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ABSTRACT
Algorithmic pricing is the computational problem that sellers
(e.g., in supermarkets) face when trying to set prices for their
items to maximize their profit in the presence of a known de-
mand. Guruswami et al. [9] propose this problem and give
logarithmic approximations (in the number of consumers) for
the unit-demand and single-parameter cases where there is a
specific set of consumers and their valuations for bundles are
known precisely. Subsequently several versions of the problem
have been shown to have poly-logarithmic inapproximability.
This problem has direct ties to the important open question
of better understanding the Bayesian optimal mechanism in
multi-parameter agent settings; however, for this purpose ap-
proximation factors logarithmic in the number of agents are
inadequate. It is therefore of vital interest to consider special
cases where constant approximations are possible.

We consider the unit-demand variant of this pricing prob-
lem. Here a consumer has a valuation for each different item
and their value for a set of items is simply the maximum value
they have for any item in the set. Instead of considering a set
of consumers with precisely known preferences, like the prior
algorithmic pricing literature, we assume that the preferences
of the consumers are drawn from a distribution. This is the
standard assumption in economics; furthermore, the setting
of a specific set of customers with specific preferences, which
is employed in all of the prior work in algorithmic pricing, is
a special case of this general Bayesian pricing problem, where
there is a discrete Bayesian distribution for preferences spec-
ified by picking one consumer uniformly from the given set
of consumers. Notice that the distribution over the valua-
tions for the individual items that this generates is obviously
correlated. Our work complements these existing works by
considering the case where the consumer’s valuations for the
different items are independent random variables. Our main
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result is a constant approximation algorithm for this prob-
lem that makes use of an interesting connection between this
problem and the concept of virtual valuations from the single-
parameter Bayesian optimal mechanism design literature.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Algorithms, Economics, Theory

Keywords
Pricing, Approximation algorithms, Virtual valuations

1. INTRODUCTION
It is vital to the study of resource allocation in distributed

settings such as the Internet that inherent economic issues
be addressed. Recently the area of algorithmic pricing [1, 4,
5, 9, 10] has emerged as a setting for studying optimization
in resource allocation in the presence of a natural fairness
constraint: there is a uniform pricing rule under which the
consumers are allowed to choose the allocation they most
desire. This area has important connections to algorithmic
mechanism design [2, 3, 9] in addition to obvious applica-
tions in traditional market settings such as pricing items in a
supermarket.

A pricing can be thought of as a menu listing the prices
for all possible allocations to a consumer. Given a pricing,
a consumer’s preference indicates a most desired allocation.
The algorithmic pricing problem, then, is to take an instance
given by a class of allowable pricings and a set of consumers,
and compute the pricing maximizing (or approximately max-
imizing) a specific objective. An item-pricing is one where
each individual item is assigned a price, and the price of any
bundle is the sum of the prices of the items in the bundle.
In this arena, the objective of maximizing the profit of the
seller presents significant challenges, even when there are no
supply constraints. Indeed when the items are pure comple-
ments, i.e., consumers are single-minded and combinatorial;
and when the items are pure substitutes, i.e., consumers have
unit demands, recent works show hardness results for item-
pricing that essentially match the poor performance of trivial
alorithms [7, 5]. This motivates the search for relevant spe-
cial cases where algorithmic theory gives an improved under-
standing of pricing.

Algorithmic pricing and algorithmic mechanism design have
important connections. Indeed, for unlimited supply profit
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maximization, Balcan et al. [3] give a general reduction from
truthful mechanism design to algorithmic pricing. These re-
sults are important, in particular, as they address the challeng-
ing problem of optimal mechanism design in multi-parameter
settings (e.g., general combinatorial auctions and multi-item
unit-demand auctions). On the other hand, in single parame-
ter Bayesian settings (e.g., a single-item auction) the optimal
auction is well-understood—the well known result of Myer-
son [12] gives a closed form characterization for the optimal
auction. In this paper we bring these results full-circle by
showing that techniques from Myerson’s optimal auction are
useful for the unit-demand pricing problem. In fact, by de-
signing a pricing to mimic the reserve prices of an optimal
auction, we are able to approximate the profit of the optimal
auction (and thus, also, the profit of the optimal pricing).
Of course, a key difference between single-item auctions and
unit-demand pricing is that in an auction the different bids
compete against each other, while in a pricing problem there
is no competition. Accordingly, our pricing algorithm “simu-
lates competition” by setting higher reserve values.

Formally, the algorithmic mechanism design and algorith-
mic pricing problems are defined as follows:

Definition 1. (Bayesian Single-item Auction
Problem (BSAP))
Given,

• a single item for sale,
• n consumers, and
• distribution F from which consumer valuations are drawn.

Goal: design seller optimal auction for F.

Definition 2. (Bayesian Unit-demand Pricing
Problem (BUPP))
Given,

• a single unit-demand consumer,
• n items for sale, and
• distribution F from which the consumer’s valuations for
each item are drawn.

Goal: compute seller optimal item-pricing for F.

