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ABSTRACT
In this paper, we examine the problem of choosing discrim-
inatory prices for customers with probabilistic valuations
and a seller with indistinguishable copies of a good. We
show that under certain assumptions this problem can be
reduced to the continuous knapsack problem (CKP). We
present a new fast ǫ-optimal algorithm for solving CKP in-
stances with asymmetric concave reward functions. We also
show that our algorithm can be extended beyond the CKP
setting to handle pricing problems with overlapping goods
(e.g.goods with common components or common resource
requirements), rather than indistinguishable goods.

We provide a framework for learning distributions over
customer valuations from historical data that are accurate
and compatible with our CKP algorithm, and we validate
our techniques with experiments on pricing instances de-
rived from the Trading Agent Competition in Supply Chain
Management (TAC SCM). Our results confirm that our al-
gorithm converges to an ǫ-optimal solution more quickly in
practice than an adaptation of a previously proposed greedy
heuristic.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems; I.6.0 [Simulations and Modelling]: General

General Terms
Multi-agent Systems
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Trading agents, Supply chain management, TAC SCM
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In this paper we study a ubiquitous pricing problem: a
seller with finite, indistinguishable copies of a good attempts
to optimize profit in choosing discriminatory, take-it-or-leave-
it offers for a set of customers. Each customer draws a valu-
ation from some probability distribution known to the seller,
and decides whether or not they will accept the seller’s of-
fers (we will refer to this as a probabilistic pricing problem
for short). This setting characterizes existing electronic mar-
kets built around supply chains for goods or services. In such
markets, sellers can build probabilistic valuation models for
their customers, e.g.to capture uncertainty about prices of-
fered by competitors, or to reflect the demand of their own
customers.

We show that this pricing problem is equivalent to a con-
tinuous knapsack problem (CKP) (i. e. the pricing problem
can be reduced to the knapsack problem and vice versa)
under two reasonable assumptions: i.) that probabilistic
demand is equivalent to actual demand, and ii.) that the
seller does not wish to over promise goods in expectation.
The CKP asks: given a knapsack with a weight limit and a
set of weighted items – each with its value defined as a func-
tion of the fraction possessed – fill the knapsack with frac-
tions of those items to maximize the knapsack’s value. In
the equivalent pricing problem, the items are the customer
demand curves. The weight limit is the supply of the seller.
The value of a fraction of an item is the expected value of
that customer demand curve. The expected value is defined
as the probability with which the customer is expected to
accept the corresponding offer times the offer price.

Studies of CKPs in Artificial Intelligence (AI) and Oper-
ations Research (OR) most often focus on classes involving
only linear and quadratic reward functions [11]. We present
a fast algorithm for finding ǫ-optimal solutions to CKPs
with arbitrary concave differentiable reward functions. The
class of pricing problems that reduce to CKPs with such
reward functions involve customers with valuation distri-
butions that satisfy the diminishing returns (DMR) prop-
erty. We further augment our CKP algorithm by providing
a framework for learning accurate customer valuation dis-
tributions that satisfy this property from historical pricing
data.

We also discuss extending our algorithm to solve pric-
ing problems that involve sellers with distinguishable goods



that require some indistinguishable shared resources (for
example common components or shared assembly capac-
ity). Such problems more accurately represent the move-
ment from make-to-stock production to assemble-to-order
and make-to-order production, but involve constraints that
are too complex for traditional CKP algorithms.

The rest of this paper is structured as follows: In Sec-
tion 2 we discuss related work on the probabilistic pricing
and continuous knapsack problems. In Section 3 we present
the pricing problem and its equivalence to continuous knap-
sack. In Section 4 we present our ǫ-optimal binary search al-
gorithm for concave differentiable CKPs. Section 5 presents
the framework for learning customer valuation functions. In
Section 6 we validate our algorithm and framework empiri-
cally on instances derived from the Trading Agent Compe-
tition in Supply Chain Management (TAC SCM).

