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To cope with large scale, agents are usually organized in
a network such that an agent interacts only with its im-
mediate neighbors in the network. Reinforcement learning
techniques have been commonly used to optimize agents lo-
cal policies in such a network because they require little
domain knowledge and can be fully distributed. However,
all of the previous work assumed the underlying network
was fixed throughout the learning process. This assumption
was important because the underlying network defines the
learning context of each agent. In particular, the set of ac-
tions and the state space for each agent is defined in terms
of the agent’s neighbors. If agents dynamically change the
underlying network structure (also called self-organize) dur-
ing learning, then one needs a mechanism for transferring
what agents have learned so far before (in the old network
structure) to their new learning context (in the new network
structure).

In this work we develop a novel self-organization mech-
anism that not only allows agents to self-organize the un-
derlying network during the learning process, but also uses
information from learning to guide the self-organization pro-
cess. Consequently, our work is the first to study this in-
teraction between learning and self-organization. Our self-
organization mechanism uses heuristics to transfer the learned
knowledge across the different steps of self-organization. We
also present a more restricted version of our mechanism that
is computationally less expensive and still achieve good per-
formance. We use a simplified version of the distributed task
allocation domain as our case study. Experimental results
verify the stability of our approach and show a monotonic
improvement in the performance of the learning process due
to self-organization.

∗This material is based upon work supported by the
National Science Foundation Engineering Research Centers
Program under NSF Award No. EEC-0313747. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation.
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Many problems that an agent faces in a multiagent sys-
tem can be formulated as decision making problems, where
an agent needs to decide which action to execute in order
to maximize the agent’s objective function. Optimizing de-
cision making in multiagent systems is challenging because
each agent needs to take into account other agents in the sys-
tem: what agents are available and what are their current
state. As the number of agents grows, a common approach,
in order to cope with scale, is to organize agents into an
overlay network, where each agent interacts only with its
immediate neighbors. Therefore, the context within which
each agent optimizes its decision is defined in terms of each
agent’s neighbors. This context consists of an agent’s state
(which should reflect neighbors’ states) and what actions
are available to the agent (which should include at least an
action for each neighbor).

Multiagent Reinforcement Learning (MARL) is a com-
mon approach for solving multiagent decision making prob-
lems. It allows agents to dynamically adapt to changes in
the environment, while requiring minimum domain knowl-
edge. Using MARL, each agent starts with an arbitrary
policy1 that gradually improves as agents interact with each
other and with the environment. Several MARL algorithms
have been applied to a network of agents [4, 7, 1]. However,
all of the previous work assumed the underlying network
was fixed throughout the learning process. This assumption
was important because it keeps the decision context of each
agent fixed as well. If agents can dynamically change the un-
derlying network structure (also called self-organize) during
learning, then one needs a mechanism for transferring what
agents have learned so far (in the old network structure) to

1As will be described shortly, a policy is a solution to
the decision making problem that specifies which action to
execute in every state.
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their new learning context (in the new network structure).
Otherwise, agents would need to start learning from scratch
every time the network structure changes.

The main contribution of this work is developing a novel
self-organization mechanism that not only allows agents to
self-organize the underlying network during the learning pro-
cess, but also uses information from learning to guide the
self-organization process. In particular, using our mecha-
nism, an agent can add and remove other agents to its neigh-
borhood while still learning. The mechanism uses heuristics
to transfer the learned knowledge across different steps of
self-organization as we will describe shortly. While several
algorithms were developed for self-organization [8, 5], they
all assumed agents’ local policies were fixed (i.e. no learn-
ing). Consequently, our work is the first to study and ana-
lyze the interaction between learning and self-organization.
Furthermore, because the operations of adapting the net-
work are computationally expensive, we also present a more
restricted version of our mechanism that is computationally
less expensive and still achieve good performance. We use a
simplified version of the distributed task allocation domain
as our case study. Experimental results verify the stability
and effectiveness of our approach in a network of up to 100
learning agents.

The paper is organized as follows. Section 2 describes
the distributed task allocation domain, which we will use
throughout the document as our case study. Section 3 briefly
reviews previous MARL algorithms and describes the learn-
ing algorithm we use in conjunction with our self-organizing
mechanism. Section 4 describes our self-organizing mech-
anism. Section 5 presents and discusses our experimental
results. Section 6 reviews the previous work. Finally, Sec-
tion 7 concludes and proposes possible future extensions.