In the special case where F is the product distribution
F1 × · · · × Fn, the Bayesian single-item auction problem was
solved by Myerson in his seminal paper on mechanism design
[12]. His solution is based on determining the allocation of
the item for sale using the consumers’ virtual valuations (see
Section 2), instead of their actual valuations. We consider
product distributions for the Bayesian unit-demand pricing
problem and show that:

• The optimal revenue of a single-item auction is an up-
per bound on the revenue of the optimal unit-demand
pricing.

• The optimal unit-demand pricing that uses a single vir-
tual price1 for all items obtains a constant fraction of
the revenue of the optimal auction.

• If all the distributions satisfy the monotone hazard rate
condition (defined in Section 2), a nearly-optimal vir-
tual price can be computed in polynomial time.

We first demonstrate the connection between BSAP and
BUPP in the context of identically distributed valuations,

1The virtual price is a price in virtual valuation space instead
of valuation space.

i.e. when Fi = Fj for all i �= j. In this i.i.d. case, our al-
gorithm outputs the same price (not just the same virtual
price) for all the items. Note that it is easy to optimize rev-
enue over the space of all pricings that price each item at
the same value—just consider the distribution of the maxi-
mum valuation (maxi vi) and solve this problem as a single-
consumer single-item revenue maximization problem. One
might expect that in the i.i.d. case this optimal single price is
in fact the overall optimal pricing. However, a simple exam-
ple shows that this is not true—consider two items, each with
a value independently equal to 1 with probability 2/3 and 2
with probability 1/3; then a simple calculation shows that the
pricings (1, 2) and (2, 1) are optimal with respect to revenue2

and the pricings (1, 1) and (2, 2) are strictly sub-optimal. In
Section 3.1 we prove that in the i.i.d. case, the revenue of the
optimal single-price solution is a 3.47-approximation to the
optimal revenue of the single-item auction.

We extend this result to the case of general product distri-
butions in Section 3.2, proving that the revenue of the opti-
mal single virtual-price solution is a 4-approximation to the
optimal revenue of the corresponding BSAP.

In Section 4 we consider distributions that do not satisfy
the monotone hazard rate condition (see Definition 3 in Sec-
tion 2), also called the non-regular case in the economics
literature. Myerson’s solution to BSAP in this case uses a
smoothed or “ironed” version of virtual valuations. We show
that the same fix can be applied to the pricing problem and
again the revenue of the optimal single ironed-virtual-price
solution is a 4-approximation to the optimal revenue of the
single-item auction.

We consider the question of computing the optimal vir-
tual price in Section 5. For general discrete distributions
that satisfy the MHR condition, we obtain a polynomial time
constant-factor approximation algorithm. For general con-
tinuous distributions, we consider a computational model in
which we have oracle access to the cumulative distribution
function and probability density functions the distributions
(see Section 2 for more detail), and again obtain a polynomial
time approximation algorithm. We leave open the problem
of designing a polynomial time approximation algorithm for
the non-regular case. The challenge in this case is to come
up with a polynomial time algorithm for computing ironed-
virtual-valuations.

2. NOTATION AND PRELIMINARIES

The Bayesian Unit-demand Pricing Problem (BUPP)
The input to BUPP is a distribution over n-tuples of val-
uations. We use v = (v1, · · · , vn) to denote the valuation
vector. The value vi is drawn independently from the dis-
tribution Fi over the range [�i, hi]. Following standard no-
tation, we use v−i to denote all the valuations except the
ith one. F = F1 × · · · × Fn denotes the product distribution
from which v is drawn, and fi(vi) denotes the probability
density of valuation vi. Our goal is to determine a price vec-
tor p = (p1, · · · , pn) such that the expected revenue Rp, as

2We assume that whenever the consumer faces a tie, i.e. two
or more items bring equal utility to her, the seller has the
ability to break the tie in favor of any of the items (in partic-
ular, the most expensive item). The seller could enforce this
by giving a negligibly small discount to the consumer for the
most expensive item.
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defined below, is maximized.

Rp =
X

i
pi Prv∼F

»
(vi − pi) ≥ max

j≤n
(vj − pj)

–
The Monotone Hazard Rate condition
In much of the paper we will assume that the distributions
Fi satisfy the monotone hazard rate (MHR) condition defined
below. This is a standard assumption used in economics. In
the single-consumer, single-item case, this condition essen-
tially implies that the revenue as a function of price has a
unique maximum.

Definition 3 (Monotone Hazard Rate). A distribu-
tion F with density f is said to satisfy the monotone haz-

ard rate (MHR) condition if 1−F (v)
f(v)

is monotonically non-

increasing for all v.

In Section 4 we extend our results to distributions that do
not satisfy the MHR condition. This is also called the non-
regular case in the literature.

The computational model
We consider two different computational models for BUPP:

• (Discrete explicit) In this model, each of the distri-
butions Fi are discrete distributions with small support.
These distributions are specified explicitly, and our al-
gorithm is required to run in time polynomial in the
number of items n, and the size of the largest support.

• (Continuous with oracles) In this model, the distri-
butions Fi are continuous with known supports [�i, hi].
The algorithm is provided the following oracles: an or-
acle to determine Fi(v) given a value v and an index i,
an oracle to determine the density fi(v) given a value v
and an index i, and an oracle to sample from the prod-
uct distribution F. The algorithm is required to run in
time polynomial in the number of items n and the range
(maxi hi)/(mini �i).

