
Multiagent Learning in Adaptive Dynamic Systems

Andriy Burkov
DAMAS Laboratory

Laval University
G1K 7P4, Quebec, Canada

burkov@damas.ift.ulaval.ca

Brahim Chaib-draa
DAMAS Laboratory

Laval University
G1K 7P4, Quebec, Canada

chaib@damas.ift.ulaval.ca

ABSTRACT

Classically, an approach to the multiagent policy learning
supposed that the agents, via interactions and/or by us-
ing preliminary knowledge about the reward functions of all
players, would find an interdependent solution called “equi-
librium”. Recently, however, certain researchers question
the necessity and the validity of the concept of equilib-
rium as the most important multiagent solution concept.
They argue that a “good” learning algorithm is one that
is efficient with respect to a certain class of counterparts.
Adaptive players is an important class of agents that learn
their policies separately from the maintenance of the beliefs
about their counterparts’ future actions and make their de-
cisions based on that policy and the current belief. In this
paper, we propose an efficient learning algorithm in pres-
ence of the adaptive counterparts called Adaptive Dynam-
ics Learner (ADL), which is able to learn an efficient policy
over the opponents’ adaptive dynamics rather than over the
simple actions and beliefs and, by so doing, to exploit these
dynamics to obtain a higher utility than any equilibrium
strategy can provide. We tested our algorithm on a substan-
tial representative set of the most known and demonstrative
matrix games and observed that ADL agent is highly effi-
cient against Adaptive Play Q-learning (APQ) agent and In-
finitesimal Gradient Ascent (IGA) agent. In self-play, when
possible, ADL is able to converge to a Pareto optimal strat-
egy maximizing the welfare of all players.

General Terms

Algorithms, Performance, Experimentation

Keywords

Multiagent learning, Matrix games, Adaptation

1. INTRODUCTION
Classically, an approach to the multiagent policy learning

supposed that the agents, by means of interactions and/or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

by using preliminary knowledge about the reward functions
of all players, would find an interdependent solution called
“equilibrium”. One of the most used concepts of equilib-
rium is the Nash equilibrium where each agent in a mul-
tiagent system (MAS) plays its best response to the other
players’ strategies and a unilateral deviation of a player from
the equilibrium strategy decreases its own utility. There are
two basic approaches to finding a Nash equilibrium. The
first one is a game theoretic approach, which supposes the
complete knowledge of the reward structure of the under-
lying game by all agents. In such an approach, each agent
calculates an equilibrium by using mathematical program-
ming, and all agents play on it. But a problem arises when
there are several tantamount equilibria in a game and the
agents have calculated the different ones. Another problem
is that the agents, by calculating an equilibrium, suppose
that the other agents are rational and, thus, they will also
follow this solution. But what if certain agents are not ra-
tional, or play a fixed strategy, or evolve according to some
fixed rules, and what if some agents know (or are able to
deduct) this and could exploit this knowledge to augment
their utilities? As yet, there is no equilibrium concept which
can answer this question.

The second approach to finding an equilibrium is the adap-
tive one, which supposes that the agents learn by adapting to
each other in self-play (i.e., all agents use the same learning
algorithm), do not know the reward structure of the game
and are only able to make actions and observe their own
rewards and, in some approaches, the actions made by the
others. It was shown that certain algorithms of this class
converge to a Nash equilibrium (or to a utility that is equiv-
alent to the utility of a Nash equilibrium). Among these
algorithms the most outstanding are Joint-Action Learning
[3], Infinitesimal Gradient Ascent (IGA)1 [9], Policy Hill-
Climbing [1] and Adaptive Play Q-learning [4] (a Q-learning
based extension of the Adaptive Play algorithm [11]). The
adaptive players2 learn their policies separately from the
maintenance of the beliefs about their counterparts’ future
actions and make their decisions based on that policy and
the current belief. These decisions can be in pure or in mixed
strategies depending on the algorithm in question.

1IGA is the only algorithm among those listed, which re-
quires a complete knowledge of the reward structure of the
game to calculate the gradient.
2To discriminate between adaptive player as a member of a
class of learning agents and Young’s Adaptive Player, we will
write “adaptive player” or “adaptive algorithm” (in lower
case) to denote the former and Adaptive Player (with a cap-
ital letter) for the latter.