We use a simplified version of the distributed task alloca-
tion domain (DTAP) [1], where the goal of the multiagent
system is to assign tasks to agents such that the service time
of each task is minimized. Agents interact via communica-
tion messages (there are three types of messages that are
described in Section 4). Communication delay between two
agents is proportional to the Euclidean distance between
them, one time unit per distance unit (each agent has a
physical location). Each time unit, agents make decisions
regarding all task requests received during this time unit.
For each task, the agent can either execute the task locally
or send the task to a neighboring agent. If the agent decides
to execute the task locally, the agent adds the task to its
local queue, where tasks are executed on a first come first
serve basis, with unlimited queue length.

Agent i execute tasks with rate μi tasks per time unit,
and receives tasks from the environment with arrival rate
λi tasks per time unit. Both λ and μ satisfy the condition∑

i
λi <

∑
i
μi in order to ensure system stability. The main

goal of DTAP is to reduce the total service time, averaged

over tasks, ATST =
∑

T∈T τ
TST (T )

|T τ |
, where T τ is the set of

task requests received during a time period τ and TST is
the total time a task spends in the system. TST consists of
the time for routing a task request through the network, the
time a task request spends in the local queue, and the time of
actually executing the task. Because both learning and self-

Figure 1: Task allocation using a network of agents.

organization contribute to any improvement to ATST , we
will also measure the average number of hops a task needs to
go through before an agent executes the task locally, which
is directly affected by self-organization.

For illustration, consider the example scenario depicted
in Figure 1. Agent A0 receives task T1, which can be ex-
ecuted by any of the agents A0, A1, A2, A3, and A4. All
agents other than agent A4 are overloaded, and therefore
the best option for agent A0 is to forward task T1 to agent
A2 which in turn forwards task T1 to its left neighbor (A5)
until task T1 reaches agent A4. Although agent A0 does
not know that A4 is under-loaded (because agent A0 in-
teracts only with its immediate neighbors), agent A0 will
eventually learn (through experience and interaction with
its neighbors) that sending task T1 to agent A2 is the best
action without even knowing that agent A4 exists.

Now suppose agent A0 sends most of its tasks to agent A2,
while agent A2 executes half of the incoming tasks locally
and sends the other half to its neighbor A5. One would ex-
pect performance to improve if A0 adds A5 as one of its own
neighbors, because this will save an unnecessary overhead.
Similarly, if A0 rarely sends any request to its neighbor A3,
then removing neighbor A3 from A0’s neighbors will reduce
the computational overhead associated with taking agent A3
into account whenever A0 is making a decision.

Our mechanism, allows agents to dynamically add and
remove neighbors so that in the above example agent A0
becomes directly connected to A4, while removing unneces-
sary neighbors. The main difficulty of adding and removing
neighbors, however, is that it changes the decision context
of an agent. In the above example, agent A0 may know
very well how to interact with its old neighbors due to a
long history of interactions. On the other hand, A0 has no
experience with the new neighbor A5. Even worse, not only
does A0 need to learn about A5, but also all its previous ex-
perience may not be relevant after adding A5 (because A5
was not part of the state in the previous experience). Our
mechanism, as we describe in Section 4 uses heuristics to
retain most of the previous experience throughout the self-
organization process. For simplicity, we assume each task
type has a corresponding organization, i.e. each agent has
multiple sets of neighbors, a set for each task type. The fol-
lowing section briefly reviews the previous work in MARL
and describe the learning algorithm we use.

When RL techniques are applied in a distributed multia-
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gent system, the learning agents may fail to converge due to
lack of synchronization [3]. Several MARL algorithms have
been developed to address this issue [3, 2, 1], with theoretical
convergence guarantees that do not hold for more than two
agents. Despite using different heuristics to bias learning
towards stable policies, most of these algorithms maintain
and update the same two data structures for each agent i:
action values, Qi, and the policy πi. Both data structures
are represented using two dimensional tables |Si| rows ×|Ai|
columns, where S is the set of states encountered by agent
i and Ai is the set of actions that agent i can execute.2 The
cell Qi(s, a) stores the reward agent i expects if it executes
action a at state s. The cell πi(s, a) stores the probability
that agent i will execute action a at state s. Together, Q
and π encapsulates what an agent has learned so far. The
main idea of most of these algorithms is to compute an ap-
proximate gradient of Q, then use that gradient to update
π, with small step η.

