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ABSTRACT 
 

As third party logistic services become popular, the role of 
software agents increases in importance in terms of the logistics 
scheduling of buyers and sellers. To support many models in such 
a portal site focused on logistics, automatic formulation and 
modification of optimization models embedded in the multiple 
software agents is necessary.  The stakeholders like manufacturers 
and third party deliverers have their objectives and constraints in 
terms of delivery requirements and resource limitations. Since a 
variety of situations require many combinations of models, it is 
not easy to prepare all the necessary models in advance. To 
resolve this issue, we propose the primitive model approach 
which identifies a base model first and then modifies it to meet 
the modeling requirements. A prototype architecture AGENT-
OPT2 is designed with the capability of rule-based model 
modification. This framework is demonstrated with the 
cooperative delivery scheduling problems. 

Categories and Subject Descriptors 
H.4.2 [Information Systems Applications]: Types of Systems – 
decision support, logistics.  

General Terms 
Management, Design. 

Keywords 
supply chain management, optimization models, optimization 
agents. 

1. INTRODUCTION 
Many optimization models have been used to improve supply 
chain performance within and between enterprises [32]. Thus in 
an effective agent-based supply chain management (SCM) 
system, it is necessary to embed the optimization function in the 
distributed software agents. Since the combination of situations 
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that involve many stakeholders along the supply chain is very 
diverse, and many corresponding models are necessary, it is too 
expensive to prepare all the combination of models in advance. 
To overcome this problem, we need to develop a framework that 
can dynamically formulate and modify the optimization models 
specifically tailored to the supply chain domain.  
In this line of research, Chang and Lee [7] contrasted three 
approaches of optimization model formulation and modification – 
the primitive model approach, the most similar case approach, 
and the full model approach depending upon how a base model is 
selected to start with the modifications. 
In this study, we adopt the primitive model approach as a 
foundation of optimization agent design. The primitive model 
implies a minimal scale base model whose modification requires 
only the addition of terms and constraints, thus the modification 
operator for the target model is simple: INSERT.  
In the Web Services environment, a third party Supply Chain 
Optimization Service Provider can provide the dynamic 
formulation and solution to many users. To handle the dynamic 
formulation based on the users’ requirements and resource 
constraints, we need to handle the following issues:  
 
1) Designing the architecture of the SCM optimization modeling 
agent system, 
2) Identifying a base model from the candidate models in SCM 
domain, 
3) Designing SCM optimization modification operators and rules,  
4) Designing the procedure of modifying the base models, 
5) Designing a canonical and semantic representation for the 
target optimization model, 
6) Transforming the canonical model to into a commercial solver. 
 
A prototype AGENT-OPT2 is developed with this framework. To 
illustrate the validity of this approach, we applied the framework 
to the delivery scheduling problem which is a typical model for 
efficient logistics management in the supply chain. As an 
illustrational scenario, we adopted the Multi-depot Vehicle 
Routing Problem with Time Windows (M-VRPTW) as the base 
model for the delivery scheduling category. In this problem, 
manufacturers produce their products at factories, store them in 
multiple depots distributed over the regions, and deliver products 
to multiple buyers. Manufacturers request that the third party 
logistics company delivers products to buyers after picking them 
up from one of the depots. The modified models from the base 
model M-VRPTW are suitable for solving a variation of problems 
in this category. 



When multiple base models exist, we need to select a suitable 
base model. For the selection of a base model, we adopt the rule-
based backward chain reasoning approach. On the other hand, for 
the rule-based modification of the base model, we adopt the 
forward chain reasoning approach. For the canonical 
representation of the optimization model, we adopt the Document 
Type Definition (DTD) form that is used for the structural 
definition of XML statements. As a solver of integer 
programming (IP) models, we adopt the package LINGO. 
The following sections describe the above issues one by one. 
Section 2 reviews the literature on the approaches to optimization 
model management. Section 3 describes the structure of 
optimization models in the supply chain. Section 4 describes the 
architecture of AGENT-OPT2 and the procedure of automatic 
formulation of optimization models. The study concludes with a 
summary of its contributions and limitations. 