Myerson’s optimal mechanism
The Bayesian Single-item Auction Problem (BSAP) is de-
scribed as follows: there is a single item for sale and n bidders
with values given by the vector v; each bidder’s value vi is
drawn independently from a distribution Fi; the goal of the
mechanism designer is to design a truthful auction so as to
maximize the revenue obtained by the seller from the sale of
the item.

In one of the seminal works of Bayesian mechanism design,
Myerson developed a mechanism for this problem that ob-
tains the maximum revenue for the seller over the class of all
truthful mechanisms [12]. Myerson’s mechanism (denoted M
hereafter) first computes a function of the valuation of each
bidder, known as the virtual valuation3:

φi(vi) = vi − 1 − Fi(vi)

fi(vi)
(1)

3The virtual valuations computed by Myerson’s mechanism
are actually functions of the bids reported by the participants,
and not their true values. But given that the mechanism
is truthful and these bids are equal to the true values, for
simplicity we express the virtual valuations as functions of
the true values.

The virtual valuation of a bidder essentially denotes the
marginal revenue obtained by allocating the item to this bid-
der. Myerson’s mechanism offers the item to the bidder with
the highest virtual valuation, at a price equal to the virtual-
valuation-inverse of the second highest virtual valuation (i.e.
the value at which the bidder’s virtual valuation equals the
second highest one, or the minimum bid the bidder needs to
make to win the item).

In our subsequent discussions it will sometimes be useful
to consider the following alternate description of Myerson’s
mechanism. The mechanism offers each bidder a take-it-or-
leave-it price. The price offered to bidder i is equal to φ−1

i (νi),
where νi = maxj �=i φj(vj). Only one bidder (the one with the
highest virtual valuation) accepts.

We use bRA to denote the expected revenue of a truthful

mechanism A for BSAP. bRM denotes the expected revenue
of Myerson’s mechanism M. In the following theorem and
lemma, we assume that the distributions Fi satisfy the mono-
tone hazard rate condition.

Theorem 1 (Myerson [12]). bRM ≥ bRA for all truth-
ful mechanisms A.

We first note that bRM is at least as large as the expected
revenue of any price vector Rp for the BUPP.

Lemma 2. For any price vector p, bRM ≥ Rp.

Proof. For a given pricing p, consider the following mech-
anism Ap: given a valuation vector v, we allocate the item to
the bidder i with vi ≥ pi that maximizes vi − pi. Prices are
determined by the standard “threshold payment” rule: the
winning bidder, i, pays the minimum bid value which would
still make i the winner. Ap is truthful because it gives a
monotone allocation procedure: if a winning bidder unilater-

ally increases her bid, she still wins. Therefore, bRAp ≤ bRM.
Now consider any valuation vector v and suppose that Ap

allocates the item to bidder i. Then the minimum bid at
which this bidder is allocated the item is pi + maxj �=i(vj −
pj , 0), which is at least pi. Therefore, the revenue of Ap when
the valuation vector is v is at least pi. However, the revenue
of the pricing p when the valuation vector is v is exactly

pi. Therefore, bRAp ≥ Rp. Combining the two inequalities
proves the lemma.

Two observations lead us to connect Myerson’s setting to
BUPP. First, as the number of bidders gets large (especially
in the case of identically distributed valuations), the price
offered to a bidder in Myerson’s mechanism becomes tightly
concentrated around a single value (the expectation of the
virtual-value-inverse of the maximum over virtual valuations
of other bidders). This value is a reasonable candidate for the
price of item i in the pricing problem, and is indeed roughly
what we use (with some modifications to allow for an easier
analysis).

This approach does not immediately work however. The
problem is that in Myerson’s mechanism, by allowing the
price to be an appropriate function of other bidders’ values,
we ensure that only one bidder accepts the offered price. In
the BUPP, with some probability, more than one of the values
is above the corresponding offered price, and the consumer
gets to pick which item to buy (i.e. there is a lack of compe-
tition). In this case, the price earned by our solution may be
much worse than the price earned by Myerson’s mechanism
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for the same valuation vector. Our second observation is that
this situation happens with a low probability. Furthermore,
we are able to use the monotone hazard rate condition to
charge the revenue earned by Myerson’s mechanism against
the revenue earned by our pricing in the case of such an event.

3. APPROXIMATING PRICING IN THE
REGULAR CASE

In this section we demonstrate that the unit-demand opti-
mal pricing that uses a single virtual price for all items obtains
a constant fraction of the revenue of the optimal single-item
auction. We begin with the i.i.d. case and then extend our
results to general product distributions. Throughout this sec-
tion we assume that all distributions satisfy the MHR condi-
tion (Definition 3).

3.1 The i.i.d. case
Let F denote the distribution from which each valuation vi

is drawn. Let f denote the density function for this distribu-
tion and φ denote the virtual valuation function.

We consider the following pricing in this case: for all i, set
pi = p = max{F−1(1−1/n), φ−1(0)}. Let q = 1−F (p); note
that q ≤ 1/n.

