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Abstract

In this paper, we propose approaching the problem of clas-
sifier evaluation in terms of a projection from a high-
dimensional space to a visualizable two-dimensional one.
Rather than collapsing confusion matrices into a single mea-
sure the way traditional evaluation methods do, we consider
the vector composed of the entries of the confusion matrix (or
the confusion matrices in case several domains are considered
simultaneously) as the performance evaluation vector, and
project it into a two dimensional space using a recently pro-
posed distance-preserving projection method. This approach
is shown to be particularly useful in the case of comparison
of several classifiers on many domains as well as in the case
of multiclass classification. Furthermore, by providing simul-
taneous multiple views of the same evaluation data, it allows
for a quick and accurate assessment of classifier performance.

1 Introduction

Performance evaluation in supervised classification is tra-
ditionally performed by considering the confusion matrices
obtained from test runs of several classifiers on various do-
mains, collapsing each matrix into a value (e.g., accuracy,
F-measure), and comparing these values to each other. One
issue with this approach is that, by the time the classifiers’
performances get compared to one another on a given do-
main, the details of the confusion matrices have been lost.
The comparison only involves a single number, be it the ac-
curacy or F-measure of the classifiers. The problem is com-
pounded if the comparison involves several domains, and,
when dealing with multi-class rather than binary domains.

In order to defray this problem, people sometimes use
pairs of values on which to base their comparisons. Pre-
cision/Recall and Sensitivity/Specificity are two commonly
used pairs. While this alleviates the problem, somewhat, it
makes the comparison of classifiers more complex since it
creates cases where one classifier obtains good results on
one component and bad ones on the other, while the sec-
ond classifier obtains opposite results. Furthermore, such
pairs of values do not apply to multi-class domains, and the
problem of how to aggregate the results obtained on various
domains remains as well.
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The purpose of this paper is to propose a different way
to view the performance evaluation problem with the hope
of addressing these issues while offering a more general-
ized vision of the evaluation problem. In particular, we can
view classifier evaluation as a problem of analyzing high-
dimensional data, recognizing that the performance mea-
sures currently used by the data mining community are but
one class of projections that could be applied to these data.
If we think of our current measures as specialized projec-
tion methods, we can then generalize the procedure by con-
sidering the fact that any projection method (standard or
not) could be applied to our highly dimensional performance
data, along with any distance measure (once again, standard
or not). Such an approach could open up the field of classi-
fier evaluation by allowing us to both organize and classify
the existing measures within this new framework and, more
importantly, to experiment with a variety of new approaches
in a more systematic way. A particular benefit of this frame-
work is the fact that projection approaches are typically in-
tended for visualization, which is useful in that it permits
both a quick assessment of the results by a human-being and
the compounding of more information into the representa-
tion than in the case where a single or a pair of values are
issued. This, by the way, is in line with more recent eval-
uation methods such as ROC Analysis (Fawcett 2003) and
cost-curves (Drummond & Holte 2006) which also suggest
a move towards visual approaches.

The research presented in this paper demonstrates the
kind of classifier performance evaluation strategies that can
be derived from the consideration of this generalized frame-
work. This paper focuses on three particular advantages
brought on by our new vision: its solution to the aggregation
of results on different domains; its approach to dealing with
multiclass domains; and the fact that it permits the quick and
easily interpretable generation of multiple views of classifier
performance. Please note that this paper restricts itself to a
small number of options with respect to the projection ap-
proaches, distance functions and result data representation
that could be used, with the understanding that future work
will explore these possibilities further. It is also important to
note that although we focus on the evaluation of supervised
classification algorithms, here, our approach is universal and
could be applied to any performance evaluation problem do-
main.



The remainder of the paper is organized as follows: Sec-
tion 2 details our framework and its particular implemen-
tation we adopted in this paper. In particular, we discuss
the kind of performance data we use as a starting point, the
distance measures considered, as well as the various projec-
tion methods we evaluated. The purpose of Sections 3 and
4 is to demonstrate the aggregation properties of our frame-
work. In particular, Section 3 illustrates our approach in the
case where a number of classifiers are compared on several
domains simultaneously while Section 4 considers the case
where the same classifiers are compared on a single multi-
class problem. In both sections, we highlight the particular
advantages of our technique. Section 5 discusses how our
method can be used as a multi-facetted approach to classi-
fier performance evaluation. Section 6 concludes the paper,
and discusses potential extensions for future work.

2 The Framework and its Implementation

As discussed in the introduction, current evaluation meth-
ods can be viewed as specialized projections from a high-
dimensional to a 1-dimensional space, in the case of Accu-
racy, F-Measure and AUC, and to a two-dimensional space,
in the case of Precision/Recall and Sensitivity/Specificity. In
this work we generalize this idea by suggesting that the tech-
niques proposed in the field of visualization can be put to the
service of classifier evaluation as well. In particular, we pro-
pose to use the projection techniques and distance measures
in use in that field for our purpose. We begin by discussing
the general methodology we adopted, and then move on to
addressing the issue of choosing an appropriate projection
method.

