S∗, S∗) cease to be a minimum cut. Hence,
the optimum profit is obtained by assigning each product in
S∗ a price of f ′

ev
, and each product not in S∗ an arbitrary

price. We have thus proved:

Theorem 7. There is a polynomial-time algorithm for
selecting profit-maximizing best-response prices in a duopoly
with identical consumers.

5. COMPATIBILITY ALTERATION
In this section, we discuss results regarding deliberate and

unilateral changes in product compatibilities. We assume
that all prices and costs, and thus the capacities of all edges
incident with the source or sink, are fixed. The goal is to
change capacities of edges e = (i, j) with neither i nor j
being the source or sink, so as to maximize the total price of
nodes on the s-side S of the minimum cut in the resulting
graph. We first discuss the problem in which compatibilities
can be arbitrarily increased or decreased, and then the one
where products can only be made more compatible, i.e., edge
capacities can only be lowered.

5.1 Arbitrary Capacity Changes
If the capacities ce can be increased or decreased, then

the original capacities may be assumed to be 0 without loss
of generality. We claim that the problem is exactly identical
with the Knapsack problem.

Proposition 8. Without loss of generality, the optimum
solution uses only capacities 0 or ∞ for edges not incident
with s or t.

Proof. If (S, S) is a minimum cut with respect to capac-
ities c, then it is also a minimum cut if we change the ca-
pacities of all edges e ∈ (S \ {s}) × (S \ {t}) to 0, and the
capacities of all edges e ∈ S ×S, e ∈ S \ {s} and e ∈ S \ {t}
to ∞.

We first observe that the customer can always be forced to
buy products from only one company, by setting all incom-
patibilities to infinity. If company 1’s products have a total
valuation minus price higher than those of the competitor,
then this will be the optimum solution and the problem is
solved. Assuming this is not the case, a set S can be the
set of products sold if and only if (S, S) is a minimum cut
under the capacity assignment described in Proposition 8.
Under this capacity assignment, the only cuts with finite ca-
pacity are (S, S), ({s}, V \ {s}), (V \ {t}, {t}). The capacity
of the last two cuts represent the total valuation minus price
of company 1’s products and the competitor’s products, re-
spectively, and we are assuming that company 2’s products
have larger total valuation minus price.

Thus, S can be the set of products sold if and only if the
capacity of (S, S) is smaller than that of ({s}, {t, 1, . . . , n}),
i.e., if
P

i∈S(ν2,i + p1,i) +
P

i/∈S(ν1,i + p2,i) ≤
P

i(ν1,i + p2,i),

or, equivalently,
P

i∈S(ν1,i + p2,i − (ν2,i + p1,i)) ≥ 0.

The optimum solution S will always contain all i such
that d(i) := ν1,i + p2,i − (ν2,i + p1,i) ≥ 0, and we can
write D :=

P

i:d(i)≥0 d(i). Then, the optimum solution S
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is the one maximizing pS subject to the constraint that
P

i∈S,d(i)<0(−d(i)) ≤ D. This is exactly a Knapsack prob-

lem with values pi, “weights” −d(i), and weight bound D.
The reduction works both ways. As a result, we obtain a
pseudo-polynomial time algorithm and PTAS for the prob-
lem of arbitrarily setting compatibilities to maximize profit.

5.2 Improving Compatibilities
When company 1 can only improve compatibilities uni-

laterally, but not worsen them, then we are looking for new
capacities c′e ≤ ce on each edge e not incident with the
source or sink, such that pS is maximized, where S is the
minimum cut with respect to the capacities c′e. We will call
capacities c′· satisfying c′e ≤ ce on all edges e, and c′e = ce

for all e incident with the source or sink valid capacities. If
S is the minimum s-t cut for some valid capacities, we call
S a minimizable cut.

In the further description, we will assume without loss
of generality that no node i has both an edge from s, and
an edge into t. If both (s, i) and (i, t) were edges, then we
could remove the edge with smaller capacity, and replace
the other capacity by the difference. It is then easy to see
that we have simply reduced the capacity of every cut in the
graph by the same constant, and not affected the problem
otherwise. Intuitively, the capacity of the edge (s, i) or (i, t)
is then the utility difference between the versions of product
i produced by companies 1 and 2: how much better (or
worse) is the version of company 1, taking into consideration
the price? We will sometimes refer to the edge capacity by
this name. Since we will frequently refer to edges neither of
whose endpoints is s or t, we will call such edges internal
edges.