The advantage of using this gradient ascent approach is
that agents can learn stochastic policies, which is necessary
for most of the convergence guarantees. Algorithm 1 de-
scribes the Weighted Policy Learner (WPL) algorithm [1],
which we have chosen as the accompanying learning algo-
rithm for our self-organizing mechanism. It should be noted,
however, that our mechanism does not depend on the ac-
companying learning algorithm. In fact, the interaction be-
tween WPL and our self-organizing mechanism is encapsu-
lated through the Q and π data structures, which are com-
mon to learning algorithms other than WPL.

WPL achieves convergence using an intuitive idea: slow
down learning when moving away from a stable policy3 and
speedup learning when moving towards the stable policy. In
that respect, the idea has similarity with the Win or Lose
Fast heuristic (WoLF) [3], but the WPL algorithm is more
intuitive and achieves higher performance than algorithms
using WoLF.

Algorithm 1: WPL( state s, action a)

begin
Let r ← the reward of reaching state s
Update Q(s′, a′) using r
s′ ← s and a′ ← a

r̂ ← total average reward =
∑

a∈A π(s, a)Q(s, a).

foreach action a ∈ A do
Δ(a)← Q(s, a)− r̂
if Δ(a) > 0 then Δ(a)← Δ(a)(1− π(a))
else Δ(a)← Δ(a)(π(a))

end

π ← π + ηΔ
end

There are two basic operators for restructuring a net-
work: adding a neighbor and removing a neighbor. A self-
organizing mechanism would need to answer three questions:

2More approximate representations of Q and π are possi-
ble, but will make the transfer of learned knowledge (Section
4.1) more complicated.

3The stable policy is in fact a Nash Equilibrium [1]. We
omit details for space reasons.

which neighbor to add or remove, when to stop adding or
removing neighbors, and how to adjust π and Q (that encap-
sulate an agent’s experience) to account for adding and re-
moving a neighbor. The remainder of this section addresses
the first two questions while the following section addresses
the third question.

Algorithm 2 illustrates the decision process that takes
place in each agent every cycle. The algorithm uses three
types of messages. A REQUEST message 〈i, T 〉 indicates a
request from neighbor i to execute task T . An UPDATE
message 〈i, S̃i〉 indicates an update S̃i to the state feature
corresponding to neighbor i An ORGANIZE message 〈i, j〉
indicates a self-organization proposal from neighbor i to add
neighbor j.

Algorithm 2: Decision Making Algorithm

begin
MSGS ← messages received in this cycle.
for each UPDATE message 〈i, S̃i〉 ∈MSGS, update the
current state, s.
for each ORGANIZE message 〈i, j〉 ∈MSGS, call
processOrganize(〈i, j〉)
for each REQUEST message 〈n, T 〉 ∈MSGS do begin

Choose a neighbor a randomly according to π(s, .)
If a is self then add T to the local queue, otherwise
forward the request to a.
sendUpdate()
proposeOrganize( n )

end
learn( s, a )

end

The algorithm uses four functions: learn, sendUpdate, pro-

poseOrganize, and processOrganize. Function learn encap-
sulates the accompanying learning algorithm (e.g. WPL).
Function sendUpdate is responsible for maintaining the state
of each agent updated via communicating UPDATE mes-
sages as follows. An agent’s state is defined by the tuple
〈β, S̃0, S̃1, ..., S̃n〉, where β is the rate of incoming requests

and S̃i is a feature corresponding to neighbor i. We as-
sume there exists an abstraction function that summarizes
a neighboring agent state to an abstract state, which is then
used as a feature. In the DTAP domain the abstract state
of an agent i is approximated by the ATST for that agent,
i.e. S̃i � ATSTi = −