188

978-81-904262-7-5 (RPS) c©2007 IFAAMAS

Recently, certain researchers question the necessity and
the validity of the concept of equilibrium as the most im-
portant multiagent solution concept [8]. They rather point
out the efficiency of a particular learning algorithm versus a
certain class of counterparts. The adaptive players is such a
class of learning agents, which showed good results with re-
spect to the convergence to a Nash equilibrium, and in this
paper, we propose an efficient algorithm of learning in pres-
ence of the adaptive counterparts called Adaptive Dynamics
Learner (ADL). Our ADL algorithm is able to learn an effi-
cient policy over the adaptation dynamics of its opponents’
rather than over the simple actions and beliefs and, by so
doing, to exploit these dynamics to obtain a higher utility
than any equilibrium strategy can provide. We tested our
algorithm on a set of the most known and demonstrative re-
peated matrix games and the results show that ADL agent is
highly efficient in self-play and against APQ and IGA agents
(this comparison is correct as soon as APQ and IGA agents
have the same or a greater quantity of information about
the world as compared to ADL).

The rest of the paper is organized as follows. First, we de-
scribe IGA and APQ learning algorithms. Then, we present
our novel approach to the learning of the adaptive dynam-
ics in MAS. Then, by comparative testing, we demonstrate
that our algorithm exploits IGA and APQ players in ad-
versarial games by remaining rational and highly efficient
in other games, versus the stationary opponents and versus
itself as well. Again, in self-play it converges to a solution
that maximizes the welfare of both players.

2. ADAPTIVE DYNAMICS
In this section, we describe two algorithms, which repre-

sent two basic subclasses of adaptive learning algorithms:
those that are able to learn a pure strategy and those that
are able to learn a mixed one. These are APQ and IGA
algorithms respectively. But first, we present the notation
we use in this paper. A (normal form) stage game is a tu-
ple (n,A1...n, R1...n), where n is the number of players, Aj

is the strategy space of player j, j = 1 . . . n, and the value
function Rj : ×Aj �→ R defines the utility for player j of a
joint action a ∈ A = ×Aj .

A mixed strategy for player j is a distribution πj , where
π

j

aj is the probability for player j to select some action aj .

A strategy is pure if π
j

aj = 1 for some aj . A strategy profile

is a collection Π = {πj |j = 1 . . . n} of all players’ strategies.
A reduced profile for player j, Π−j = Π\{πj}, is a strategy
profile containing strategies of all players except j, and Π−j

a−j

is the probability for players k �= j to play a joint action
a
−j ∈ A

−j = ×A−j where a
−j is 〈ak|k = 1 . . . n, k �= j〉.

Given a player j and a reduced profile Π−j , a strategy π̂j is a
best reply (BR) to Π−j if the expected utility of the strategy
profile Π−j∪{π̂j} is maximal for player j. Since a best reply
may not to be unique, there is a set of best replies of player
j to a reduced profile Π−j which is denoted as BRj(Π−j).
More formally, the expected utility of a strategy profile Π
for a player j is given by:

U
j(Π) =

X
aj∈Aj

π
j

aj

X
a−j∈A−j

R(〈aj
,a

−j〉)Π−j

a−j

where Π is Π−j ∪ {πj} and R(〈aj ,a−j〉) is the value that
player j receives if the joint action a = 〈aj ,a−j〉 is played
by all players. In this case, a best reply of player j to the

reduced profile Π−j is a strategy π̂j such that:

U
j(Π−j ∪ {π̂j}) ≥ U

j(Π−j ∪ {πj}) ∀π
j �= π̂

j

A repeated game (or iterated game) is a game which consists
of a certain number of repetitions of some stage game.

2.1 Adaptive Play Q-learning
Formally, each player j playing Adaptive Play saves in

memory a history H
j
t = {a−j

t−p, . . . , a
−j
t } of the last p joint

actions played by the other players. To select a strategy
to play at time t + 1, each player randomly and irrevoca-
bly samples from H

j
t a set of examples of length l, Ĥ

j
t =

{a−j

k1
, . . . , a

−j

kl
}, and calculates the empiric distribution Π̂−j

as an approximation of the real reduced profile of strategies
played by the other players, using the following:

Π̂−j

a−j =
C(a−j , Ĥ

j
t)

l
(1)

where C(a−j , Ĥ
j
t)) is the number of times that the joint

action a
−j was played by the other players according to

the set Ĥ
j
t . Given the probability distribution over the

other players’ actions, Π̂−j , the player j plays its best reply,
BRj(Π̂−j), to this distribution with some exploration. If
there are several equivalent best replies, the player j ran-
domly chooses one of them. Young [11] proved the con-
vergence of Adaptive Play to an equilibrium when played
in self-play for a big class of games such as the coordina-
tion and common interest games. APQ is an extension of
Young’s Adaptive Play to the multi-state stochastic game
context3. To do that, the usual single-agent Q-learning up-
date rule was modified to consider multiple agents as follows:

Q
j(s,a) ← (1 − α)Qj(s,a) + α[Rj(s,a)

+ γ max
aj∈πj(s′)

U
j(Π̂(s′) ∪ {πj(s′)})]

where j is an agent, a is a joint action played by the agents
in state s ∈ S, Qj(s,a) is the current value for player j of
playing the joint action a in state s, Rj(s,a) is the immedi-
ate reward the player j receives if the joint action a is played
in the state s and πj(s′) are all possible pure strategies that
are available for player j in state s′. In the repeated game
context, |S| = 1.

2.2 Infinitesimal Gradient Ascent
Singh et al. [9] examined the dynamics of using the gra-

dient ascent in two-player, two-action repeated games. The
problem can be represented with two payoff matrices for the
row and column players, r and c, as follows:

R
r =

»
r11 r12

r21 r22

–
, R

c =

»
c11 c12

c21 c22

–

The players r and c select simultaneously an action from
the set Ar,c = {1, 2}, the row player r selects an action i,
the column player c selects an action j and the payoffs they
obtain are Rr

ij and Rc
ij respectively.

As long as this is a two-action game, a mixed strategy
can be represented as a single value. Let α ∈ [0, 1] be a
probability the player r selects the action 1 and 1 − α the
probability to play the action 2. Let, similarly, β ∈ [0, 1]
and 1 − β be the probabilities to play the actions 1 and 2

3In stochastic games each system’s state s is considered as
a matrix game.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 189

respectively by the player c. The expected utility of playing
a strategy profile Π = {α, β} is then calculated as follows:

U
r({α, β}) = r11αβ + r22(1 − α)(1 − β)

+ r12α(1 − β) + r21(1 − α)β

U
c({α, β}) = c11αβ + c22(1 − α)(1 − β)

+ c12α(1 − β) + c21(1 − α)β

To estimate the effect of changing its current strategy, a
player can calculate a partial derivative of its expected util-
ity with respect to its mixed strategy:

∂Ur({α, β})

∂α
= βu − (r22 − r12)

∂Uc({α, β})

∂β
= αu

′ − (c22 − c21)

where u = (r11 + r22) − (r21 + r12) and u′ = (c11 + c22) −
(c21 + c12).

At each time step IGA player adjusts its current strategy
in the direction of the gradient to as to maximize its utility:

αt+1 = αt + η
∂Ur({αt, βt})

∂α

βt+1 = βt + η
∂Uc({αt, βt})

∂β

where η is a step size, usually 0 < η � 1. Obviously, the
opponent’s mixed strategy is supposed to be known by the
players.

Singh and colleagues [9] proved the convergence of IGA
to a Nash equilibrium (or to the equivalent average reward),
when played in self-play, in the case of the infinitesimal step
size (limη→0), whence the name of the algorithm.

3. ADAPTIVE DYNAMICS LEARNING

Although the adaptive algorithms show an efficient be-
havior in self-play, Chang and Kaelbling [2] showed that
they can be exploited on the example of exploiting a Pol-
icy Hill Climbing (PHC) player [1]. Their PHC-Exploiter
agent was able to outperform a PHC player in adversarial
games by using the knowledge of the structure of PHC’s
adaptation mechanism. As was later shown by Tesauro [10],
it is possible to exploit the adaptive dynamics with a sim-
ple knowledge that the opponent is an adaptive player. His
Hyper-Q learning algorithm learned explicitly the Q-values
of the mixed strategy profiles. To do that, he discretized the
probability space with a certain discretization size and em-
pirically showed that Hyper-Q outperforms PHC and IGA
players in RockPaperScissors game. But there are three ma-
jor shortcomings that make this algorithm intractable in real
implementations. These are (1) discretization, which creates
about 100 thousands of virtual states for a game with merely
two players and three actions, such as RockPaperScissors,
(2) Hyper-Q agent uses a computationally hard Bayesian
belief update operation at each time step and (3) the game
of total observability becomes partially observable because
the beliefs about other player’s strategies are represented in
the form of probability distribution over all possible mixed
strategies.