2.1 General Methodology

The visualization approach we propose works according to
the following steps:

1. All the classifiers involved in the study are run on all the
domains considered, and the corresponding performance
matrices (be they confusion matrices, performance vec-
tors of the outcome on each testing point, etc...) are saved.

2. The performance matrices associated with one classifier
on each domain are organized into a single vector. The
process is repeated for each classifier such that there is a
pairwise correspondence of each vector component from
one classifier to the next one.

3. A distance measure is chosen to represent the distance be-
tween two vectors in high-dimensional space.

4. A projection method is chosen to project the vectors into
a two-dimensional space.!

5. The distance measure and projection method are used on
the vectors generated in Step 2.

The traditional approach to classifier performance eval-
uation is compared to our new approach in Figure 1. As
shown in that figure, in the traditional approach, the perfor-
mance value of a classifier is calculated on each domain, be

"Three or four dimensions could also be used, if that could be
helpful.
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Figure 1: The Traditional and Proposed Approaches to Clas-
sifier Performance Evaluation

it binary or multiclass. These values are then aggregated
together into an overall performance value, that gets com-
pared from classifier to classifier. In the new approach, the
data pertaining to a classifier is preserved into its original
form and simply concatenated into a vector. The transfor-
mation is delayed until the projection is applied. This means
that in our approach, information is lost in a single spot: the
projection phase. In the traditional approach information is
lost whenever any kind of aggregation occurs.?

If we consider the performance of several classifiers on
a single binary domain, there are two advantages provided
by our new framework. First, it decomposes the problem
in a principled manner, separating the issue of projection
from that of choosing an appropriate distance measure along
which to compare the data. Secondly, by going from a pro-
jection to a one-dimensional space to a projection to a two-
dimensional one?, it allows for two rather than one relation-

“Note, however, that since, in both the traditional approaches
and our approach, as considered in this paper, we take as a starting
point the confusion matrix—an aggregated form of result—, in-
formation has been lost even before either performance evaluation
approach is used.

3Even though the Precision/Recall and Specificity/Sensitivity
approaches allow for a two-dimensional projection, the projected



ships to be established. In the traditional approach which,
typically, projects the performance data into a single dimen-
sion, the classifiers can only get ranked according to their
similarity to the ideal classifier. In our evaluation frame-
work, the addition of a dimension allows the classifiers not
only to be ranked according to the ideal classifier, but also,
to be compared to one another.

A third key advantage over the traditional approach con-
cerns the aggregation of classifier results over different do-
mains. It is common for researchers to simply average
the results obtained by a classifier over different domains.
This is a mistake when dealing with multi-class classifi-
cation problems since the same value has different mean-
ings depending on the number of classes. Recognizing this
problem, researchers sometimes use a win/tie/loss approach,
counting the number of times each classifier won over all the
others, tied with the best or lost against one or more. This
approach, however, loses any kind of information pertaining
to how close classifiers were to winning or tieing. Our ap-
proach does not suffer from either of these problems since
the entries of each performance vector are compared, in a
pairwise fashion, from classifier to classifier.

Please, note that if an unweighted distance measure is
used in the projection method, then each matrix entry is
given the same importance, but this can be changed by
weighting the measure appropriately.

2.2 Implementation Details

Several points considering the implementation of our ap-
proach need to be clarified. First, it is important to note
that the vectors representing each classifier can take differ-
ent formats. They can, simply, be 4-dimensional vectors
containing all the entries of the confusion matrix on a sin-
gle binary domain, 9 dimensional vectors containing all the
entries of the confusion matrix on a single 3-class domain,
and so on. As well, they can be formed by the confusion
matrices obtained by a single classifier on several domains,
be they multi-class or binary domains. It is also possible,
rather than representing the confusion matrices, to represent
the classifiers’ outcome on each point of the testing set. The
graph of Figure 2 is an example where such a representation
was used. It plots the combined outcome of eight classifiers
on three UCI domains: Breast Cancer, Labour and Liver. In
particular, it takes into account the classification of all the
data in the three training sets since we ran 10-fold crossvali-
dation so that each point appears in one of the testing folds).
Since Breast-Cancer contains 286 instances, Labour, 57, and
Liver 345, each vector in the original data set from which the
projection is plotted has dimensionality 688. Alternatively,
in the graph of Figure 3 of Section 3, since only the con-
fusion matrices of the three binary domains are considered,
the original data set from which the projection is plotted has
dimensionality 12.