∑
k πi(s, k)Qi(s, k) (note that Qi(s, k)

holds the expected reward of sending a task to neighbor k if
at state s, and in the DTAP problem the reward = -ATST).
In order to avoid excessive sending of UPDATE messages,
each agent i keeps track of S̃

j
i , the last communicated ab-

stract state to a neighbor j. An agent sends an UPDATE
message to a neighbor j when the difference between its
current state and the last communicated state to neighbor
j exceeds certain threshold (we assume there exists a func-
tion that computes the difference between two agent states).
More formally, Agent i sends an UPDATE message to neigh-
bor j if and only if |S̃j

i − S̃i| > ϕ, where ϕ is a threshold
and Si is the current abstract state of agent i. It is therefore
possible for an agent have an outdated abstract state of a
neighbor.4

The two functions processOrganize (Algorithm 3) and pro-

poseOrganize (Algorithm 4) encapsulate the self-organizing

4This possibility is true even if ϕ = 0, because of com-
munication delays.
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mechanism. Function proposeOrganize chooses a neighbor
to add or remove based on the policy averaged over states
=

∑
s
P (s)π(s, a), where P (s) is the probability of visiting

state s (approximated by counting the number of visits for
each state). We have tried several alternatives for choosing a
neighbor, including choosing the most likely neighbor at the
most likely state, i.e. n∗ ← argmaxa{π(argmaxs{P (s)}, a)}
(where P (s) is the probability of reaching state s), and
choosing a neighbor stochastically according to π(s′, a), where
state s′ is chosen stochastically as well according to P (s).
The strategy that proposeOrganize uses has outperformed
both.

Instead of adding or removing neighbors deterministically,
processOrganize and proposeOrganize do that stochastically
with probabilities Padd and Premove respectively. Intuitively,
Premove, should slowly increase as the number of neighbors
increase in order to discourage the set of neighbors from
growing indefinitely. We have used the simple form below
in our analysis.

Premove =

{
0 if |Ni| <= n0

1

|Ni|−n0
otherwise

, where Ni is the set of neighbors of agent i and n0 is a con-
stant. Similar to Premove, when agent i receives a REOR-
GANIZE message, it should add a new neighbor with proba-
bility Padd that is inversely proportional to the current num-
ber of neighbors of agent i. We use Padd = 1−Premove. The
following lemma proves that although our self-organizing
mechanism is stochastic, the number of neighbors per agent
is bounded.

Algorithm 3: proposeOrganize( requesting neighbor k)

begin

with probability PO do begin
n∗
← argmaxa

∑
s P (s)π(s, a)

send an ORGANIZE message, with n∗ as its data
field, to neighbor k.
with probability Premove do begin

n−
← argmina

∑
s P (s)π(s, a)

Remove n− from list of neighbors and adjust Q
and π
details in the following section

end

end

end

Algorithm 4: processOrganize( 〈 existing neighbor ne,
new neighbor n+ 〉)

begin

with probability Padd do begin

if n+ /∈ list of neighbors then Add neighbor n+ to
list of neighbors and adjust Q and π

end

end

Lemma 1. For every agent i, the average number of neigh-

bors |Ni| ≤ n0 + 2

Proof. Because the probability of adding a neighbor de-
creases as the number of neighbors increase, while the prob-
ability of removing a neighbor increases, there must be a

point in between where the rate of adding a neighbor equals
the rate of removing a neighbor. If |Ni| ≤ n0, the probabil-
ity of adding a neighbor is 1 and the probability of removing
a neighbor is 0, so |Ni| must be greater than n0 The rate of
removing a neighbor equals ηiP0Premove = ηiP0

|Ni|−n0
, where

ηi is the rate of receiving REQUEST messages by agent i per
time unit (note, from Algorithm 2, that the proposeOrganize

method is executed for each received request message).
The rate of adding a neighbor is less or equals the rate

of receiving ORGANIZE messages multiplied by Padd. It
can be less than the rate of received ORGANIZE messages
because some proposals are redundant (have already been
added before). The rate of receiving ORGANIZE messages
from neighbor j= rate of REQUEST messages agent i sends
to that neighbor multiplied by P0 = P0ηi

∑
s P (s)π(s, aj),

where P (s) is the probablity of visiting state s. The rate of
adding a neighbor is therefore ≤ Padd

∑
j
P0ηi

∑
s
P (s)π(s, aj)

= P0Paddηi

∑
s P (s)

∑
j π(s, aj) = P0Paddηi. In steady state,

the rate of adding a neighbor equals the rate of removing
a neighbor, 1

|Ni|−n0
≤ 1 − 1

|Ni|−n0
, which is only true if

|Ni| ≤ n0 + 2.