2. REVIEW OF MODEL MANAGEMENT 
FOR OPTIMIZATION AGENT 
Model management research aims at investigating the 
establishment of tools and methodologies that can support 
effective model formulation, modification, and maintenance in the 
context of real world scale and multiple models in the 
dynamically changing business environment 
Earlier research on the model management system (MMS) has 
focused on the representation of models and the reasoning 
methods in order to map specific problems with the model 
structure. In this line of research, a number of model management 
studies were conducted from the perspective of data and object 
management, network data modeling [16], relational data 
modeling [3], entity-relationship data modeling [4], and object-
oriented data modeling [13,19,24,30]. Liang proposed a 
framework that included both relational and network concepts 
[26]. 
On the other hand, the researchers in the Artificial Intelligence 
community explored the knowledge representation techniques to 
represent the models and focused on automating the model 
formulation processes. These representations are based on 
predicate calculus [6], semantic information net [10], knowledge 
abstraction [8], first order logic [9,17], structured modeling 
[11,12,31,32], rule-base formulation [20,21], and frame based 
representation which is a precursor of objects in the object 
oriented program paradigm [2,22]. 
They recognized that it is very difficult to formulate a model from 
scratch. So they attempted to modify the existing models by 
analogy [3,14,15,27,28,34] and case-based reasoning approaches 
[7,33]. These approaches require complex knowledge for model 
modification. In case of modeling by analogy, it takes a huge 
computational effort because feature mapping is theoretically NP-
complete [25]. Modeling by analogy attempted to compose a 
model using the model components without modifying its 
structure. Although the analogy approach was introduced for this 
purpose [1], it was not entirely satisfactory because it handles 
only the conceptual level. 
Model management specifically for the Operations Research 
models are investigated by Lee and Kim [22], Yeom and Lee 
[35], and Chang and Lee [7]. Since optimization models are the 
primary solution tools for the agent’s decision in supply chains, 
management of optimization models is the foundation of 

optimizing agents for the supply chain. The time-bounded 
negotiation framework is studied from the multiple agents context 
[23]. 
Since the previous studies do not provide a dynamic model 
formulation capability to cope with diverse situations in SCM, we 
need to develop a framework of automatically formulating 
optimization models specifically for supply chain domain. So this 
study aims at creating a methodology and tool AGENT-OPT2 that 
generates an automated modeling procedure within the software 
agents along the supply chain. 

3. STRUCTURE OF OPTIMIZATION 
MODELS IN THE SUPPLY CHAIN 
To organize the potential primitive models in the supply chain, we 
need to classify the optimization models for the supply chain. 
Typical models adopted in the supply chain domains are 
transportation, order selection, production, and supplier selection 
as depicted in Figure 1. Each model domain has several 
optimization model types. Figure 1 gives an example of SCM 
modeling hierarchy. It consists of four layers: SCM model 
domains, optimization model types, primitive models, and target 
model components. Each optimization model types can have a 
corresponding primitive model which consists of a primitive 
objective and primitive constraints. The upper three layers are 
generic, while the bottom layer of the target model components is 
very case specific. 
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Figure 1. An illustration of SCM modeling hierarchy. 

 

For instance, in the transportation domain, there are optimization 
model types like M-VRPTW, M-PDPTW (Multi-Depot Pickup 
and Delivery Problem with Time Windows), the transportation 
problem, and transshipment problem. In the supplier selection 
domain, there are models for bundling [31] or price break [7]. 
From the selected optimization model types, a primitive model is 
selected as a base model which it will be modified to synthesize a 
target model. 
Let us illustrate the structure with the optimization model type M-
VRPTW in the transportation domain. 



3.1 Primitive Model of M-VRPTW 
The primitive model of M-VRPTW is based on the vehicle 
routing problem [18]. The constraints of the primitive model are 
stated in Table 1 without objective function. The primitive 
constraints are the only-one-path, route continuity, vehicle 
capacity, vehicle availability, time window, sub-tour breaking, 
and binary decision variable constraints. 