Given this pricing, the probability that a sale is made is
exactly Pr[∃i : vi ≥ p] = 1 − (1 − q)n. Using Taylor’s expan-
sion and q ≤ 1/n we can simplify this expression as follows:
(1−q)n < 1−qn+ 1

2
q2n2 ≤ 1− 1

2
qn. Noting that the expected

revenue of p is Rp = p(1− (1 − q)n), we get the following.

Lemma 3. Rp ≥ 1
2
pqn.

We now analyze the expected revenue of Myerson’s mech-
anism when each value is distributed according to F . We
consider three distinct events. Let Ω0 be the event that the
value vector v drawn from F has vi < p for each i. Likewise,
Ω1 is the event that vi ≥ p for exactly one index i, and Ω>1 is
the event that vi ≥ p for at least two indices i. Let ρ0, ρ1 and
ρ>1 denote the contribution of these three events respectively
to the expected revenue obtained by Myerson’s mechanism.bRM = ρ0 + ρ1 + ρ>1.

We now bound these three terms individually. ρ1 is the easiest
to bound:

Lemma 4. ρ1 < Rp.

Proof. Suppose that the event Ω1 happens and let v de-
note the valuation vector drawn from F. Note that the second
highest virtual value among {φ(vi)} is strictly less than φ(p).
Therefore, the revenue generated from this vector is strictly
less than p. On the other hand, this vector contributes p to
the expected revenue of the pricing p. Integrating over all
such valuation vectors belonging to Ω1 we get the result.

Next we analyze ρ0. We use the fact that the event Ω0

happens with low probability.

Lemma 5. ρ0 < 2
e
Rp.

Proof. We consider two cases. First, when φ(p) = 0, then
in the event Ω0, Myerson’s mechanism does not allocate the
item to any bidder (because all of them have negative virtual
valuations). Therefore, ρ0 = 0 and the lemma holds.

Next consider the case when φ(p) > 0 (and q = 1/n). Then

the contribution to the revenue bRM by any valuation vector
in the event Ω0 is strictly less than p. On the other hand,
Pr[Ω0] = (1 − q)n ≤ 1/e. So we get ρ0 < p/e. This along
with Lemma 3 and q = 1/n implies the lemma.

Finally, we analyze the contribution of the event Ω>1. Note
that even though Ω>1 may be a very low probability event,
its contribution to the expected revenue may be quite high,
because M may charge prices much higher than p in this
event. We handle this issue by using the fact that the dis-
tribution F satisfies the MHR condition (Definition 3). The
MHR condition, in particular, implies the following (we give
a brief proof for completeness).

Fact 6. Let v be a random variable distributed according
to distribution F and density f . Let φ(v) be defined as in
Equation 1. If F satisfies the MHR condition (Definition 3)
and v1 ≥ v2 ≥ φ−1(0), then

v1(1 − F (v1)) ≤ v2(1 − F (v2)).

Proof. Let G(v) = v(1 − F (v)). Then G′(v) = (1 −
F (v)) − vf(v) = −f(v)φ(v). The MHR condition implies
that φ(·) is an increasing function. Therefore, for v > φ−1(0),
φ(v) > 0, implying that G′(v) < 0.

Lemma 7. ρ>1 ≤ 2Rp.

Proof. Let Ri(v−i) denote the contribution of bidder i to
the revenue ρ>1 conditioned on the other values being given
by v−i. In other words, fixing all values except vi according
to v−i, we look at those values vi at which bidder i gets served
and the event Ω>1 happens. The contribution to the revenue
of all such values is termed Ri(v−i).

Fixing the values of all players except i, we know that My-
erson essentially offers a take-it-or-leave-it price p′ to bidder
i. If p′ < p, then regardless of the value vi, the event Ω>1

does not hold; therefore, Ri(v−i) = 0. On the other hand,
if p′ ≥ p, then the contribution is Ri(v−i) = p′(1 − F (p′)).
Fact 6 along with p′ ≥ p ≥ φ−1(0) implies that Ri(v−i) =
p′(1 − F (p′)) ≤ p(1 − F (p)) = pq. Removing the condition-
ing on v−i, we get that the contribution of bidder i to ρ>1

is Ri < pq. The lemma follows by summing over all bidders
and applying Lemma 3.

Lemmas 4, 5 and 7 together give the following.

Theorem 8. When all valuations are distributed identi-
cally, the pricing p given above satisfies bRM ≤ (3+2/e)Rp <
3.74Rp.

3.2 The general case
Based on the simple pricing algorithm developed in the

preceding section, it is very tempting to try setting a single
price in the general case as well, for example by computing the
distribution Fmax of the random variable maxi vi and setting
the price p which maximizes p · (1 − Fmax(p)). However, the
following example shows that algorithms which use a single
price cannot achieve a constant-factor approximation to the
profit of the optimal pricing.

Example 1. Suppose the distribution of vi is given by:

Pr
ˆ
vi = n

i

˜
= 1

n

Pr [vi = 1] = 1 − 1
n
.
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The pricing p which sets pi = n/i achieves a profit of Ω(log n)
because

Rp =
nX

i=1

“n

i

”
Pr

h
vi =

n

i
and ∀ j < i vj = 1

i
=

nX
i=1

“n

i

”
·

„
1

n

«
·

„
1 − 1

n

«i−1

>

nX
i=1

“n

i

”
·

„
1

n

«
·

„
1

e

«
= Hn/e,

where Hn denotes the n-th harmonic number,
Pn

i=1
1
i
.