It should be noted that PO must be low enough in order to
allow learning to converge. This is important because self-
organization uses π in choosing which neighbor to add and
remove, then after adding or removing a neighbor, both Q

and π are adjusted approximately (as the following section
illustrates) and need to be optimized further by learning.
Lowering PO is also necessary from a practical point of view
because adding and removing a neighbor is an expensive
operation. Lowering PO too much, however, leads to very
slow self-organization and therefore slower improvement in
performance.

Executing the function proposeOrganize iff a REQUEST
message is received achieves several desirable properties. First,
the rate of receiving ORGANIZE messages from a neighbor
ne is proprtional to how important ne is (so for example, if
a neighbor is rarely used, the rate of accepting a proposal to
add a neighbor from that neighbor should be low). Similarly,
the rate of sending an ORGANIZE message to a neighbor
is proportional to the rate of receiving REQUEST message
from that neighbor. The following section discusses in fur-
ther detail how Q and π are adjusted when an agent adds
or removes a neighbor.

Q π

When a restructuring operator is executed (adding or re-
moving a neighbor), the learned knowledge (the Q and the π

tables) need to change in order to reflect the new state fea-
tures and action set. Resetting both P and Q whenever an
agent executes a restructuring operator, while valid, wastes
valuable experience and learning the agent has already gone
through. Instead, we take advantage of the natural factor-
ization of the state and corresponding actions in order to
retain as much as possible of π and Q. For convenience, we
will use Q(s, .) to refer to a row, Q(s, a) to refer to a par-
ticular cell, and Q(s, ai...aj) to refer to partial row in the Q

table. A similar notation is used for π.
When the self-organizing mechanism removes a neighbor,

the mechanism also removes the action and state feature as-
sociated with that neighbor. Removing an action results in
removing the corresponding table column in both the Q and
the π data structures. Unlike Q, however, π needs to be nor-
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malized after removing a colummn, because the policy for
any state must always sum to 1. Removing a state feature
means that states that were originally distinguishable in the
old state space are now indistinguishable in the new state
space and consequently states will be clustered into fewer
number of states. The question is how to merge the rows
corresponding to each state cluster in π and Q. A simple
way is to choose one of the rows at random. However, this
does not take into account that some states may be more
important than others. Instead, we weigh each row by the
frequency of visiting that state and then sum all the rows
for both Q and π.

When a neighbor is added, an action is added to the set
of actions and a new feature is added to the state features.
Adding an action results in a new column in both Q and π

data structures. Adding a feature results in expanding the
state space, where each state is expanded to a set of states
that only differ in the new neighbor’s state. To transfer
what an agent has previously learned in the old state space
to the newly expanded state space, we need a mapping from
the old Q and π tables (defined over the old state space)
to new Q′ and π′ (defined over the new state space). In-
tuitively, the idea is to treat the newly added neighbor as
an identical twin to the existing neighbor that has proposed
this self-organizing operator (i.e. the sender of the ORGA-
NIZE message) as identical twins. In other words, their
action values and corresponding policy are equal to one an-
other. More formally, let ne be the existing neighbor that
proposed adding a new neighbor n+ and let 〈s−e, se〉 be a
factored old state, where se is the feature corresponding to
neighbor ne and s−e is all the other features of the old state.
Similarly, let ae be the action corresponding to neighbor e

and a−e be the list of all other actions (not including the
action corresponding to the new neighbor a+). For every
two old states 〈s−e, se

1〉 and 〈s−e, se
2〉 (i.e. the two states

only differ in the feature value corresponding to neighbor
ne) we generate four new states and initialize the next Q

and π entries as follows.