  

Table 1. Constraints for the M-VRPTW primitive model 

Constraint 
name Constraints in mathematical notation 

n+m  v 
Σ   Σ Xijv = 1     for  j = 1,2, …, n 
i=1    k=1

(1) 
Only-one-
path 

n+m  v 
Σ   Σ Xijv = 1     for  i = 1,2, …, n 
j=1    k=1

(2) 

Route 
continuity 

n+m              n+m 
Σ  Xihk - Σ   Xhjk = 1  for  h = 1,2, …, n+m,  
k = 1,2, …, v 
i=1                j=1

(3) 

Vehicle 
capacity 

n+m  n+m 
Σ   Σ   qi Xijk ≤ pk     for  k = 1,2, …, v 
i=1    j=1

(4) 

n+m     n 
Σ     Σ Xijk ≤ 1     for  k = 1,2, …, v 
i=n+1   j=1

(5) 
Vehicle 
availability 

n+m     n 
Σ     Σ Xijk ≤ 1     for  k = 1,2, …, v 
j=n+1   i=1

(6) 

if Xijk ≥ 1 then Ti + si + tij ≤ Tj  for i=1,2, 
…,n,  j=1,2, …,n,  k=1,2,…,v 

(7) Time 
windows 

eti ≤ Ti ≤ lti    for i=1,2, …,n (8) 

Sub-tour 
breaking 

Yi – Yj + (m + n) Xijk ≤ n + m –1   for 1 ≤ 
i≠j ≤ n, 1 ≤ k ≤ v 

(9) 

Binary 
decision 
variable 

Xijk = binary  for  all i, j, k (10) 

 
The notations used in this paper are as follows: 
i, j, h: the indices i, j, and h imply the locations of buyer delivery 
points and depots {1, 2, …, n+m}, where 

n:  the number  n implies the number of delivery points, 
m:  the number m implies the number of depots. 

k: the index k implies the vehicles {1, 2, …, v}, where  
v: the number of vehicles. 

qi: demand to delivery point i.  
pk: capacity of vehicle k.  
si: service time at delivery point i. 
tij: traveling time between delivery point i and j.  
eti: earliest delivery time at delivery point i. 

lti: latest delivery time at delivery point i. 
Ti: arrival time at delivery point i.  
fk: maximum traveling time for vehicle k. 
gk: maximum traveling distance for vehicle k. 
Xijk= 1 if a pair, starting node i and ending node j, is in the route 
of vehicle k,  
Xijk = 0 otherwise. 
Yi: the real number that breaks sub-tours.  
The constraints (1) – (10) implies the following: 
Constraints (1) and (2) ensure that each delivery point is served 
by one and only one vehicle.  
Constraint (3) means route continuity.  
Constraint (4) describes the vehicle capacity.  

Constraints (5) and (6) verify vehicle availability.  
Constraints (7) and (8) specify the time window constraints in 
which vehicles have to visit the delivery points. 

Constraint (9) prohibits sub-tours. 
Constraint (10) limits the decision variable to binary number of 0 
or 1. 

3.2 Options of the Objective Function 
In the M-VRPTW case, the objectives of M-VRPTW are 
dependent on the deliverer’s policy. For example, a deliver may 
require minimizing traveling distance, cost, or number of 
vehicles. The cost related objectives may be reclassified into three 
categories: minimizing travel cost, penalty cost for late delivery, 
and fixed cost for vehicle movement. The notational expression of 
these constraints is shown in Table 2. Multiple objectives may be 
combined with each other. 

 

Table 2. Illustrative options of objectives for M-VRPTW 

Type 
Objective 

factors Objectives 

Distance 
Minimizing 
traveling 
distance (O1) 

n+m  n+m v 
Σ   Σ   Σ dij Xijk                    
i=1    j=1  k=1

(11) 

Minimizing 
traveling cost 
(O2) 

n+m  n+m v                      
Σ   Σ   Σ a dij Xijk                 
i=1    j=1  k=1               

(12) 

Penalty cost 
for late 
delivery (O3) 

n+m 
Σ  b (lti – Ti) Zi                    
i=1

(13) Cost 

Fixed cost for 
vehicle 
movement 
(O4) 

v 
Σ  ck Wk                               
k=1

(14) 

Vehicle 
Minimizing 
number of 
vehicles (O5) 

v 
Σ Uk                                    
k=1

(15) 

 
Here, the three constants a, b, and ck imply the following: 



a: a proportional constant that transforms the distance unit into a 
cost unit.  
b: a proportional constant that transforms the time unit into a cost 
unit.  
ck: a constant for fixed cost when a vehicle k moves. 