On the contrary, we propose here a much simpler (in
terms of the amount of computation required per iteration)

adaptive dynamics learning algorithm called Adaptive Dy-
namics Learner (ADL) which associates a Q-value to each
experienced game history H of fixed length p and a sim-
ple action aj ∈ Aj , and then learns these Q-values us-
ing a form of Q-learning. This substantially reduces the
space of virtual states and actions comparatively to Hyper-
Q approach. More formally, ADL player j maintains a ta-
ble Hj of histories, considered by it as the system’s states.
To each history hj ∈ Hj , it associates a Q-value of the
form Qj(hj , aj) ∀aj ∈ Aj . Being at time step t in the
state h

j
t = 〈aj

t−pa
−j
t−pa

j
t−p+1a

−j
t−p+1 . . . a

j
t−1a

−j
t−1〉, the agent

j searches in Hj the action a
j
t , which maximizes the Q-values

for h
j
t . After that the agent j plays a

j
t with some exploration

decreasing over time. Having observed the opponents’ joint
action and its own reward, it updates its state at time t + 1
by concatenating its own action a

j
t and the opponents’ joint-

action a
−j
t played at time t to h

j
t and by eliminating two very

first entries, that is,

h
j
t+1 = 〈aj

t−p+1a
−j
t−p+1a

j
t−p+2a

−j
t−p+2 . . . a

j
ta

−j
t 〉 (2)

Finally, the player j updates the Q-value in h
j
t corresponding

to the action a
j
t by using the following Q-learning update

rule:

Q
j(hj

t , a
j
t) ← (1 − α)Qj(hj

t , a
j
t)

+ α[Rj(hj
t , 〈a

j
t , a

−j
t 〉) + γU

j(hj
t+1)] (3)

where U j(hj
t+1) = maxaj∈Aj Qj(hj

t+1, a
j) and Rj(·) is the

j’s reward after playing a
j
t in the previous state h

j
t . The

ADL algorithm is formally defined in Algorithm 1.

Require: Maximum history length p, Maximum time tmax

1: Current time t ← 0
2: Current state h

j
t ← EmptySequence

3: a
j
t ← RandomAction

4: while t ≤ tmax do

5: Play a
j
t with some decreasing exploration

6: Observe the reward R
j
t and the joint-action a

−j
t

7: Obtain new state h
j
t+1 using (2) with h

j
t , a

j
t and a

−j
t

8: Find the action a
j
t+1 maximizing Q-values in h

j
t+1 and

calculate the utility U j(hj
t+1)

9: Update Qj(hj
t , a

j
t) using equation (3) with R

j
t and

U j(hj
t+1)

10: Update current state h
j
t ← h

j
t+1

11: Save the action to play a
j
t ← a

j
t+1

12: Increment the time t ← t + 1
13: return

Algorithm 1: Adaptive Dynamics Learner for player j

4. IMPLEMENTATION AND RESULTS

To test our algorithm, we programmed two adaptive learn-
ing algorithms, IGA and APQ. We did not test ADL against
PHC (which is, in fact, an adaptive player as well) because
it has less knowledge about the world (it does not perceive
the opponent’s actions, for example), so such a comparison
would be incorrect. As shown in [10] and [2], the lack of
such a knowledge can be readily exploited by the more in-
formed opponents. In the following subsections, we provide
the implementation details for each of the programmed algo-
rithms, including ADL. Then we present the testing results

190 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

obtained in the games from GAMUT [5], a game theoretic
test suite.

4.1 Adaptive Play Q-learning Agent
The APQ agent we used has the following characteristics.

The length of the history, p, is 16, the size of sampling, l, is 8,
the discount factor, γ, is 0.9, the learning rate, α, is proper
for each state-action pair and decreases gradually using the
search-then-converge schedule depending on the number of
updates of the respective Q-value:

αt(h
j
, a

j) =
α0τ

τ + nt(hj , aj)

where t is the current time step, α0 is the initial value of the
learning rate and nt(h

j , aj) is the number of times that the
Q-value for the action aj was updated in state hj to time t.
We set α0 = 0.5 and τ = 10, 000.