• 〈s−e, se
1, s

e
1〉:

Q′(〈s−e, se
1, s

e
1〉, .) = 〈Q(〈s−e, se

1〉, .), Q(〈s−e, se
1〉, ae)〉

and π′(〈s−e, se
1, s

e
1〉, .) = 〈π(〈s−e, se

1〉, a
−e),

π(〈s−e,se

1
〉,ae)

2
,

π(〈s−e,se

1
〉,ae)

2
〉

• 〈s−e, se
1, s

e
2〉:

Q′(〈s−e, se
1, s

e
2〉, .) = 〈Q(〈s−e, se

1〉, .), Q(〈s−e, se
2〉, ae)〉

and π′(〈s−e, se
1, s

e
2〉, .) = 〈

π(〈s−e,se

1
〉,a−e)+π(〈s−e,se

2
〉,a−e)

2
,

π(〈s−e,se

1
〉,ae)

2
,

π(〈s−e,se

2
〉,ae)

2
〉

• 〈s−e, se
2, s

e
1〉:

Q′(〈s−e, se
2, s

e
1〉, .) = 〈Q(〈s−e, se

2〉, .), Q(〈s−e, se
1〉, ae)〉

and π′(〈s−e, se
1, s

e
2〉, .) = 〈

π(〈s−e,se

1
〉,a−e)+π(〈s−e,se

2
〉,a−e)

2
,

π(〈s−e,se

2
〉,ae)

2
,

π(〈s−e,se

1
〉,ae)

2
〉

• 〈s−e, se
2, s

e
2〉:

Q′(〈s−e, se
2, s

e
2〉, .) = 〈Q(〈s−e, se

2〉, .), Q(〈s−e, se
2〉, ae)〉

and π′(〈s−e, se
2, s

e
2〉, .) =

〈π(〈s−e, se
2〉, a

−e),
π(〈s−e,se

2
〉,ae)

2
,

π(〈s−e,se

2
〉,ae)

2
〉

The procedure we have just described of maintaining π

and Q when a neighbor is added or removed is expensive

and not necessarily optimal. Despite its suboptimality, how-
ever, it serves as a good approximation that allows learn-
ing to pursue and tune Q and π further, without major
disruptions. Our experimental results verify that indeed
the performance remain monotonically increasing as self-
organization and learning take place simultaneously. In the
following section we describe a more restricted version of
our mechanism that uses only one reogranization operator:
replace one neighbor with another.

The main intuition behind this restricted self-organization
mechanism is to bypass the ”middleman” by using one re-
structuring operator, replace a neighbor, instead of the pre-
vious two restructuring operators, add and remove a neigh-
bor. If an agent aover is overloaded, most of the time it will
forward requests to its neighbors instead of executing tasks
locally. It is therefore intuitive to try to bypass this over-
loaded agent. The mechanism uses identical proposeOrga-

nize and processOrganize but without removing a neighor in
proposeOrganize and instead of adding a neighbor in proces-

sOrganize, the new neighbor replaces the proposing neigh-
bor.

We assume that action values Q (and therefore the policy
π) will not significantly change if the network changes slowly
using the replace-neighbor operator. Based on that assump-
tion, when an agent replaces neighbor nold with neighbor
nnew , the agent modifies neither the corresponding action
value Q(., a) nor the policy π(., a). Instead, the agent just
changes the association of the corresponding action a from
the old neighbor nold to the new neighbor nnew . Experimen-
tal results verify that learning converges smoothly using this
strategy in face of self-organization. The main limitation of
this approach is that it preserves node out-degrees, there-
fore limiting the space of reachable policies. This limitation,
however, makes our assumption of keeping both action val-
ues (Q) and policy (π) unchanged more intuitive.

The evaluation includes three measurements: the aver-
age total service time (ATST), the average number of RE-
QUEST messages per request (AREQ), and the average
number of UPDATE messages per request (AUPD). ATST
represents the overall system performance and we use it to
verify the stability (convergence) of our approach by show-
ing monotonic improvement in ATST as agents gain more
experience. AREQ reflects the average number of hops (in-
termediate agents) a task request goes through before be-
ing executed and is therefore the main measurement that
reflects the benefit of self-organizing. AUPD indicates the
overhead for maintaining the state and therefore should be
kept at a minimum.