Uk: 1 if vehicle k starts at a depot, 0 otherwise. 

3.3 Objective-Driven Constraints 
When the deliverer decides the objectives, some constraints 
should be generated to make the constraints consistent with the 
objective function. We illustrate two constraints of this kind as 
summarized in Table 3. 
 
The objectives of minimizing traveling cost, penalty cost for late 
delivery, and fixed cost require searching for delivery routes 
minimizing the sum of their corresponding costs.  For instance, 
the objective in (13) requires the constraints (16) and (17), and the 
objective (14) requires the constraints (18) and (19) to make the 
base model valid. 

 

Table 3. Illustrative objective-driven constraints for M-
VRPTW 

Type Objective 
factors Constraints 

if lti – Ti > 0,  then Zi = 1,   
 i = 1,2, …,n for (16) Penalty cost 

for late 
delivery (O3) Zi = binary,  for i = 1,2, …,n (17) 

n+m     n 
if  Σ     Σ Xijk = 1  
i=n+1   j=1  
then Wk = 1 for k = 1,2, …,v 

(18) 

Cost Fixed cost for 
vehicle  
movement 
(O4) 

Wk = binary, for k = 1,2,…,v (19) 
 

3.4 Optional Constraints for the Target 
Problem 
To define a target model, additional constraints may be added to 
the base model. For example, the required restrictions in the M-
VRPTW case may be the maximum traveling time and maximum 
traveling distance. Table 4 demonstrates such constraints. 
The maximum traveling time in (20) means that each vehicle has 
to take time less than or equal to the required time limit to 
complete the work on a route. Similarly, the maximum traveling 
distance in (21) means that each vehicle has to travel less than or 
equal to the required distance. The notations of these constraints 
are shown in Table 4. 

 

Table 4. Illustrative constraints for the target model of M-
VRPTW 

Type Constraint 
factors 

Constraints 

Time Maximum 
traveling 
time (C1) 

if Xhjk = 1 and  Xihk = 1  

then Ti + tih – (Tj – thj) ≤ fk
(20) 

for i=1,2,...,n, j=1,2,...n, 
h=n+1,n+2,...,n+m, 
k=1,2,…,v 

Distanc
e 

Maximum 
traveling 
distance 
(C2) 

n+m  n+m  
Σ   Σ dij Xijk ≤ gk    
i=1    j=1   

for k=1,2,…,v 
(21) 

 
In this manner, knowledge of the primitive models, optional 
objective functions, objective-driven constraints, and optional 
constraints for the target problem needs to be specified to support 
the dynamic formulation of various target problems. So the basis 
of the optimization agent for any application domain is the 
analysis of this kind of knowledge for the particular domain. In 
this research, we demonstrate the analysis for the supply chain 
domain. 

4. ARCHITECTURE OF OPTIMIZATION 
AGENTS 
Based on the knowledge we have analyzed in section 3, we build 
the optimization agent AGENT-OPT2 tailored to supply chain 
modeling. Figure 2 illustrates the architecture of AGENT-OPT2 
for the transportation domain. The optimization agent takes five 
steps to perform its mission. 
 
Step 1: Identify a base model. 
The optimization agent identifies a base model using the Base 
Model Identification Rules in the SCM model domains. Backward 
chain reasoning can be applied considering the delivery 
requirements received from the requesting manufacturers.  
 
Step 2: Identify the requirements of the target model. 
The optimization agent receives the message on resource 
constraints from the deliverers, and identifies a target model. The 
target is specified by the base model and objectives and 
constraints. The modification can be automatically executed by 
forward chain reasoning using the Target Model Identification 
Rules. 
 
Step 3: Generate a canonical target model. 
The target model formulated is generated in a canonical 
document. The canonical representation adopted in this study is 
the DTD form. 
 
Step 4: Transform to a commercial solver’s formulation. 
The formulated model is transformed to the format of a 
commercial IP Solver. In this study, LINGO is adopted for this 
purpose.  
 
Step 5: Solve and report. 
The model is solved by the solver and the answer is reported to 
relevant stakeholders such as manufacturers and deliverers. 



 
The steps are explained in the next sub-sections. 
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Figure 2. Architecture of AGNET-OPT2 for transportation 

problems. 
 