On the other hand, if p is any pricing which sets pi = p for
some fixed value of p > 1, then

Rp ≤
nX

i=1

p · Pr[vi ≥ p]

=
X

1≤i≤n/p

p ·
„

1

n

«
+

X
i>n/p

p · 0

≤ 1.

This example establishes that no pricing which uses a single
price can achieve a o(log n)-approximation to the profit of the
optimal pricing.

Rather than using a single price, our solution to the general
case is defined as follows. Let ν be the smallest non-negative
number such that

Pr[∃i : φi(vi) ≥ ν] ≤ 1

2
.

In other words, ν is defined such that the event that at least
one virtual value is greater than ν has probability exactly 1/2.
If this virtual value ν turns out to be negative, we redefine
it to be zero. We set the price of each item pi to be φ−1

i (ν)
and let qi = 1 − Fi(pi) for all i. Let p denote this collection
of prices.

It is possible to analyze the expected revenue of this pric-
ing using an extension of the technique which we applied to
the i.i.d. case in Section 3.1. This leads to a proof of the

bound bRM ≤ 7.62Rp. We omit the details of this approach.
Instead, in this section, we use a different technique to prove

the stronger bound bRM ≤ 4Rp.
Let Mν denote the following truthful mechanism. If all vir-

tual valuations are less than ν, then the item is not sold, and
no payments are charged to the bidders. Otherwise, the item
is sold to the bidder i with the highest virtual valuation, at
a price equal to that bidder’s inverse-virtual-valuation of the
second-highest virtual valuation, i.e. the minimum bid value
that makes i the winner. Myerson’s original paper on optimal
auction design [12] proves that if an unsold item is worth ν to
the seller, then Mν is the truthful auction mechanism which
maximizes the seller’s expected utility. In other words, if we
use the notation y(A) to denote the probability that the item
is unsold when using a given auction mechanism A, then for
every truthful mechanism A we have:

Fact 9. bRMν + ν · y(Mν) ≥ bRA + ν · y(A).

Let

y = y(Mν), x = 1 − y.

Our definition of ν ensures that either x = y = 1
2

or ν = 0,

and in the latter case y ≥ 1
2
.

Lemma 10. bRMν + νy ≥ bRM.

Proof. The first half of the lemma follows by invoking
Fact 9 with A = M and noting that y(A) ≥ 0 for every
mechanism A.

Lemma 11. Rp ≥ νx.

Proof. For every i, we have pi = φ−1
i (ν) ≥ ν. Thus

Rp ≥ ν · Pr[the item is sold] = ν · x,

as when we post price p the item is sold with the same prob-
ability as in Mν , i.e., x.

In the upcoming proofs, it will be useful to define

g =
X

i
piqi.

Lemma 12. Rp ≥ gy.

Proof. The revenue Rp is bounded below by the summa-
tion, over all i, of pi times the probability that i is the unique
index satisfying vi ≥ pi, i.e.

Rp ≥
X

i
pi ·

“
qi

Y
j �=i

(1 − qj)
”

. (2)

Recall that

y = Pr[∀i : vi ≤ pi] =
Y

i
Fi(pi) =

Y
i
(1 − qi).

Combining this with (2) we find that

Rp ≥
X

i
piqiy = gy.

Proceeding as in Section 3.1, we now partition the sample
space into three events Ω0, Ω1, and Ω>1 according to whether
the number of indices i satisfying vi ≥ pi is 0, 1, or greater
than 1. The expected revenue of Mν , which is the integral
of a random variable over the entire sample space, can be
expressed as the sum of the integrals over the three pieces
Ω0, Ω1, and Ω>1. We denote these three terms by ρ0, ρ1, and
ρ>1, respectively. bRMν = ρ0 + ρ1 + ρ>1. (3)

From the definition of Mν it is obvious that

ρ0 = 0. (4)

The following two lemmas bound the remaining two terms
ρ1, ρ>1.

Lemma 13. ρ1 ≤ Rp.

Proof. Let the random variable R denote the revenue ob-
tained from using the pricing p, and let Q denote the revenue
obtained from using the auction Mν . If i is the unique index
satisfying vi ≥ pi, then Q = R = pi. Hence

ρ1 =

Z
Ω1

Q f(v) dv =

Z
Ω1

R f(v) dv ≤
Z
v

R f(v) dv = Rp.

Lemma 14. ρ>1 ≤ g.
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Proof. As in Section 3.1, let Ri(v−i) denote the contribu-
tion of bidder i to the revenue ρ>1 conditioned on the other
values being given by v−i. Fixing the values of all players
except i, M offers a take-it-or-leave-it price p′ = φ−1

i (ν′) to
bidder i, where ν′ = maxj �=i φj(vj). If p′ < pi (i.e. ν′ < ν),
then regardless of the value vi, the event Ω>1 does not hold;
so, Ri(v−i) = 0. On the other hand, if p′ ≥ p, then the con-
tribution is Ri(v−i) = p′(1 − Fi(p

′)) ≤ pi(1 − Fi(pi)) = piqi,
using Fact 6. Removing the conditioning on v−i, we get that
the contribution of bidder i to ρ>1 is Ri < piqi. Summing
over all the bidders and recalling that g =

P
i piqi, we get the

result.