2. BACKGROUND

2.1 Related Work on Pricing Problems
The pricing problem we study captures many real world

settings, it is also the basis of interactions between customers
and agents in the Trading Agent Competition in Supply
Chain Management. TAC SCM is an international compe-
tition that revolves around a game featuring six competing
agents each entered by a different team. In TAC SCM sim-
ulated customers submit requests for quotes (RFQs) which
include a PC type, a quantity, a delivery date, a reserve
price, and a tardiness penalty incurred for missing the re-
quested delivery date. Agents can respond to RFQs with
price quotes, or bids, and the agent that offers the lowest
bid on an RFQ is rewarded with a contractual order (the
reader is referred to [3] for the full game specification).

Other entrants from TAC SCM have published techniques
that can be adapted to the setting we study. Pardoe and
Stone proposed a heuristic algorithm with motivations simi-
lar to ours [9]. The algorithm greedily allocates resources to
customers with the largest increase in price per additional
unit sold. Benisch et. al. suggested discretizing the space of
prices and using Mixed Integer Programming to determine
offers [1], however this technique requires a fairly coarse dis-
cretization on large-scale problems.

Sandholm and Suri provide research on the closely related
setting of demand curve pricing. The work in [12] investi-
gates the problem of a limited supply seller choosing dis-
criminatory prices with respect to a set of demand curves.
Under the assumptions we make, the optimal polynomial
time pricing algorithm presented in [12] translates directly
to the case when all customers have uniform valuation dis-
tributions. Additionally, the result that non-continuous de-
mand functions are NP-Complete to price optimally in [12],
implies the same is true of non-continuous valuation distri-
butions.

2.2 Related Work on Knapsack Problems
The traditional integer knapsack problem (where the amount

of an item included in the knapsack must be an integer) has
been well studied from an algorithmic perspective, and been
shown to result from reductions of many types of problems
in OR and AI [6]. There have been several algorithms de-
veloped for solving certain classes of continuous knapsack
problems. When rewards are linear functions of the included
fractions of items, it is well known that a greedy algorithm

provides an optimal solution in polynomial time1. CKP
instances with concave quadratic reward functions can be
solved with standard quadratic programming solvers [11],
or the algorithm provided by Sandholm and Suri. The only
technique that generalizes beyond quadratic reward func-
tions was presented by Melman and Rabinowitz in [8]. The
technique in that paper provides a numerical solution to
symmetric CKP instances where all reward functions are
concave and identical2. However, this technique involves
solving a difficult root finding problem, and its computa-
tional costs have not been fully explored.

2.3 Related Work on Learning Valuations
The third group of relevant work involves learning tech-

niques for distributions over customer valuations. Relevant
work on automated valuation profiling has focused primar-
ily on first price sealed bid (FPSB) reverse auction settings.
Reverse auctions refer to scenarios where several sellers are
bidding for the business of a single customer. In the FPSB
variant customers collect bids from all potential sellers and
pay the price associated with the lowest bid to the lowest
bidder. Predicting the winning bid in a first price reverse
auction amounts to finding the largest price a seller could
have offered the customer and still won. From the point of
view of a seller, this price is equivalent to the customer’s
valuation for the good.

Pardoe and Stone provide a technique for learning dis-
tributions over FPSB reverse auctions in TAC SCM [9].
The technique involves discretizing the range of possible cus-
tomer valuations, and training a regression from historical
data at each discrete valuation. The regression is used to
predict the probability that a customer’s valuation is less
than or equal to the discrete point it is associated with.
Similar techniques have been used to predict FPSB auction
prices for IBM PCs [7], PDA’s on eBay [5], and airline tick-
ets [4].

3. MARKET MODEL

3.1 P3ID
We define the Probabilistic Pricing Problem with Indistin-

guishable Goods (P3ID) as follows: A seller has k indistin-
guishable units of a good to sell. There are n customers that
demand different quantities of the good. Each customer has
a private valuation for the entirety of her demand, and the
seller has a probabilistic model of this valuation. Formally
the seller has the following inputs:

• k: the number of indistinguishable goods available to
sell.

• n: the number of customers that have expressed de-
mand for the good.

• qi : the number of units demanded by the ith cus-
tomer.