4.1 Identification of a Base Model 
In Step 1, the optimization agent recognizes the SCM model 
domain and identifies a base model after having received the 
delivery requirements from multiple manufacturers. Figure 3 
illustrates an AND/OR graph for base model identification in the 
transportation domain. M-VRPTW will be selected when the 
SCM model domain is transportation, items of each depot are 
delivered to multiple delivery locations, and a route is composed 
of a depot and several delivery locations. 
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Figure 3. AND/OR Graph for base model identification. 

 
Base models need data for their coefficients. Some of them are 
given from manufacturer delivery requirements and deliverer 
resources. The others are retrieved by the optimization agent from 
the common database. Table 5 shows three data groups. 
In the M-VRPTW case, depots and delivery points, demands of 
delivery points, and time windows of delivery points are given by 
the manufacturer. Capacities of vehicles are given by the 
deliverer. The optimization agent may retrieve the service time at 
a delivery location and the traveling time between points based on 
historical data. 

 

Table 5. Modeling data for the M-VRPTW base model 

Data source Coefficient data 
Delivery 
requirements from 
manufacturer  

Distance between depots and delivery 
points (i, j) 
Demand to the delivery points (qi) 
Time windows at the delivery points 
(eti, lti) 

Delivery resources 
of deliverer 

Capacity of vehicles (pk) 
 

Basic data in the 
optimization agent 

Service time at delivery points (si) 
Traveling time between delivery points 
(tij) 

 

 

4.2 Identification of a Target Model 
In Step 2, AGENT-OPT2 with a selected base model makes a 
request for information about the delivery resources. In this 
example, the M-VRPTW is selected as the base model in Step 1. 
To identify the target model, AGNET-OPT2 needs to specify the 
base model, additional objective terms, objective-driven 
constraints, and target model constraints. 
The identification can be conducted by the rules described in the 
Target Model Identification Rules in Tables 6 to 8. Since we have 
adopted the primitive model approach, the necessary operators in 
model modification is simply the INSERT statement to insert 
terms to objectives and constraints,  and to insert new constraints 
as shown in Figure 4. If we have adopted other approaches such 
as Most Similar Case Approach, we would need the DELETE 
operator as well. 
 

INSERT <Expression>  INTO OBJECTIVE 
INSERT <Expression > INTO CONSTRAINT 

 
Figure 4. Operators for optimization model modification in 

the primitive model approach. 
 
The five rules that identify the additional objective terms are 
added as illustrated in Table 6. The additional term is selected by 
the definition of the identified objectives, and more than one rule 
may be fired. 
 

Table 6. Objective identification rules for M-VRPTW 

Rule name Rule statements 
RULE_M_VRPTW_ 
OBJ_TRAVELING_ 
DISTANCE 

IF OBJECTIVE IS  
minimizing_traveling_distance  

THEN 
INSERT Term (11)  INTO  

OBJECTIVE 
RULE_M_VRPTW_ 
OBJ_TRAVELING_ 
COST 

IF OBJECTIVE IS 
minimizing_traveling_cost  

THEN 
INSERT Term (12)  INTO  

OBJECTIVE  
 



The rule as illustrated in Table 7 derives constraints from the 
identified objectives. These constraints are necessary to make the 
added objective semantically meaningful. The rule identified by 
the target of traveling time can derive the constraint as illustrated 
in Table 8. 
 

Table 7. Objective-driven constraints for M-VRPTW 

Rule name Rule statements 
RULE_M_VRPTW_
CON_PENALTY_ 
COST 

IF OBJECTIVE IS 
minimizing_traveling_cost  
AND 
penalty_cost_for_late_delivery  

THEN  
INSERT Eq(16) INTO  

CONSTRAINT  
     INSERT Eq(17) INTO  

CONSTRAINT 
 

Table 8. Target-driven constraints for M-VRPTW 

Rule name Rule statements 
RULE_M_VRPTW_
CON_TOTAL_ 
TRAVELING_TIME 

IF CONSTRAINT IS 
maximum_total_traveling_time 

THEN 
INSERT Eq(20) INTO  

CONSTRAINT 
 
As such, the delivery requirements, delivery resources and policy 
identify the target model derived by these rules. The derived 
model is canonically represented in DTD form. 
 