Theorem 15. For the pricing p defined above,bRM ≤ 4Rp.

Proof. Let χ = 1 if ν > 0 and χ = 0 otherwise. Notice
that ν = νχ. We havebRM ≤ bRMν + νyχ [by Lemma 10]

= ρ1 + ρ>1 + νyχ [by (3) and (4)]
≤ Rp + g + νyχ [by Lemmas 13,14]
≤ Rp + (Rp/y) + (Rp/x)yχ [by Lemmas 11,12]
= Rp [1 + 1/y + (y/x)χ] .

If ν = 0 then χ = 0 and y ≥ 1
2
, hence bRM ≤ 3Rp. If ν > 0

then χ = 1 and y = x = 1
2
, hence bRM ≤ 4Rp.

4. THE NON-REGULAR CASE
In our analysis in Section 3.2, we used the MHR condition

to imply that the functions φi(vi) are non-decreasing. When
the MHR condition does not hold, Myerson applies a fix to
the problem by smoothing out or “ironing” the virtual val-
uation function to make it a non-decreasing function of vi.
We now show that by picking a pricing based on ironed vir-
tual valuations instead of the actual virtual valuations, we
achieve the same guarantee as in the regular case—the rev-
enue of our pricing is within a factor of 4 of the revenue of
Myerson’s mechanism.

We briefly describe this ironing procedure below. The
reader is refered to Myerson’s paper [12] and a survey of Bu-
low and Roberts [6] for more details.

The ironing procedure
The ironed virtual valuation function is defined as follows.
Consider a single bidder with value v distributed according
to function F . We assume that the density function f(v) is
non-zero for all v ∈ [�, h]. For α ∈ [0, 1], let R(α) denote
the revenue generated from offering the item to this bidder
at price F−1(α):4

R(α) = F−1(α)(1 − α) =

Z h

F−1(α)

φ(t)f(t)dt

Let R̄(α) be the least-valued concave function on [0, 1] with
R̄(α) ≥ R(α) for all α in that range (see Figure 1). Since
R̄ is concave, it is differentiable everywhere except at finitely
many points. Let r̄(α) denote the derivative of R̄ wherever
defined. The ironed virtual valuation function is defined as
below where ever r̄ is defined, and is extended to the full

4Note that F−1(α) is well-defined because F is a strictly in-
creasing function.

range of v by right continuity.

φ̄(v) = −r̄(F (v))

Note that since R̄(α) is concave and F (v) is non-decreasing,
φ̄(v) is a non-decreasing function. Furthermore, observing
that R̄(1) = R(1) = 0, we get the following:Z t=h

t=v

φ̄(t)f(t)dt = −
Z t=1

t=F (v)

r̄(t)dt = R̄(F (v)) (5)

For any ν, the inverse ironed virtual valuation φ̄−1(ν) is
defined to be the infimum over values v with φ̄(v) = ν.

Approximate pricing
Myerson’s optimal mechanism in the non-regular case pro-
ceeds as follows. It first computes the ironed virtual valua-
tions of the values of all bidders. It then allocates the item
to the bidder with the highest ironed virtual valuation at a
price equal to the inverse of the second highest one.

Our pricing is similarly defined. Let ν be the minimum
non-negative number satisfying

Pr[∃i : φ̄i(vi) ≥ ν] ≤ 1

2
.

Let pi = φ̄−1
i (ν). We offer the price pi for item i. We obtain

the following theorem.

Theorem 16. In the non-regular case, for the pricing p

defined above, bRM ≤ 4Rp.

The proof of this theorem is identical to that of Theo-
rem 15, except that we need analogues of Fact 6 and Fact 9
for ironed virtual valuations. Fact 9 is proven in Myerson’s
original paper on optimal auction design [12]. We prove the
analogue of Fact 6 in Lemma 18 below. We omit a full proof
of Theorem 16 for the sake of brevity, since it is essentially
identical to the proof of Theorem 15.

We need the following property:

Lemma 17. For any ν and v = φ̄−1(ν),

R̄(F (v)) = R(F (v)) = v(1 − F (v)).

Proof. Note that by definition, R̄ is the boundary of the
convex hull of the hypograph of R (see Figure 1). Theorem
18.3.1 in Rockafellar [13] implies that every extreme point of
this convex hull lies on the boundary of the hypograph of
R. That is, at all extreme points (α, R̄(α)), we have R(α) =
R̄(α). Furthermore, all points with non-zero curvature, as
well as end-points of maximal linear segments in the graph of
R̄, are extreme points of the convex hull (i.e. they cannot be
expressed as convex combinations of two other distinct points
in the set).