4.2 Infinitesimal Gradient Ascent Agent
IGA supposes omniscient knowledge by the agents of the

mixed strategies of their opponents. However, neither ADL
nor APQ agents explicitly play a mixed strategy. On the
other hand, their strategies, being pure for them, are mixed
for IGA player as soon as they do not act in the same inter-
nal state space. Indeed, the current internal states of each
agent (counterparts’ actions history of APQ, concatenated
joint actions of ADL and opponents’ current mixed strate-
gies of IGA) are different, though the current external state
(the game played) is the same. To permit IGA agent to es-
timate the strategy of its opponents, we implemented two
most used techniques: (i) Adaptive Play’s technique and (ii)
Exponential Moving Average (EMA). We described Adap-
tive Play’s technique in Subsection 2.1 when we presented
APQ algorithm. It consists in using equation (1) to estimate
the probability distribution. EMA is a family of similar sta-
tistical techniques used to analyze time series data in finance
and technical analysis. Typically, EMA assumes that the re-
cent observations are more informative than the older ones,
and, thus, as applied to our problem, given a new observed
joint action a

−j
t , IGA agent j updates a probability distri-

bution Π
−j
t , represented as a vector, as follows:

Π
−j

t+1 ← (1 − μ)Π−j
t + μu(a−j

t)

where u(a−j
t) is a unit vector representation of the action

a
−j
t observed at time t and μ is a small constant, 0 < μ � 1.
We observed that in almost all runs, IGA agent that used

Adaptive Play’s estimation technique of probability estima-
tion was more efficient than one that used EMA, therefore
in our figures we will only present the results for Adaptive
Play’s technique based IGA agent.

4.3 Adaptive Dynamics Learner
The only interesting parameter of ADL is p, the history

length. What is the length that will permit ADL agent to
learn well the dynamics of an opponent? Is there a univer-
sal value or it should be adjusted for each opponent indi-
vidually? Our experiments showed that in many cases the
history of the length 2 (that is, the only most recent joint
action!) was sufficient to outperform the adaptive agents in
adversarial games, but the value of 6 (three most recent ac-
tions) was sufficient to perform well regardless of the game
played. Thus, in our experiments we set p = 6, but the
question of how to efficiently determine the best value of p

remains open.

4.4 Results
As mentioned above, we tested our algorithm in play ver-

sus the other two algorithms and in self-play on a set of
games from the GAMUT test suite. First, we examined the
behavior of ADL against APQ player (Figure 1). To do
that, we observed the evolution of average Bellman error,
which is the difference between two successive updates of
Q-values, and the changes in the average reward per play4

(the rewards were averaged over each 10, 000 plays). It is
easy to see that the process exhibited good progress toward
the convergence, as suggested by progressive reducing of av-
erage Bellman error (Figure 1(a)) and substantial positive
average reward per time step (Figure 1(b)).

Further, we examined ADL versus IGA player. ADL
showed better performance against this opponent, as is seen
from the average reward diagram where the converged val-
ues are higher than the analogical values obtained in play vs.
APQ agent. The average Bellman error decreased slower in
that case, which is explained by the fact that IGA is able to
play mixed strategies unlike APQ player, which converged
directly to a policy in pure strategies.

Finally, we verified whether ADL, by being efficient against
the adaptive opponents, remains rational in play against it-
self (so called self-play) and versus other types of opponents
that do not evolve in time and follow a stationary mixed
strategy. As for the stationary opponents, we tested the be-
havior of ADL against mixed strategy players on the exam-
ple of RockPaperScissors game. Let Random(x, y, z) denote
a player playing a mixed strategy where there are nonnega-
tive probabilities of x, y and z, x+y+z = 1, that the actions
1, 2 and 3 respectively will be played by that player. As ex-
pected, ADL player had a positive average reward close to
zero against the Random(0.33, 0.33, 0.34) opponent which
played a strategy close to the Nash equilibrium (1

3
, 1

3
, 1

3
),

but it performed better as the random players were more
distant from the equilibrium: it converged to the average
reward of 0.02 against Random(0.3, 0.3, 0.4), to the average
reward of 0.25 against Random(0.25, 0.25, 0.5) and to the
average reward of 0.4 versus Random(0.2, 0.2, 0.6). Thus,
an important conclusion is that ADL algorithm remains ra-
tional in that case.