• Gi(vi): a cumulative density function indicating the
probability that the ith customer draws a valuation

1Linear reward functions for CKP would result from a pric-
ing problem where all customers have fixed valuations.
2Identical reward functions for CKP would result from a
pricing problem where all customers draw valuations from
the same distribution.



below vi . Consequently, 1 − Gi(p) is the probabil-
ity that the customer will be willing to purchase her
demand at price p.

The seller wishes to make optimal discriminatory take-it-
or-leave-it offers to all customers simultaneously. We make
the following two assumptions as part of the P3ID to sim-
plify the problem of choosing prices:

• Continuous Probabilistic Demand (CPD) As-
sumption: For markets involving a large number of
customers, we can assume that the customer cumula-
tive probability curves can be treated as continuous
demand curves. In other words if a customer draws
a valuation greater than or equal to $1000 with prob-
ability 1

2
, we assume the customer demands 1

2
of her

actual demand at that price. This is formally modeled
by the probabilistic demand of customer i at price p,
qi ∗ (1−Gi(p)).

• Expected Supply (ESY) Assumption: We assume
that the seller maintains a strict policy against over-
offering supply in expectation by limiting the number
of goods sold to k (the supply). Note that k is not
necessarily the entirety of the seller’s inventory.

Under these assumptions, the goal of the seller is to choose
a price to offer each customer, pi, that maximizes the ex-
pected total revenue function, F (p):

F (p) =
X

i

(1−Gi(pi)) ∗ qi ∗ pi (1)

Subject to the ESY constraint that supply is not exceeded
in expectation:

X

i

(1−Gi(pi)) ∗ qi ≤ k (2)

3.2 P3ID and CKP Equivalence
To demonstrate the equivalence between the P3ID and

CKP we will show that an instance of either can easily be
reduced to an instance of the other. CKP instances involve
a knapsack with a finite capacity, k, and a set of n items.
Each item has a reward function, fi(x), and a weight wi.
Including a fraction xi of item i in the knapsack yields a
reward of fi(xi) and consumes wi ∗ xi of the capacity.

We can easily reduce a P3ID instance to a CKP instance
using the following conversion:

• Set the knapsack capacity to the seller’s capacity in
the P3ID instance.

k
CKP = k

P3ID

• Include one item in the CKP instance for each of the
n customers in the P3ID instance.

• Set the weight of the ith item to the customer’s de-
manded quantity in the P3ID instances.

wi = qi

• Set the reward function of the ith item to be the inverse
of the seller’s expected revenue from customer i.

fi(x) = G
−1
i (1− x) ∗ x ∗ qi

The fraction of each item included in the optimal solution
to this CKP instance, x∗

i , can be converted to an optimal
price in the P3ID instance, p∗

i , using the inverse of the CDF
function over customer valuations,

p
∗

i = G
−1
i (1− x

∗

i )

To reduce a CKP instance to a P3ID instance we can
reverse this reduction. The CDF function for the new P3ID
instance is defined as,

Gi(p) = 1−
f−1

i (p)

p ∗ qi

Once found, the optimal price for a customer, p∗

i , can be
translated to the optimal fraction to include, x∗

i , using this
CDF function,

x
∗

i = Gi(p
∗

i )

This equivalence does not hold if either the CDF over
customer valuations in the P3ID instance, or the reward
function in the CKP instance is not invertible. However, if
the inverse exists but is difficult to compute numerically, it
can be approximated to arbitrary precision by precomputing
a mapping from inputs to outputs.

3.3 Example Problem
We provide this simple example to illustrate the kind of

pricing problem we address in this paper, and its reduction
to a CKP instance. Our example involves a PC Manufac-
turer with k = 5 finished PCs of the same type. Two cus-
tomers have submitted requests for prices on different quan-
tities of PCs3 Customer A demands 3 PCs and Customer B
demands 4 PCs. Each customer has a private valuation, if
the manufacturer’s offer price is less than or equal to this
valuation the customer will purchase the PCs.