Similar to Proposition 8, we now prove that we can restrict
our attention to specific types of valid capacities.

Proposition 9. (S, S) is a minimizable cut if and only
if it is a minimum cut with respect to the capacities c′e = 0
for e ∈ S × S, and c′e = ce for all other edges e.

Proof. Suppose (S, S) is a minimizable cut, say, for ca-
pacities c′′. For some edge e not crossing (S, S), change the
capacity to c′e := ce. This can only increase the costs of
other cuts in the graph; however, it does not increase the
cost of the cut (S, S). Therefore, the cut (S, S) remains
minimum. Now consider any edge e crossing (S, S), with
neither endpoint at t. If we reduce the capacity of this edge
by ε, then the capacity of the cut (S, S) decreases by ε, and
the capacity of any other cut decreases by at most ε. Again,
(S, S) remains minimum. By repeating this process for each
edge, the theorem is proved.

We next show a duality between minimizable cuts and
flows f we term S-exclusive: We say that f is S-exclusive
for a set S containing the source, but not the sink, if f(i,t) =
c(i,t) for all i ∈ S, and f(i,j) = 0 for all j /∈ S, j 6= t.

Theorem 10. Let (S, S) be a partition such that c(s,j) =

0 for all j /∈ S. Then, (S, S) is minimizable if and only if
there exists an S-exclusive s-t flow f .

Proof. If (S, S) is minimizable, then we consider the ca-
pacity function c′e = 0 for all internal edges e crossing (S, S),
and c′e = ce for all other edges. Then, (S, S) is a minimum
cut for c′, and has capacity exactly

P

i∈S c(i,t). Thus, there

is a flow f of that value with respect to the capacities c′. But
then, f cannot use any edges (i, j) with i ∈ S, j /∈ S, j 6= t,
and must therefore saturate all edges (i, t) for i ∈ S. Thus,
f is S-exclusive, and it is of course also a feasible flow with
respect to c.

On the other hand, if f is an S-exclusive flow, then it still
remains feasible if we define capacities c′e as above. As the
value of f is

P

i∈S c(i,t), which is also the capacity of the cut

(S, S) under c′, we know that (S, S) must be a minimum cut
under c′, and in particular is minimizable.

As an immediate corollary of this theorem, we can show
the following:

Corollary 11. If all edges into t have capacity 0 or 1,
and the prices p1,i are uniform (without loss of generality,
p1,i = 1 for all i), then the best minimizable cut (S, S) can
be found in polynomial time.

Proof. We start by computing an (integral) maximum s-t
flow f . Then, we can modify f so that if node i has positive
incoming flow, and an edge of capacity 1 to the sink t, then
f(i,t) = 1 (simply reroute one unit of flow leaving from i
to go directly to t). Letting S be the set of nodes i with
f(i,t) = c(i,t), we see that f is S-exclusive, and hence S
is minimizable. The size of S is equal to the number of
nodes with c(i,t) = 0 plus the value of f , and because f is a
maximum flow, no larger minimizable set S exists.

The algorithm from the proof of Corollary 11 can be gen-
eralized to give a 1/C-approximation algorithm if all prices
are uniform (without loss of generality, p1,i = 1 for all i),
and all edges into t have integer capacities from {1, . . . , C}.1

The generalization of the algorithm is presented here as Al-
gorithm 1:

Algorithm 1 Greedy Augmentation Algorithm

1: Start with S := {i | c(i,t) = 0}.
2: repeat

3: Among all i /∈ S such that S ∪ {i} is minimizable, let
i be the one minimizing c(i,t).

4: Add i to S.
5: until S ∪ {i} is not minimizable for any i.
6: Return the set S.

The initial set S is always minimizable, because it con-
tains only those components for which company 1’s version
is superior — by making them fully compatible, company
1 can ensure to sell all of those components. In each itera-
tion, minimizability can be checked in polynomial time via
a single minimum-cut computation.