Now consider some v = φ̄−1(ν). If v is the unique value
with φ̄(v) = ν, then R̄ has non-zero curvature at F (v) by
definition, and so R̄(F (v)) = R(F (v)). Otherwise, v is the
infimum over all values x with φ̄(x) = ν, in which case F (v)
is the left end-point of a maximal linear subsegment in R̄.
Again we have R̄(F (v)) = R(F (v)).

The following lemma is a direct consequence of Lemma 17
by observing that for v ≥ φ̄−1(0), φ̄(v) is non-negative, r̄(F (v))
is non-positive, and so R̄(F (v)) is a non-increasing function
of v.
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Lemma 18. Let ν1 ≥ ν2 ≥ 0, v1 = φ̄−1(ν1), and v2 =
φ̄−1(ν2). Then v1(1 − F (v1)) ≤ v2(1 − F (v2)).

We note that Theorem 16 only gives a characterization of
an approximately optimal pricing in the non-regular case, and
not a poly-time approximation algorithm. We leave open the
problem of designing a polynomial time algorithm for this
case (in particular, a polynomial time algorithm for comput-
ing ironed virtual valuations), noting that for the case when
each of the distributions Fi is discrete and explicitly specified,
a simple algorithm for computing ironed virtual valuations
has been given by Elkind [8], and this implies a polynomial-
time approximation algorithm for the non-regular case with
discrete explicit distributions.

5. A POLYNOMIAL-TIME
APPROXIMATION ALGORITHM

We now describe how to implement our algorithm for the
regular case in the two computational models described in
Section 2.

Implementation in the discrete explicit model is straight-
forward. Although we have focused on continuous distribu-
tions in Sections 3 and 4, we remark that virtual valuations
and their inverses for discrete distributions can be defined
and computed in much the same way as for continuous dis-
tributions. Our algorithm computes virtual valuations of all
possible values for each item. During this process it keeps
track of Fi(φi

−1(ν)). It then picks the least non-negative ν,
with

Q
i Fi(φi

−1(ν)) ≥ 1/2. The price of each item i is then
defined to be the minimum value vi at which φi(vi) ≥ ν.
Each step of the algorithm takes at most linear time in n and
the sizes of the supports. The resulting algorithm is a Monte
Carlo randomized algorithm, i.e. it outputs a random pricing
whose revenue, in expectation, approximates the revenue of
the optimal pricing. It is natural to ask whether there is also a
Las Vegas algorithm, i.e. one whose output is a good approxi-
mation to the revenue of the optimal pricing with probability
1. This question is especially natural given the problem’s
economic motivation: a firm is likely to feel much safer us-
ing an algorithm which always selects approximately optimal
prices rather than one which has a small probability of set-
ting disastrously suboptimal prices. However, in this paper
we will not consider the question of whether there is a Las
Vegas randomized algorithm to compute the optimal pricing.

In order to obtain an implementation in the continuous
model with oracles, we use the following lemma from [3]. We
present a brief proof for completeness.

Lemma 19. Let p be any price vector, and p′ be another
price vector such that pi

′ ∈ [β, α] pi for all i with β < α < 1.

Then Rp′ ≥ β(1−α)
(1−β)

Rp.

Proof. Consider any valuation vector v, and let i be the
index that maximizes vi−pi. In other words, when prices are
given by p and a consumer has values v, the consumer buys
item i. On the other hand, let j be the index that maximizes
vj − pj

′. That is, when the prices are given by p′, the same
consumer buys item j instead of i. The lemma follows from
the claim that

pj
′ ≥ β(1 − α)

(1 − β)
pi

To prove this claim, we first observe that vi − pi ≥ vj − pj

and vj − pj
′ ≥ vi − pi

′. Rearranging terms and adding the

two we get pi − pi
′ ≤ pj − pj

′. Finally, using pi
′ ≤ αpi and

pj
′ ≥ βpj , we get

pj ≥ (1 − α)

(1 − β)
pi

The claim now follows by again using the fact that pj
′ ≥

βpj .

Armed with this lemma, our algorithm essentially trans-
forms the continuous case to a discrete version. Let M =
(maxi hi)/(mini �i). Our algorithm will run in time polyno-
mial in n and M . For each item i, we consider the set Li of
values that are powers of γ = 1/(1 − ε) for some ε > 0 in the

range [�i, hi]. Note that |Li| = O(logγ
hi
�i

) = O(logγ M).

Our algorithm proceeds as follows:

1. For each i and each v ∈ Li, compute φi(v) using the
oracles for Fi and fi and store these in a sorted list L′.

2. For each ν ∈ L′, let xi(ν) be (1 − ε) times the largest
value in Li whose virtual value is at most ν. Note that
xi(ν) ∈ [(1 − ε)2, (1 − ε)]φ−1

i (ν). If
Q

i Fi(xi(ν)) ≥ 1/2,
remove ν from L′.

3. Add 0 to the set L′.

4. For each ν ∈ L′, consider the pricing {xi(ν)}. Pick a
sample S(ν) of size 64

ε2
M2 log(nM/ε2) from the distri-

bution F. Let R̃(ν) denote the expected revenue of the
pricing {xi(ν)} with respect to a uniform distribution
over S(ν).

5. Let p denote the pricing {xi(ν)} for the virtual value ν

that maximizes R̃(ν). Output p.