Based on public attributes that the Customers have re-
vealed, the seller is able to determine that Customer A
has a normal unit-valuation (price per unit) distribution
with a mean of $1500 and a standard deviation of $300,
gA = N (1500, 300), and Customer B has a normal unit-
valuation distribution with mean of $1200, and a standard
deviation of $100, gB = N (1200, 100). Figure 1(a) shows the
expected revenue gained by the seller from each customer as
a function of the offer price according to these valuation dis-
tributions. Figure 1(b) shows the reward functions for the
corresponding CKP instance as a function of the fraction of
the customer’s demand included in the knapsack.

Note that in this example, as the price offered to Customer
A (or Customer B) increases the probability (or Customer
B) accepting it decreases, and hence so does the expected
number of PCs sold to that customer. The manufacturer
wishes to choose prices to offer each customer to maximize
his overall expected revenue, and sell less than or equal to
5 PCs in expectation. In the following Section we will show
how the optimal pricing solution to problems of this form can
be computed. In this example it turns out that the optimal
solution is for the manufacturer to offer a unit price of $1413
to Customer A, which has about a 58% chance of being

3Although we have previously indicated that the CPD as-
sumption made in our pricing formulation tends to hold only
in large markets (i.e. more than 2 customers) our example
is intentionally smaller for explanatory purposes.
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Figure 1: The expected customer revenue and corresponding reward for the example problem in Section 3.3

accepted, and a price of $1112 to Customer B which has
about an 81% chance of being accepted. The total expected
revenue of this solution is about $1212 per unit and it sells
exactly 5 units in expectation.

4. ASYMMETRIC CONCAVE CKPS

4.1 Characterizing an Optimal Solution
The main idea behind our algorithm for solving asymmet-

ric CKPs is to add items to the knapsack according to the
rate, or first derivative, of their reward functions. We will
show that, if all reward functions are concave4, and differen-
tiable they share a unique first derivative value in an optimal
solution. Finding the optimal solution amounts to searching
for this first derivative value. To formalize and prove this
proposition we introduce the following notations,

• Let φi(x) = f ′

i (x) 1

wi
, be the first derivative of the

i’th item’s unit reward function. Item i’s unit reward
function is its reward per weight unit.

• Let φ
−1

i
(∆), be the inverse of the first derivative of

i’th item’s unit reward function. In other words, it
returns the fraction of the i’th item where its unit
reward is changing at the rate ∆.

Proposition 1. Given a CKP instance, K, if all fi in
K are concave and differentiable over the interval [0, 1], then
there exists a unique ∆∗ such that, x∗

i = φ−1
i (∆∗), where x∗

i

is the fraction of the i’th item in an optimal solution to K.

Proof. First we will prove that φi(x) is invertible, and
that φ−1

i (∆∗) is unique for all i. The reward functions and
unit reward functions (since these are simply scaled ver-
sions of the originals) in the CKP instance are concave and
differentiable on the interval [0, 1], by the predicate of our
proposition. In other words, the first derivative of each unit

4Section 5.1 explains why we can reasonably restrict our
consideration to concave reward functions in reductions from
P3ID instances.

reward function, φi(x), is decreasing and unique on the in-
terval [0, 1]. Because each unit reward function’s first deriva-
tive is continuous, decreasing, and unique, it is invertible,
and its inverse, φ−1

i (∆), is unique5.
We will now prove that the unit reward functions of any

two items, i and j, must share the same first derivative value
in the optimal solution. To do this we introduce the follow-
ing Lemma,

Lemma 1. If fi is concave over the interval [0, 1], φ−1
i (∆)

increases as ∆ decreases from φi(0) to 0.

Essentially the Lemma states that as the derivative of item
i’s unit reward function increases, the fraction of the item
included in the knapsack shrinks. This is true because, as
we have shown, the derivative is decreasing and unique.

For the remainder of the proof there are two cases we must
consider:

Case 1: the knapsack is not full in the optimal solution.
In this case the unit reward functions will all have derivatives
of 0, since every item is included up to the point where its
reward begins to decrease6.