4.3 Canonical Representation of the Target 
Model 
The identified target model is represented in a canonical DTD 
form to equip the semantics and ability of transforming to any 
commercial solver. In this study, we have adopted LINGO as the 
IP solver. To define the complete model, we need to identify the 
base model, added objective terms, and target constraints along 
with the relevant data set. This structure is depicted in Figure 5. In 
this model, the necessary data set includes the delivery points, 
vehicles, and constants. Figure 6 expresses the semantic structure 
in DTD form. 
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Figure 5. Semantic structure of the target optimization model 

in M-VRPTW. 
 

<?xml version="1.0" encoding="euc-kr" ?> 
<!ELEMENT canonical_target_model (base_model, objective, 

target_constraints, data_set)> 
<!ELEMENT base_model (#PCDATA)> 
<!ELEMENT objective (#PCDATA)> 
<!ELEMENT target_constraints (constraint+)> 
<!ELEMENT constraint (#PCDATA)> 
<!ELEMENT data_set (delivery_points, vehicles, constants?)> 
<!ELEMENT delivery_points (delivery_point+)>  
<!ELEMENT delivery_point (l_name, l_addr, quantity?, 

unit_weight?, time_window?, service_time?)> 
<!ATTLIST delivery_point type CDATA #REQUIRED 

seq CDATA #REQUIRED> 
<!ELEMENT l_name (#PCDATA)>  
….. 

 
Figure 6. DTD form of the canonical optimization model for 

M-VRPTW. 
 

4.4 Formulation of the Target Model for the 
IP Solver 
The modeling factors described in Tables 1 to 4 corresponds to 
the terms in the objective function and equations in the 
constraints. This representation is effective if the optimization 
models can be managed as a unit of objective terms and constraint 
equations. Fortunately, a popular IP solver LINGO effectively 
handles the optimization models in this manner, and data can be 
managed separately. So we adopt LINGO as executing solver. 
Table 9 illustrates the objective function of (11) and constraints of 
(21) in the form of LINGO [29].  The formulation in DTD form 
can be transformed to the LINGO form, and solved by the solver.  
 

Table 9. Illustrative model components in the form of LINGO 

Model 
component LINGO formats 

Minimizing 
traveling 
distance in (11) 

MIN = @SUM(LINKS(i,j,k): D(i,j) * 
X(i,j,k)) 

Maximum 
traveling  
distance in (21) 

@FOR(VEHICLE(k): @SUM(LINK2(i, j): 
D(i,j) * X(i,j,k)) <= G(k)) 

 

 

5. Conclusion: Toward Ontology for Supply 
Chain Model Warehouse Services 
We have seen how the primitive model approach along with 
modified objectives and constraints can easily formulate a set of 
optimization models for SCM problems. This study proposed a 
rule-based model modification scheme based on backward chain 
and forward chain reasoning that can formulate optimization 
models automatically. We showed the viability of this approach 
through the prototype AGENT-OPT2, and illustrated the 
framework using delivery scheduling problems. 
We have confirmed that the proposed framework can be used for 
the management of multiple models in this manner because the 



modeling components can be shared by multiple instance models. 
In this sense, this architecture can be adopted for use in public 
model warehouses [5] which are equipped with external solvers. 
In the Web Services environment, optimization model 
management service can be provided to multiple and diverse 
customers, such as the third party deliverers and virtual 
manufacturing schedulers. This implies that the framework can be 
effectively scaled up to diverse supply chain modeling services. 
The application of AGENT-OPT2 developed in this spirit is not 
limited to SCM alone, but the rules of adding objectives and 
constraints need an intensive analysis in terms of the application 
domain. In this sense, the supply chain is the most typical 
application with such analyzable modeling knowledge. Let us call 
such knowledge Modeling Ontology. In order to more 
comprehensively support SCM automatic modeling, the modeling 
ontology study needs detailed scrutiny. This implies huge 
research potential for supply chain modeling experts and 
information system designers. 
If a customer repetitively uses a formulated model with minor 
modifications, the formulated model can be regarded as the base 
model of next step. Then the adoption of the primitive model 
approach can evolve into the most similar case approach 
reducing the effort of modification. 
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