Theorem 12. If C = maxi∈V c(i,t), then the set Ŝ found

by the greedy algorithm satisfies |Ŝ| ≥ 1
C

· |S∗|, where S∗ is
the largest minimizable set.

Proof. Because both Ŝ and S∗ are minimizable, there ex-
ist corresponding exclusive flows f̂ and f∗. For any set S,

1While this case appears fairly restrictive, it does apply to
software component markets where individual components
are priced (roughly) the same, and the valuation differences
are not terribly large. The results are also essentially best
possible in light of the approximation hardness results pre-
sented below.

223



not necessarily minimizable, we define φ(S) to be the max-
imum value of any s-t flow that does not use any internal
edges (i, j) with i ∈ S, j /∈ S. In particular, by Theorem 10,
for any minimizable set S, we have that φ(S) =

P

i∈S c(i,t),
and for all non-minimizable sets S, φ(S) <

P

i∈S c(i,t).

Let A be a non-empty node set disjoint from Ŝ. We prove
the following bound:

φ(Ŝ ∪ A) ≤ φ(Ŝ) +
X

i∈A

c(i,t) − |A|. (4)

Assume that this inequality were not true, and let A be a
smallest set violating it, of size k. Let f be an s-t flow of
value φ(Ŝ∪A), not using any edges out of Ŝ∪A except edges

to t. We observe that such a flow can be computed for Ŝ∪A
by simply removing the internal edges out of Ŝ∪A from the
graph, and augmenting the flow for Ŝ. Thus, it follows that
some such flow saturates all the edges from nodes in Ŝ to t.

Consider the (non-empty) set F of all integral and acyclic
such flows f . For each flow f ∈ F , we can define the graph
Gf on the set A that contains an edge e if and only if fe >
0. Because each such Gf is acyclic, it can be topologically
sorted. For any valid topological sort σ : A → {1, . . . , |A|}
of Gf , we define a potential function Φ(f, σ) :=

P

i∈A σ(i) ·
f(i,t). Fix f and σ to be a pair minimizing Φ(f, σ).

Now, by the Pigeon Hole Principle, because we assumed
that φ(Ŝ ∪ A) ≥ φ(Ŝ) +

P

i∈A c(i,t) − |A| + 1, there must
be at least one node i ∈ A such that f(i,t) = c(i,t). Among
all such nodes, let i be the one with smallest index σ(i).
Then, we claim that all the flow into i must be from nodes
k ∈ Ŝ. For cs,i = 0 for all i /∈ Ŝ by the starting condition
of the algorithm, and if at least one unit of flow came from
some node j ∈ A, then j would have to have a smaller index
σ(j) < σ(i). By minimality of the index of i, the node j
cannot saturate its edge to t. Thus, we could change f , by
rerouting the one unit that is currently going from j to i
to t, and making it go directly from j to t. But this would
give a new flow f ′, and since the same ordering σ is still a
correct topological sort of Gf ′ , the pair (f ′, σ) would have
a strictly lower potential function, a contradiction.

Now, given that all of the flow into i is along edges across
the cut (Ŝ, S), we can define a new flow f ′ by starting from

f , and setting f ′
(k,j) = 0 for all k ∈ Ŝ, j ∈ A, j 6= i. The

resulting flow is (Ŝ ∪ {i})-exclusive, proving that (Ŝ ∪ {i})
is minimizable. But then, the greedy algorithm would not
have terminated, so we again obtain a contradiction. Thus,
we have proved inequality (4).

Finally, we apply inequality (4) to the set A = S∗ \ Ŝ.

Because Ŝ ∪ A ⊇ S∗, the monotonicity of φ implies that
φ(Ŝ)+

P

i∈S∗\Ŝ c(i,t)−|S∗\Ŝ| ≥ φ(S∗). Since both S∗ and Ŝ

are minimizable, we have φ(S∗) =
P

i∈S∗ c(i,t), and similarly

for Ŝ. Now, we can rearrange to obtain
P

i∈Ŝ\S∗ c(i,t) ≥

|S∗ \ Ŝ|. Because the maximum capacity is C, we can bound

the left-hand side to be at most C|Ŝ|−C|S∗ ∩ Ŝ|, and using

that C ≥ 1, we obtain that |Ŝ| ≥ |S∗|/C, completing the
proof.