Case 2: the knapsack is full in the optimal solution. In
this case we will assume that fi and fj do not share the
same derivative value, and show this assumption leads to a
contradiction. Specifically, we can assume, without loss of
generality, that the reward function of item i has a larger
first derivative than j, i.e. φi(x

∗

i ) > φj(x
∗

j ). Therefore, there
must exist some ǫ, such that adding it to item j’s unit reward
derivative maintains the inequality, φi(x

∗

i ) > φj(x
∗

j )+ǫ. We
can then construct an alternative solution to K as follows:

• Set xj in our alternative solution to be the fraction of
item j that provides its original derivative plus ǫ,

x
′

j = φ
−1
j (φj(x

∗

j ) + ǫ)

5This inverse may be difficult to characterize numerically.
However, the precomputation technique suggested for ap-
proximating the inverse of Gi or fi applies to φi as well.
6We assume that all reward functions have derivatives ≤ 0
when an item is entirely included in the knapsack, since the
item cannot possibly provide any additional reward.



Figure 2: Initial values for ∆+ and ∆− are computed from the even CKP solution for the example problem in
Section 3.3.

• By Lemma 1 we know that x′

j < x∗

j , which provides
some excess space, α, in the knapsack, α = wj(x

∗

j−x′

j).
We can fill the empty space with item i, up to the point
where the knapsack is full, or its derivative decreases
by ǫ,

x
′

i = min

„

x
∗

i +
α

wi

, φ
−1
i (φi(x

∗

i )− ǫ)

«

It must be that x′

i > x∗

i . Either all of the knapsack
space from item j was added, in which case the fraction
of item i clearly increased. Otherwise, its derivative
value decreased by ǫ, which, by Lemma 1, must have
increased its included fraction. If φi(x

′

i) decreased by
ǫ before the knapsack filled up, we can reallocate the
excess space to j,

x
′

j = (k − xi)
1

wj

Notice that we have constructed our alternate solution
by moving the same number of knapsack units from item j

to item i. In our construction we guaranteed that item i

was gaining more reward per unit during the entire trans-
fer. Therefore, the knapsack space is more valuable in the
alternate solution. This contradicts our assumption that x∗

i

and x∗

j were part of an optimal solution.
We have shown that any two unit reward functions must

share the same derivative value, ∆∗, in an optimal solution.
This implies that all unit reward functions must share the
derivative value in an optimal solution (since no two can
differ).

4.2 Finding ∆∗

In our proof of Proposition 1 we showed that ∆∗ ≥ 0. We
also showed that as ∆ increases, the fraction of each item in
the knapsack decreases. Thus, one method for finding ∆∗

would be to begin with ∆ = 0 and increment by ǫ until the
resulting solution is feasible (fits in the knapsack). However,
much of this search effort can be reduced by employing a
binary search technique.

Figure 3 presents pseudo-code for a binary search algo-
rithm that finds solutions provably within ǫ of an optimal
reward value. The algorithm recursively refines its upper
and lower bounds on ∆∗, ∆+ and ∆−, until the reward dif-
ference between solutions defined by the bounds is less than
or equal to ǫ.

The initial bounds, shown in Figure 2, are derived from
a simple feasible solution where the same fraction of each
item is included in the knapsack (see even CKP in Figure 3).
The largest derivative value in this solution provides the up-
per bound, ∆+. This is because we can reduce the included
fractions of each item to the point where all of their deriva-
tives equal ∆+, and guarantee the solution is still feasible.
By the same reasoning, the smallest derivative value in the
simple solution provides a lower bound ∆−. Figure 2 shows
how initial values of ∆+ and ∆− are computed from the
even solution on the Example problem from Section 3.3.

During each iteration, a new candidate bound, δ, is com-
puted by halving the space between the prior bounds. The
process continues recursively: if the new bound defines a
feasible solution it replaces the old upper bound, otherwise
(if it is not a valid upper bound), it replaces the old lower
bound.