Second, we must specify what distance measure and pro-
jection approach we selected for implementing the method.
The distance measures can take several forms, each with dif-

data is typically treated as two 1-dimensional projections rather
than one 2-dimensional projection.

ferent properties. The Euclidean distance (L2 norm), for ex-
ample, considers all the performance data equally, though
it penalizes more for the presence of a few extreme differ-
ences than for the presence of several small differences. The
Manhattan distance (L1 norm) attaches less importance to
large differences. Other distance measures can weigh dif-
ferent components differently. For example, true positives
can be given more importance than true negatives (similarly
to Precision). In a multi-class domain, a distance measure
can focus on the performance of one class, grouping all the
other classes, and so on. In fact all the biases provided by the
traditional measures (accuracy, precision, recall, F-measure
and so on) can be reproduced in our framework. In our par-
ticular study, the main distance function we will consider is
the Euclidean distance. However, the Manhattan Distance,
as well as a measure that provides an emphasis on one class
versus all the others, will be discussed briefly in Section 5.

Third we must discuss our choice of a projection ap-
proach. In this work we considered two methods: Principal
Component Analysis (PCA)(Jain, Duin, & Mao 2000)*, a
linear projection, and a non-linear distance-preserving pro-
jection approach, recently proposed by (Lee, Slagle, & Blum
1977; Yang 2004). The second approach, in addition to be-
ing non-linear, was considered because it has the advantage
of guaranteeing that the distance from one point to at least
one of its nearest neighbours is preserved. Our decision as to
which projection to use for this paper was based on whether
or not there was a need to use a non-linear method. In par-
ticular, we plotted a number of graphs using the two projec-
tions and compared their results. In many cases, the linear
and non-linear projections yielded similar information, but
there were a few cases were the outcome of the non-linear
approach was more reasonable (when compared to the re-
sults obtained with traditional evaluation measures). For ex-
ample, the plot of Figure 2 presents the PCA projection of
the outcome of the classification by eight different classi-
fiers (please, see below) on all the data contained in three
UCI (C.Blake & Merz 1998) domains: Breast Cancer,
Labour and Liver. The information provided in this plot
is obviously misleading since classifier IBk’s closeness to
the ideal classifier (both are located on the x-axis) is not
warranted. This can be seen in Table 5, later on in the pa-
per, where it is clear that Ibk does not display any behaviour
distinguishing it particularly favourably from the other clas-
sifiers.’

In view of these results we decided to adopt the non-linear
distance-preserving projection for all our remaining experi-
ments, in order to improve our chances of projecting more
accurate information in all cases. The detailed description of
this projection method follows in the next subsection. PCA
and MDS are not described since they were not adopted and
since they are well-known projection approaches.

“PCA is equivalent to Multi-Dimensional Scaling (MDS)(Jain,
Duin, & Mao 2000) in our setting since the use of the Euclidean
distance makes the results of the two approaches indistinguishable.

>In the corresponding non-linear plot, each classifier is placed
at roughly the same distance to Ideal. This is more reasonable than
the information suggested by the PCA/MDS graph. The non-linear
plot is not shown here because of space concerns.
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Figure 2: The PCA/MDS projection of three binary domains
represented by the outcome of the classifiers on each data
point

2.3 A Distance-Preserving Projection Approach

Our approach is a slight variation on an approach by (Lee,
Slagle, & Blum 1977; Yang 2004). It is described as follows:

Let d(z,y) represent the distance between x and y in the
original higher dimensional space; let P(x) and P(y) be the
projections of = and y onto the two-dimensional space; and
let do(P(x), P(y)) represent the distance between the pro-
jected points in a two-dimensional space. In this case, we
are projecting the performance of the classifiers, p; where
i =1,2,...n. We introduce the ideal classifier as pg. pg is
mapped to the origin.

Find the classifier which is closest to ideal, p;, and put
this on the y-axis at (0, d(po, p1))-

For the remaining classifiers, at each stage we find the
classifier, p;, which is nearest to the classifier which has just
been plotted, p;—1. When plotting p; we want to preserve
two constraints:

da(P(pi), P(pi—1)) = d(pi, pi—1) (D

i.e. we want the projections of p; and p;_1 to be the same
distance apart as p; and p;_.
We also want to satisfy the second constraint:

da(P(pi), P(po)) = d(ps, po) 2

i.e. we want the projection of the ideal classifier and the
projection of p; to be the same distance apart as the classi-
fiers are. This means that in the projected space the distance
from the origin is a measure of how close the classifier is to
ideal. The better the classifier, the closer its projection will
be to the origin.

Most times there will be two possible positions for P(p;)
which satisfy both constraints. When there is a choice of
solutions, the solution is chosen to satisfy a third constraint
as closely as possible:

da(P(pi), P(pi—2)) = d(pi, pi—2) (3)

Whereas we choose p; to be the point which has not yet
been projected which is closest to the most recently pro-
jected point, the original algorithm by (Lee, Slagle, & Blum
1977; Yang 2004) chooses p; to be the point which has not

yet been projected and which is closest to any of the points
which have already been projected. The original approach
projects the points in the same order as Prim’s algorithm
would add the points to a Minimal Cost Spanning Tree. Both
approaches were tried, but we preferred the results produced
by the modified approach because it seemed to separate clus-
ters more.