The dynamics of the ADL’s self-play in adversarial games
is not interesting enough to include it in the paper; as ex-
pected, the agents, by being rational, converged to a Nash
equilibrium, which brings a zero average reward to both
players. The most notable observation is that in games
with a Pareto optimal strategy5 that is not an equilibrium
(such as PrisonersDilemma), ADL converges in self-play to
a Pareto optimal solution, while the self-played adaptive
algorithms may converge to an equilibrium, which is not
favorable for both players. Furthermore, if there are two
outcomes in a game, one of which is more favorable for the
first player and the another one brings higher utility for the
second player (such as in GrabTheDollar), then the aver-
age rewards obtained by both ADL players in self-play are
a mean of these two equilibrium rewards, i.e., the welfare of
both is maximized. The adaptive players are able to find
just one of these equilibria, thus, as soon as an equilibrium
is found, one of the agents will always have a lower utility.

4Here plays and time steps are equivalent.
5A strategy is said to be Pareto optimal if its utility is max-
imal for all players.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 191

-0.1

 0

0.1

0.2

0.3

0.4

 0 2.5e+006 5e+006 7.5e+006 1e+007

Time Steps

ADL vs. APQ: Avg. Bellman error per time step

MatchingPennies
RockPaperScissors

ShapleysGame

(a)

-0.6

-0.4

-0.2

 0

0.2

0.4

0.6

0.8

 1

 0 2.5e+006 5e+006 7.5e+006 1e+007

Time Steps

ADL vs. APQ: Avg. reward per time step

MatchingPennies
RockPaperScissors

ShapleysGame

(b)

Figure 1: ADL vs. APQ in the adversarial games.

-0.1

 0

0.1

0.2

0.3

0.4

 0 2.5e+006 5e+006 7.5e+006 1e+007

Time Steps

ADL vs. IGA: Avg. Bellman error per time step

MatchingPennies
RockPaperScissors

ShapleysGame

(a)

-0.6

-0.4

-0.2

 0

0.2

0.4

0.6

0.8

 1

 0 2.5e+006 5e+006 7.5e+006 1e+007

Time Steps

ADL vs. IGA: Avg. reward per time step

MatchingPennies
RockPaperScissors

ShapleysGame

(b)

Figure 2: ADL vs. IGA in the adversarial games.

Notice that in ADL’s self-play in RandomGame the average
reward of the row player is lower than the Nash equilibrium
due to the structure of the game that is not favorable for
the column player and the emerging tendency of ADL to
maximize the welfare of both to the prejudice of its per-
sonal utility. One more interesting observation is that in
play with APQ in PrisonersDilemma, as well as in self-play,
the ADL algorithm also converged to the Pareto optimal
solution instead of the Nash equilibrium solution.

In our comparative analysis, we presented the dynamics
of the learning process for three adversarial games only be-
cause, in our opinion, the adversarial case is the most in-
teresting one. In fact, the curves of the learning dynamics
in the other games were trivial: in most cases, almost from
the beginning, they became straight lines with some minor
fluctuations. The minimal of the converged values of av-
erage reward of the row player over all runs for all games
are presented in Figure 3. The bar graphs “ADL vs. IGA”
and “ADL vs. APQ” show the reward of ADL, as the row
player, in play versus these opponents. The “Max Nash”
and “Min Nash” bar graphs reflect respectively the maxi-
mal and minimal average rewards per play, which the row

player can gain if a Nash equilibrium is played.

5. DISCUSSION

We studied how our approach to multiagent learning is
situated among the other recent algorithms. There have
been many new algorithms proposed in the last five years
and there is still no common idea to which direction multi-
agent learning should progress. Three years later after the
publication of critical survey of the state-of-the-art multia-
gent learning trend by Shoham and colleagues [8], where the
authors asked about the question the researchers should aim
at when speaking about multiagent learning, there is still no
such question. We would emphasize two common directions
of the modern research: (1) heuristic agent composition [7,
6] and (2) direct dynamics learning and exploiting [2, 10].
The main and common traits of the modern research are (i)
a classification of algorithms relatively to a class of coun-
terparts, against which they would perform well and (ii) a
definition of a lower bound of the utility, which is guaranteed
to be reached by that algorithm against an unknown class
of opponents. Our algorithm relates to the second direction
and possesses the first trait. In our opinion, however, there