When the algorithm converges the solution defined by ∆−

is guaranteed to be feasible and within ǫ of the optimal solu-



procedure ǫ-opt CKP(K)

x← even CKP(K)

∆+ ← maxi φ−1
i (xi)

∆− ← mini φ−1
i (xi)

return binary search(∆+, ∆−, K)

procedure binary search(∆+, ∆−, K)

if converged(∆+ , ∆−, K) then
x+ ← {φ−1

1 (∆+), . . . , φ−1
n (∆+)}

return x+

end if
δ ← ∆+

−∆−

2

if feasible({φ−1
1 (δ), . . . , φ−1

n (δ)}, K) then
return binary search(δ, ∆−, K)

else
return binary search(∆+, δ, K)

end if

procedure even CKP(K)

ŵ←
P

i wi

return { k
ŵ

, . . . , k
ŵ
}

procedure feasible(x, K)

return
P

i
wixi ≤ k

procedure converged(∆+ , ∆−, K)

x+ ← {φ−1
1 (∆+), . . . , φ−1

n (∆+)}
x− ← {φ−1

1 (∆−), . . . , φ−1
n (∆−)}

return
P

i
fi(x

+)− fi(x
−) ≤ ǫ

Figure 3: Pseudo-code for an ǫ-optimal concave CKP binary search algorithm.

tion. Convergence is guaranteed since we have proved that
∆∗ exists, and the bounds get tighter after each iteration. It
is difficult to provide theoretical guarantees about the num-
ber of iterations, since convergence is defined in terms of the
instance-specific reward functions. However, the empirical
results in Section 6 show that the algorithm typically con-
verges exponentially fast in the number of feasibility checks.

4.3 Shared Resource Extension
Our ǫ-optimal binary search algorithm can be extended to

solve problems involving more complex resource constraints
than typically associated with CKPs. In particular, the
algorithm can be generalized to solve reductions of Prob-
abilistic Pricing Problems with Shared Resources (P3SR).
P3SR instances involve sellers with multiple distinguishable
goods for sale. Each good in a P3SR consumes some amount
of finite shared resources, such as components or assembly
time. This model allows for techniques capable of support-
ing the movement from make-to-stock practices to assemble-
to-order or make-to-order practices.

By applying the reduction described in Section 3.2, a
P3SR instance can be converted to a problem similar to
a CKP instance. However, the resource constraint in the
resulting problem is more complex than ensuring that a
knapsack contains less than its weight limit. It could in-
volve determining the feasibility of a potentially NP-Hard
scheduling problem, in the case of a shared assembly line
and customer demands with deadlines. Clearly, this would
require, among other things, changing the feasibility check-
ing procedure (see feasible() in Figure 3), and could make
each check substantially more expensive.

5. CUSTOMER VALUATIONS

5.1 Diminishing Returns Property
Our algorithm was designed to solve CKP reductions of

P3ID instances. Recall that it applies only when the reward
functions are concave over the interval [0, 1]. This is not

a particularly restrictive requirement. In fact, this is what
economists typically refer to as the Diminishing Returns7

(DMR) property. This property is generally accepted as
characterizing many real-world economic processes [2].

Definition 1. The DMR property is satisfied for a P3ID
instance when, for a given increase in any customer’s filled
demand, the increase in the seller’s expected revenue is less
per unit than it was for any previous increase in satisfaction
that customer’s demand.

Note that our market model also captures the setting
where customer valuations are determined by bids from com-
peting sellers. In this setting normally distributed compet-
ing bid prices can also be shown to result in concave reward
functions. This situation is representative of environments
where market transparency leads sellers to submit bids that
hover around a common price.

5.2 Normal Distribution Trees
We consider a technique which a seller may use to model

a customer’s valuation distribution. It will use a normal
distribution to ensure our model satisfies the desired DMR
property. We assume that customers have some public at-
tributes, and the seller has historical data associating at-
tributes vectors with valuations.

Our technique trains a regression tree to predict a cus-
tomer’s valuation from the historical pricing data. A regres-
sion tree splits attributes at internal nodes, and builds a
linear regression that best fits the training data at each leaf.
When a valuation distribution for a new customer needs to
be created, the customer is associated with a leaf node by
traversing the tree according to her attributes. The predic-
tion from the linear model at the leaf node is used as the
mean of a normal valuation distribution, and the standard

7This is also occasionally referred to as the Decreasing
Marginal Returns property.



Figure 4: An example Normal Distribution Tree

deviation of the distribution is taken from training data that
generated the leaf.

Formally the regression tree learning algorithm receives
as input,

• n: the number of training examples.

• ai : the attribute vector of the i’th training example.

• vi : the valuation associated with the i’th training ex-
ample.