We first note that one of the pricings {xi(ν)} for ν ∈ L′ is
a near optimal pricing.

Lemma 20. Let ν∗ be the minimum non-negative virtual
valuation satisfying

Q
i Fi(φ

−1
i (ν∗)) ≤ 1/2. Let p∗ be defined

such that pi
∗ = φ−1

i (ν∗). Then, there exists a virtual value
ν ∈ L′ such that

R{xi(ν)} ≥ 1

2
(1 − ε)2Rp∗

Proof. For every i let yi be the largest power of γ =
1/(1 − ε) smaller than pi

∗, and let νi = φi(yi). Let ν =
maxi νi. Note that we do not remove ν from the list L′ in
step 2 above. Consider xi(ν). Note that xi(ν) = (1 − ε)yi

by definition, which is less than (1 − ε)pi
∗. On the other

hand, yi ≥ (1 − ε)pi
∗, so xi(ν) ≥ (1 − ε)2pi

∗. Therefore, we
have xi(ν) ∈ [(1 − ε)2, (1 − ε)]pi

∗. Applying Lemma 19 with
α = (1 − ε) and β = (1 − ε)2 we get the result.

The next lemma shows that with a high probability, the
estimates R̃(ν) are good approximations to the true revenues

R{xi(ν)}.

Lemma 21. For any ν ∈ L′,

Pr
h˛̨̨
R̃(ν) −R{xi(ν)}

˛̨̨
≥ εR{xi(ν)}

i
≤ ε2

n log M
.
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Proof. Fix the pricing {xi(ν)}. For a valuation vector v
drawn from F, let Yv denote the revenue obtained by this
pricing. Note that E[Yv] = R{xi(ν)}. We also have Yv ≤
maxi hi for all v, and R{xi(ν)} ≥ 1

4
mini �i because we make

a sale with probability at least 1
4
. Letting N denote the size

of the sample |S(ν)|, and applying the Chernoff bound, we
get

Pr
h˛̨̨
R̃(ν) −R{xi(ν)}

˛̨̨
≥ εR{xi(ν)}

i
= Pr

"˛̨̨̨
˛
P

v∈S(ν) Yv

N
−R{xi(ν)}

˛̨̨̨
˛ ≥ εR{xi(ν)}

#

≤ 2 exp

„
−1

4

ε2(R{xi(ν)})2N
(maxi hi)2

«
≤ 2 exp

„
− 1

64

ε2N

M2

«
Using N > 64

ε2
M2 log

`
2
ε2

n log M
´
, we get the result.

Theorem 22. For any ε > 0, the above algorithm gives a
8 + ε approximation to the BUPP in time polynomial in n,
M and 1/ε.

Proof. Using Lemma 21 and taking a union bound over
all ν ∈ L′, we get that with probability 1 − ε all the esti-
mates R̃(ν) are within a 1 ± ε factor of the true revenues

R{xi(ν)}. Therefore, the true revenue of the pricing picked
by our algorithm is within a (1 − ε)2 factor of the maximum

over ν ∈ L′ of the true revenues R{xi(ν)}. Combining this
with Lemma 20, Theorem 15 and the ε probability of failure,
we get that the expected revenue obtained by our algorithm
is a 8/(1 − ε)5 approximation to the optimal revenue. An
appropriate choice of ε implies the result.

6. CONCLUSIONS
Several interesting questions related to BUPP still remain

open:

• Is the Bayesian unit-demand pricing problem with in-
dependently distributed values NP-hard to solve opti-
mally? There is some evidence that this problem is
indeed hard. For example, one can construct two-item
instances with extremely simple distributions (e.g., a
uniform distribution over some range), where the opti-
mal price is irrational.

• Is our characterization tight? Can one construct an ex-
ample where the revenue of Myerson’s auction is indeed
4 times the revenue of the optimal pricing?

It is worth noting that there is a simple example in
which the revenue of the pricing defined by our virtual
valuation technique falls short of the optimal pricing by
a factor of nearly 2, even in the i.i.d. case. Suppose that
for each i, the distribution of vi is given by

Pr[vi = n] =
1

n2

Pr[vi = 1] = 1 − 1

n2
.

The optimal pricing sets p1 = 1 and pi = n for all i > 1.
This achieves a revenue of 2 − o(1). However, for every
ν the pricing which sets pi = φ−1(ν) achieves a revenue
of at most 1. (In this example the revenue of Myerson’s

auction is nearly equal to 2, so the example does not
prove any separation between the revenue of Myerson’s
auction and that of the optimal pricing.)

• Extending this work to accommodate combinatorial con-
sumers seems tricky. An optimal pricing in that case
may offer bundles at prices higher or lower than the
sum of the prices of individual items in the bundle.

• Finally, a more general selling mechanism in the unit-
demand case may offer lotteries to consumers. A lottery
is a distribution over single items, sold at a price (typ-
ically) lower than the prices for the individual items.
The revenue of the optimal collection of lotteries is not
always bounded above by the revenue of Myerson’s auc-
tion. In fact when values are correlated, the revenue of
the optimal single-item pricing can be an exponential
factor smaller than the revenue of the optimal collec-
tion of lotteries.
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