We have experimented with uniform two dimensional grid
networks of different sizes: 2x2, 4x4, 6x6, and 10x10 agents.
The results we have obtained are similar and for brevity we
only report here the results for the 10x10 grid. For each
simulation run, ATST, AREQ, and AUPD are computed
every 5000 times steps to measure performance improvement
as agents learn. Results are then averaged over 10 simulation
runs and the variance is computed across the runs. The
learning rate (η in the WPL algorithm) is set to 0.0001.

For simplicity, we assume that there is only one task type
that is not decomposable and that all agents have same ex-
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ecution rate, ∀i : μi = μ = 0.1. However, task arrival rates,
λi, differ from one agent to another (leading to unbalanced
load). The goal of our system, therefore, is to learn how to
route tasks effectively in order to balance the load (minimize
ATST), using minimum number of hops (minimize AREQ)
and low commuincation overhead (minimize AUPD). Tasks
arrive according to two different patterns of load:

Boundary load : where the 36 nodes on the boundary
receive tasks with λ = 0.25. Other nodes receive no
tasks.

Center load : where the 16 nodes in the centric 4x4 grid
have task arrival rate λ = 0.5. Other nodes receive no
tasks.

We have tried different values of n0. Larger n0 leads to
better performance but longer time to stabilize (agents need
to learn about more neighbors). The results shown here use
n0 = 5 for center load and n0 = 3 for boundary load. Table
1 and Table 2. summarize the results of the following fig-
ures (the table shows the different measures after learning
and self-organization have stabilized). Figure 2 plots AREQ
for different values of PO : 0 (no re-organization), 0.00005,
and 0.0002. As expected, AREQ drops significantly due
to self-organization. Figure 3 shows the monotonic decrease
in ATST. More importantly, self-organization leads to faster
convergence. While surprising at first, it is actually intuitive
because self-organization allows agents that are far from in-
coming requests to receive more requests quickly. Therefore,
these initially distant agents gain more experience and learn
faster.

P0 ATST AREQ AUPD
0 (fixed organiz.) 45 ± 0.37 4.86 ± 0.05 0.23 ± 0.02
0.00005 40.75 ± 0.5 3.25 ± 0.05 0.32 ± 0.03
0.0002 38.69 ± 1.15 3.00 ± 0.07 0.36 ± 0.02

Table 1: Different measurements for different P0 values

under center-load.

P0 ATST AREQ AUPD
0 (fixed organiz.) 50.4 ± 1.1 3.91 ± 0.11 0.24 ± 0.01
0.00005 47.5 ± 0.71 3.1 ± 0.05 0.26 ± 0.01
0.0002 45.34 ± 0.67 2.88 ± 0.05 0.28 ± 0.01

Table 2: Different measurements for different P0 values

under boundary-load.

The downside of self-organization is that it may lead to
a higher AUPD as Figure 4 shows. The reason is that in-
termediate agents (which are bypassed by self-organization)
hide some of the changes in other agents’ states by aggrega-
tion. For example, if one neighbor of agent a gets overloaded
while another neighbor is underloaded, then agent a’s load
(and therefore its aggregated state) may remain unchanged
as the changes in the load of its neighbors even out. How-
ever, AUPD (the overhead) is still much lower than AREQ.

Figures 5 and 6 illustrate the self-organization process
when PO = 0.0002 for both types of load. For better vi-
sualization, the diameter of each node is proportional to the
load on that node (i.e. its local queue length). Initially,

Figure 2: AREQ in 10x10 grid for different values of

PO, boundary load: top, center load: bottom.

Figure 3: ATST in 10x10 grid for different values of PO,

boundary load: top, center load: bottom.

Figure 4: AUPD in 10x10 grid for different values of

PO, boundary load: top, center load: bottom.
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agents that receive the initial task requests are overloaded,
while other agents are underloaded. As learning and self-
organization take place, the load becomes more balanced
and the path between heavy loaded agents and underloaded
agents gets shorter. In particular, more edges are pointing
outward in the case of the center load, while more edges are
pointing inward in the case of the boundary load.