192 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

B
a
t
t
l
e
O
f
T
h
e
S
e
x
e
s

C
h
i
c
k
e
n

C
o
l
l
a
b
o
r
a
t
i
o
n
G
a
m
e

C
o
o
r
d
i
n
a
t
i
o
n
G
a
m
e

C
o
v
a
r
i
a
n
t
G
a
m
e

D
i
s
p
e
r
s
i
o
n
G
a
m
e

G
r
a
b
T
h
e
D
o
l
l
a
r

H
a
w
k
A
n
d
D
o
v
e

M
a
j
o
r
i
t
y
V
o
t
i
n
g

M
a
t
c
h
i
n
g
P
e
n
n
i
e
s

M
i
n
i
m
u
m
E
f
f
o
r
t

P
r
i
s
o
n
e
r
s
D
i
l
e
m
m
a

R
a
n
d
o
m
C
o
m
p
o
u
n
d

R
a
n
d
o
m
G
a
m
e

R
o
c
k
P
a
p
e
r
S
c
i
s
s
o
r
s

S
h
a
p
l
e
y
s
G
a
m
e

T
r
a
v
e
l
e
r
s
D
i
l
e
m
m
a

T
w
o
B
y
T
w
o
G
a
m
e

ADL in Self-play
Max Nash Value

ADL vs. APQ
ADL vs. IGA

IGA in self-play, APQ in self-play, Min Nash Value

Figure 3: ADL, APQ and IGA players over the games from GAMUT.

should be a more general approach, which is an issue for
further investigation.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to multiagent
learning in adaptive dynamic systems. An adaptive dynamic
system may be viewed as a two-player game where a goal of a
player is to maximize its own long-term utility given that the
other agents (considered as one whole agent) may follow an
adaptive learning strategy. Our algorithm, called ADL (for
Adaptive Dynamics Learner), by interacting with the op-
ponent player, learns the Q-values of internal virtual states
that are formed as an ordered set of joint-actions of the past
plays of limited-length history. We empirically showed that
our algorithm outperforms IGA [9] and APQ [4] algorithms
even if a very short history length was used to form the
states. While being more general than heuristically com-
posed algorithms, such as Manipulator [6] or MetaStrategy
[7], our approach is much simpler (in terms of the amount
of computation required in each iteration) than the analog-
ical Hyper-Q algorithm [10] and, thus, is expected to be
better scalable. It is also able to maximize the welfare of
both players in self-play. Several untested adaptive oppo-
nents and certain non-stationary opponents still remain to
be compared and we will give attention to that, however
considerably more research is needed to develop a theoreti-
cal analysis of our approach.

7. REFERENCES
[1] M. Bowling and M. Veloso. Multiagent learning using

a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[2] Y. Chang and L. Kaelbling. Playing is believing: The
role of beliefs in multi-agent learning. In Proceedings
of the Advances in Neural Information Processing
Systems (NIPS’01), Canada, 2001.

[3] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent

systems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI’98),
Menlo Park, CA, 1998. AAAI Press.

[4] O. Gies and B. Chaib-draa. Apprentissage de la
coordination multiagent : une méthode basée sur le
Q-learning par jeu adaptatif. Revue d’Intelligence
Artificielle, 20(2-3):385–412, 2006.

[5] E. Nudelman, J. Wortman, K. Leyton-Brown, and
Y. Shoham. Run the GAMUT: A comprehensive
approach to evaluating game-theoretic algorithms. In
Proceedings of Autonomous Agents and Multiagent
Systems (AAMAS’04), 2004.

[6] R. Powers and Y. Shoham. Learning against
opponents with bounded memory. In Proceedings of
the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI’05), 2005.

[7] R. Powers and Y. Shoham. New criteria and a new
algorithm for learning in multi-agent systems. In L. K.
Saul, Y. Weiss, and L. Bottou, editors, Advances in
Neural Information Processing Systems, volume 17.
MIT Press, 2005.

[8] Y. Shoham, R. Powers, and T. Grenager. Multi-agent
reinforcement learning: a critical survey. Technical
report, Stanford University, 2003.

[9] S. Singh, M. Kearns, and Y. Mansour. Nash
convergence of gradient dynamics in general-sum
games. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI’94), pages
541–548, San Francisco, CA, 1994. Morgan Kaufman.

[10] G. Tesauro. Extending Q-learning to general adaptive
multi-agent systems. In S. Thrun, L. Saul, and
B. Scholkopf, editors, Advances in Neural Information
Processing Systems, volume 16, Cambridge, MA, 2004.
MIT Press.

[11] H. Young. The evolution of conventions.
Econometrica, 61(1):57–84, 1993.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 193