A regression tree learning algorithm, such as the M5 algo-
rithm [10], can be used to learn a tree, T , from the training
examples. After the construction of T , the j’th leaf of the
tree contains a linear regression over attributes, yj(a). The
regression is constructed to best fit the training data associ-
ated with the leaf. The leaf also contains the average error
over this data, sj .

The regression tree, T , is converted to a distribution tree
by replacing the regression at each node with a normal dis-
tribution. The mean of the normal distribution at the j’th
leaf is set to the prediction of the regression, µj = yj(a).
The standard deviation of the distribution at the j’th leaf is
set to the average error over training examples at the leaf,
σj = sj . Figure 4 shows an example of this kind of normal
distribution tree.

5.3 Learning Customer Valuations in TAC
TAC SCM provides an ideal setting to evaluate the dis-

tribution tree technique described in the previous section.
Each customer request in TAC SCM can be associated with
several attributes. The attributes include characterizations
of the request, such as its due date, PC type, and quantity.
The attributes also include high and low selling prices for
the requested PC type from previous simulation days. Upon
the completion of a game, the price at which each customer
request was filled is made available to agents. This data can
be used with the technique described in the previous section
to train a normal distribution tree. The tree can then be
used in subsequent games to construct valuation distribu-
tions from request attributes.

Figure 5.3 shows the accuracy curve of a normal distribu-
tion tree trained on historical data with an M5 learning al-
gorithm. Training instances were drawn randomly from cus-
tomer requests in the 2005 Semi-Final round of TAC SCM
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Figure 5: The accuracy curve of an M5 normal dis-
tribution tree as the number of training instances
increases.

and testing instances were drawn from the Finals. The at-
tributes selected to characterize each request included: the
due date, PC type, quantity, reserve price, penalty, day on
which the request was placed, and the high and low selling
prices of the requested PC type from the previous 5 game
days.

The error of the distribution was measured in the follow-
ing way: starting at p = .1, and increasing to p = .9, the
trained distribution was asked to supply a price for all test
instances that would fall below the actual closing price (be
a winning bid) with probability p. The average absolute dif-
ference between p and the actual percentage of test instances
won was considered the error of the distribution. The exper-
iments were repeated with 10 different training and testing
sets. The results show that normal distribution trees can
be used to predict distributions over customer valuations
in TAC SCM with about 95%, accuracy after about 25,000
training examples.

6. EMPIRICAL EVALUATION

6.1 Empirical Setup
Our experiments were designed to investigate the conver-

gence rate of the ǫ-optimal binary search algorithm. We
generated 100 CKP instances from P3ID instances based
on the pricing problem faced by agents in TAC SCM. The
P3ID instances were generated by randomly selecting cus-
tomer requests from the final round of the 2005 TAC SCM.
Each customer request in TAC SCM has a quantity ran-
domly chosen uniformly between 1 and 20 units. Normal
probability distributions were generated to approximate the
customer valuations of each customer using the technique
described in Section 5 with an M5 Regression Tree learning
algorithm. The learning algorithm was given 50,000 training
instances from the 2005 TAC SCM Semi-Final rounds.

We tested our algorithm against the even solution, which
allocates equal resources to each customer, and the greedy
heuristic algorithm used by the first place agent, TacTex [9].
Figure 6.1 provides pseudo-code adapting the TacTex algo-
rithm to solve the P3ID reductions. It greedily adds frac-
tions of items to the knapsack that result in the largest in-
creases in expected unit-revenue.

We performed three sets of experiments. The first set of



procedure greedy CKP(K)

converged← ⊥
while ¬converged and

P

i
xi < n do

i∗ ← argmaxi unit reward increase (i, xi, K)
δ∗ ← best increase(i∗, xi∗ , K)
if feasible({x1, . . . , xi∗ + δ∗, . . . , xn}, K) then

xi∗ ← xi∗ + δ∗

else
xi∗ ← xi∗ + 1

wi

`

k −
P

i
xiwi

´

converged← ⊤
end if

end while
return {x1, . . . , xn}

procedure unit reward increase(i, xi, δ, K)