Figure 5: Self-Organization when load on boundary,
at time 10,000 (left) and 290,000 (right)

As we have discussed previously, the main limitation of
our mechanism is that it is computationally expensive to
update the learning data structures Q and π when adding
and removing a neighbor. Figure 7 compares our mech-
anism (CMPLX) against the more restricted version of it
(SMPL), which only uses the replace-neighbor operator, for
the center-load case. The restricted version initially per-
forms better (converges faster), because it merges two self-
organizing operations in one (similar to organizing at double
the speed). However, eventually the more complex mecha-
nism catch up and outperform. The difference is not sig-
nificant, however, so the simpler mechanism provide a good
compromise between optimiality and speed.

Figure 6: Self-Organization when load at center, at
time 10,000 (left) and 290,000 (right)

Q-routing [4] pioneered the use of reinforcement learn-
ing to optimize packet routing in a network of agents. The
work mapped the routing problem to a set of local decision
problems (one per router), then used a simple reinforcement
learning algorithm to learn a deterministic policy. Q-routing
suffers from its inability to learn a non-deterministic policy.

The distributed gradient ascent policy search (DGAPS)
[7] was evaluated in network routing. It outperformed other
deterministic search policies (Q-routing, shortest path, best
load, etc). Feedback occurred only after a packet is suc-
cessfully delivered (or dropped due to a cycle), where an
acknowledgment packet were passed to all nodes on the re-
sponsible path. While this may be more accurate, in a large
network such feedback is slow. Our communication strategy
reduces feedback considerably by exploiting the stability of
the system. DGAPS also did not support self-organization.

Transferring learned knowledge has been recently pro-
posed for the robocup domain [9] and has shown to reduce
learning time. Aside from targeting a different domain, that
work focused only on transferring the action value function
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Figure 7: The self-organizing mechanism (CMPLX)

against its restricted verion (SMPL): ATST (top), AREQ

(middle), and AUPD (bottom).

Q, assuming policy π is deterministic. Our approach trans-
fers both Q and π.

The work in [6] introduced a domain-independent orga-
nizational design representation that is able to model and
predict the performance of agent organizations. However,
optimizing agent policies was ignored and abstracted to sim-
plify the analysis of organizations. The algorithm for find-
ing an optimal organization was also centralized. Our self-
organization mechanism is fully distributed (although it does
not necessarily find the optimal organization). The work
in [5] presented a self-organization algorithm that improved
team formation in a network of agents. That algorithm im-
plicitly relied on global synchronization (to ensure determin-
istic order among agent decisions), assumed tasks were glob-
ally broadcasted, and did not involve learning. Our mecha-
nism does not make these assumptions and relies on infor-
mation provided by learning. The work in [8] presented a
self-organization algorithm based on negotiation. The algo-
rithm was designed for a specific problem (distributed sensor
networks) and did not involve reinforcement learning.

This paper proposes an integrated, scalable, and fully dis-
tributed framework for mlutiagent reinforcement learning in
a network of agents. The framework consists of a learning
algorithm and a self-organizing mechanism. The learning
algorithm allows each agent to optimize its local policy and
the self-organizing mechanism optimizes the underlying net-
work. We have developed a novel self-organizing mechanism
that uses information from learning to guide the restructure
process (we have used an existing multiagent reinforcement
learning algorithm, WPL). The mechanism executes while
learning is taking place, which involves retaining the knowl-

edge that each agent learns through the self-organization
process. The framework has been applied to the distributed
task allocation problem wher experimental results show sig-
nificant improvement due to self-organization. Results also
show the stability of our framework as agents performance
monotonically increase as they gain more experience.

We are currecntly conducting experiments on wider va-
riety of networks and load patterns. We are also consid-
ering different real world applications where our approach
can be useful, such as adhoc routing. One of our future
directions is to use learning inside our self-organizing mech-
anism (although our mechanism uses information learned by
a learning algorithm, the mechanism itself is still a heuris-
tic approach). Unlike the original learner that optimizes
the an agent local decision, the self-organization learner will
operate on a much slower pace while monitoring improve-
ments of the long term system performance. Another future
direction is analyzing the stability of our framework theo-
retically. This is more challenging than previous analysis in
MARL because self-organization continuously changes the
context of each agent. Guaranteeing convergence despite
such dynamacity is challenging.
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