Unfortunately, the above approximation result is essen-
tially the best one can hope for. Even if all prices p1,i, and
all capacities of edges (i, t), are either 0 or 1, the maximum
revenue cannot be approximated to better than n1−ε for any
ε > 0 unless NP=ZPP. Similarly, even if the prices are uni-
form, if the edges costs for edges (i, t) can be arbitrary, the

maximum revenue (size of the s-side S) cannot be approx-

imated to better than n1/3−ε unless NP=ZPP. Thus, there
is not much room to improve the approximation guarantee
from Theorem 12.

Theorem 13. Both of the following approximation hard-
ness results hold unless NP=ZPP:

1. Even if all prices p1,i and edge capacities c(i,t) into
the sink are either 0 or 1, the maximum total price pS

for a minimizable cut (S, S) cannot be approximated to
within O(n1−ε), for any ε > 0.

2. Even if all prices p1,i are 1, the maximum size of |S|
for a minimizable cut (S, S) cannot be approximated to

within O(n1/3−ε), for any ε > 0.

Proof. Both hardness results are by (nearly) approximation-
preserving reductions from the Independent Set problem,
which is hard to approximate to within O(n1−ε) for any
ε > 0 unless NP=ZPP [14].

1. Given a graph G = (V, E) with n vertices and m edges,
we define a new graph G′ = (V ′, E′) with a vertex ue

for each edge e ∈ E, d(v) vertices wv,1, . . . , wv,d(v) for
each v ∈ V (where d(v) is the degree of v in G), as well
as a source s and sink t. For each edge e = (v, v′) ∈ E,
we have an edge of capacity 1 from s to ue, and edges
of capacity 1 from ue to both wv,1 and wv′,1. Each wv,i

has an edge of capacity 1 to t, and an edge of capacity
d(v) to wv,i+1 The nodes wv,d(v) have price 1, and all
other nodes have price 0. Figure 2 shows an example
of a graph obtained by this reduction.

s

t

2

2

3

3

Figure 2: The graph G′ obtained by a reduction,

starting from a triangle with an edge added. The

large solid nodes are the wv1, corresponding to the

original nodes v. Small solid nodes are the wvi for

i > 1. Nodes ue are depicted with empty circles, and

correspond to the edges they lie on. All arcs have

capacity 1, unless labeled otherwise. Dashed and

dotted arcs only serve to improve legibility.

If S is an independent set in G, then define S′ to be
all nodes ue (for all edges e), as well as all nodes wv,i

for v ∈ S. Define a flow f in G′ as follows: for each
edge e with an endpoint v in S, route one unit of flow
from s to ue to wv,0. Notice that because S is inde-
pendent, v is uniquely determined. In this way, each
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node wv,0 for v ∈ S has d(v) units of flow arriving.
These are then routed to t in the only possible way, by
saturating all edges from the wv,i to t, and routing the
remaining flow from wv,i to wv,i+1. Thus, we obtain
an S′-exclusive flow, and by Theorem 10, S′ is mini-
mizable. The total price of S′ is exactly |S|, because
exactly the vertices wv,d(v) contribute one unit of price
each.

Conversely, consider a minimizable cut (S′, S′) in G′.
Thus, there is an S′-exclusive flow f in G′. Because the
only edge into wv,i+1 is from wv,i, for any i, we know
that if wv,i+1 ∈ S′, then wv,i ∈ S′ also. (Otherwise, f
could not be S′-exclusive.) Assume for contradiction
that for two distinct vertices v, v′ sharing an edge e =
(v, v′) ∈ E, we have wv,d(v) ∈ S′ and wv′,d(v′) ∈ S′.
Because the edges from both of these vertices and from
all wv,i and wv′,i to t must be saturated by f , the total
flow into them must be at least d(v) + d(v′). But the
total number of distinct edges incident with v or v′

in G is at most d(v) + d(v′) − 1, because they share
an edge. The only flow into wv,0 and wv′,0 can come
from nodes ue, so the total flow into them is at most
d(v) + d(v′) − 1, contradicting an outgoing flow of at
least d(v) + d(v′). Thus, the set S of nodes v with
wv,d(v) ∈ S′ forms an independent set. And the size
of S is exactly the total price of S′. Thus, we have
an exactly approximation preserving reduction from
Independent Set.