δ∗ ← best increase(i, xi, K)
return 1

wiδ∗
(fi(xi + δ∗)− fi(xi))

procedure best increase(i, xi, K)

return argmaxδ
fi(xi+δ)−fi(xi)

δ

Figure 6: Pseudo-code for the greedy heuristic algo-
rithm used by the 2005 first placed agent, TacTex.

experiments provided each algorithm with 20 PCs to sell in
expectation, and the same 200 customer requests (this rep-
resents a pricing instance of a TAC SCM agent operating
under a make-to-stock policy). Figure 7(a) shows each al-
gorithm’s percentage of an optimal expected revenue after
each feasibility check. For the second set of experiments,
the algorithms were given 200 customer requests, and their
PC supply was varied by 10 from k = 10, to k = 100. Fig-
ure 7(b) shows the number of feasibility checks needed by
the binary search and greedy algorithms to reach solutions
within 1% of optimal. The last set of experiments fixed
k = 20 and varied n by 100 from n = 200 to n = 1000.
Figure 7(c) shows the number of feasibility checks needed
by each algorithm to reach a solution within 1% of optimal
as n increased.

6.2 Empirical Results
The results presented in Figure 7 compare the optimality

of the CKP algorithms to the number of feasibility checks
performed. This comparison is important to investigate for
two reasons, i.) because it captures the convergence rate of
the algorithms, and ii.) because these algorithms are de-
signed to be extended to shared resource settings discussed
in Section 4.3 where each feasibility check involves solving
(or approximating) an NP-Hard scheduling problem.

The first set of results, shown in Figure 7(a), confirms
that the ǫ-optimal binary search algorithm converges expo-
nentially fast in the number of consistency checks. In addi-
tion, the results confirm the intuition of Pardoe and Stone
in [9] that the greedy heuristic finds near optimal solutions
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Figure 7: Performance of CKP algorithms on in-
stances reduced from TAC SCM pricing problems.
Unless otherwise specified, results are averaged over
100 CKP instances with n = 200 and k = 20.



on CKP instances generated from TAC SCM. However, the
results also show that it has a linear, rather than exponen-
tial, convergence rate in terms of consistency checks. This
indicates that our binary search algorithm scales much bet-
ter than the greedy technique. Finally, the first set of results
shows that the even solution, which does not use consistency
checks, provides solutions to TAC SCM instances that are
about 80% optimal on average.

Figures 7(b) and 7(c) investigate how the number of fea-
sibility checks needed to find near (within 99% of) optimal
solutions changes as the supply and number of customers
increase. The even solution is not included in these results
because it does not produce near optimal solutions. The
results shown in Figure 7(b) show that the number of con-
sistency checks used by the greedy algorithm increases lin-
early with the size of the knapsack, whereas the convergence
rate of the binary search algorithm does not change. The
results shown in Figure 7(c) show that the number of consis-
tency checks used by both algorithms does not significantly
increase with the number of customers.

7. CONCLUSION
In this paper we presented a model for the problems faced

by sellers that have multiples copies of an indistinguishable
good to sell to multiple customers. We have modeled this
problem as a Probabilistic Pricing Problem with Indistin-
guishable Goods (P3ID) and formally shown its equivalence
the Continuous Knapsack Problem (CKP). We showed that
P3ID instances with customer valuation distributions that
satisfy the DMR property reduce to CKP instances with
arbitrary concave reward functions. Prior work had not ad-
dressed CKP instances with asymmetric nonlinear concave
reward functions. To address this gap, we provided a new ǫ-
optimal algorithm for such CKP instances. We showed that
this algorithm converges exponentially fast in practice. We
also provide a technique for learning normal distributions of
customer valuations from historical data, by extending ex-
isting regression tree learning algorithms. We validated our
distribution learning technique and our binary search tech-
nique for the P3ID on data from 2005 TAC SCM. Our results
showed that our learning technique achieves about 95% ac-
curacy in this setting, indicating that TAC SCM is a good
environment in which to apply our P3ID model. Our re-
sults further showed that our binary search algorithm for the
P3ID scales substantially better than a technique adapted
from the winner of the 2005 TAC SCM competition.
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