2. For the second part of the theorem, we can use a nearly
identical reduction. Instead of d(v) vertices wv,i, we
have m + 1 vertices wv,1, . . . , wv,m+1 for each v. The
capacity of each edge from wv,i to wv,i+1 is now 1, the
edge from wv,1 to t has capacity d(v) − 1

4
, and each

edge from wv,i to t has capacity 1
4m

for i > 1. The
remaining nodes and edges, and their capacities, stay
the same as in the first reduction.

By a nearly identical argument as in the first proof, S ′

is minimizable if and only if (1) S := {v | wv,0 ∈ S′}
is independent, (2) for each i, if wv,i+1 ∈ S′, then
wv,i ∈ S′, and (3) S′ includes the node ue for each
edge e incident with a node in S. Therefore, for each
independent set S, the set {ue | e ∈ E}∪{wv,i | v ∈ S}
defines a minimizable cut of size m + (m + 1) · |S|,
and conversely, for each minimizable set S′, the set
S defined above is an independent set of size at least

(|S′| − m)/(m + 1) ≥ |S′|
m+1

− 1. Thus, the maximum

sizes of S and S′ are (up to an additive 1) exactly re-
lated by the constant factor m+1, and the approxima-
tion hardness of Independent Set implies an approx-
imation hardness of O(n1/3−ε), because the number of
nodes in G′ is O(n3).

6. CONCLUSIONS
In this paper, we introduced the problem of product pric-

ing in a duopoly under partial compatibilities. We showed
that even if all consumers have identical valuations, incom-
patibilities between products lead to intricate pricing ques-
tions. Perhaps most surprisingly, the revenue-maximizing
prices can be found in polynomial time. For a variant in
which product qualities can be improved with a given bud-
get, we showed the equivalence of our problem with the

Maximum-Size Bounded Capacity Cut problem. For the
variant in which product compatibilities can be unilaterally
changed, we showed an equivalence to Knapsack, and for
the variant where compatibilities can only be improved, we
used an interesting duality between minimizable cuts and
exclusive flows to derive approximation hardness results and
approximation guarantees.

This paper suggests a number of interesting directions
for future research. Perhaps most importantly, one should
study the effect of different users’ valuations on pricing de-
cisions. Can (approximately) optimal prices be obtained in
polynomial time for arbitrary valuations? Does the problem
become easier if one assumes that all users have the same
valuations, up to small random perturbations?

An equally natural generalization is to consider more than
two companies. Even the problem of finding the best system
(from a user’s perspective) becomes NP-hard in that case,
and it seems likely that this will also impact the guarantees
that can be obtained for pricing and related problems. In
fact, it is not clear that the product pricing problem in that
case should necessarily be in NP.

From a practical perspective, companies will likely not
rely on any one of the techniques for revenue maximiza-
tion; rather, they will devise a combined strategy involving
changes in price, product quality, and compatibilities. It
should not be too difficult to define a natural notion of com-
bining the different decisions.

The game-theoretic aspects of the proposed problem also
offer many exciting future research questions. If the change
of prices, compatibilities, and qualities is regarded not as
a best-response question for one company, but as a game
played by multiple companies, what can be said about the
outcome of this game? It is well known (see, e.g., [16]) that
first-price auctions frequently do not have Nash Equilibria,
and the game contains first-price auctions as a special case,
where the competing companies are the bidders. Thus, Nash
Equilibria in the strict sense will not be applicable as a solu-
tion concept. Instead, it would be interesting to investigate
which notions of the outcome of a game could be applied in
this context, and whether the model allows us to draw inter-
esting conclusions about the emergence of single or multiple
standards, or pricing anomalies.

Finally, one can also regard the pricing decisions as a game
between the companies and the potential consumers. As in
many pricing and auction scenarios [20, 21], consumers may
have an incentive to misrepresent their true valuations to
encourage companies to lower their prices. In the spirit of
previous work [10, 11, 12], it then becomes interesting to
devise approximately competitive auction mechanisms ex-
tracting truthful valuations from the customers.
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