Please, note that in our graphs we have found it useful
to draw lines between pairs of projected points to show that
the distance between the projected points is equal to the dis-
tance between the points in the original, higher dimensional
space. Dotted lines connect projected points to the origi-
nal and indicate the exact distance in the higher dimensional
space from the classifier to the ideal classifier. Unbroken
lines connect a point to the point that was projected immedi-
ately before it in the projection order. The distance between
these projected points is also identical to the distance be-
tween the points in the original space.

When looking at the projected points, it is useful to re-
member that the triangle formed by P(pg), P(p;—1) and
P(p;) is congruent to the one formed by pg, p;—1, and p;.

3 Experiments on Multiple Binary Domains

In this part of the paper, we experiment with the use of our
approach on multiple domains. The three domains consid-
ered are all from the UCI Repository for Machine Learning
and are: Breast Cancer, Labour and Liver. This
means that we are projecting vectors of size 12 (3 con-
fusion matrices of 4 entries each) into a two dimensional
domain. Eight different classifiers were compared in this
study: Naive Bayes (NB), C4.5 (J48), Nearest Neighbour
(Ibk), Ripper (JRip), Support Vector Machines (SMO), Bag-
ging (Bagging), Adaboost (Adaboost) and Random Forests
(RandFor). All our experiments were conducted using Weka
(Witten & Frank ) and these particular algorithms were cho-
sen because they each represent simple and well-used pro-
totypes of their particular categories. The results we re-
port were obtained using 10-fold stratified cross-validation.
It is worth noting that since the purpose of all our experi-
ments was to interpret the results produced by our evaluation
method and not to optimize performance, default settings of
Weka were used throughout the paper. The significance of
this work, thus, does not lie in the results we obtain, which
should only be seen as illustrative of the evaluation frame-
work we propose, but rather on the introduction of the eval-
uation framework, itself. The results of our approach are
presented in Figure 3 and its companion table entitled“Three
Binary Domains Projection Legend”.

The results show that all the methods, except for SMO (8)
and NB (9), fall within the same range. SMO and NB pro-
duce much worse results, since they are further away from
Ideal (1) than the other approaches; and are shown to behave
very differently from one another as well, since they are not
clustered together. To better understand the graph, we con-
sider this result in view of the results obtained by the tradi-
tional measures of performance that are displayed in Table
1, for the three domains considered.

This comparison tells us something interesting: SMO fails
quite miserably according to all three measures (Accuracy,
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Figure 3: Projection of Three Binary Domains

Three Binary Domains Projection Legend

Classifier | Classifier | Distance Distance from
number name from origin | previous classifier
1 Ideal 0

2 RandFor | 154

3 Ibk 173 26

4 JRip 167 37

5 Adaboost | 160 16

6 Bagging | 166 44

7 J48 170 26

8 SMO 232 126

9 NB 203 230

F-measure and AUC) on the Liver data set. NB, on the
other hand, only fails badly on this domain when accuracy
is considered. The F-Measure and AUC do not signal the
presence of a problem. This means that, unless accuracy
was considered, we would not have detected a difference in
the behaviour of NB on the Liver data set. In contrast,
our method identified both the problems with NB and SMO
and stated that they were of a different nature. Our method
seems to warn us that these two classifiers are sometimes
unreliable, whereas the other systems are more stable. Of
course, if we had used a different distance measure, the re-
sults would have been different. The purpose of our discus-
sion is not so much to compare Euclidean distance to accu-
racy, F-measure and AUC. Instead, we wish to point out how
differences between classifiers are clearly and immediately
noticeable from our graph.

Please note that SMO’s lower performance on the Liver
data is something that would not have been picked up (ex-
cept possibly if the F-measure had been considered) by an
averaging of performance on all domains since SMO gets
averages of: 72.46% in accuracy, .44 in F-measure and .65
in AUC versus 74.7% accuracy, .64 in F-measure and .75
in AUC, for Adaboost (5), quite a good classifier on these
domains. Once its performance results averaged, NB would
not have exhibited any problem whatsoever, no matter which
traditional evaluation method were considered. Indeed, it
produced averages of: 72.2% for accuracy, .67 for the F-
measure, and .77 for the AUC, three results that are compa-

Accuracy | F-Measure | AUC

NB BC: | 71.70 0.48 0.70
La: | 89.50 0.92 0.97

Li: | 5540 0.60 0.64

J48 BC: | 77.50 0.40 0.59
La: | 73.70 0.79 0.7

Li: | 68.70 0.59 0.67

Ibk BC: | 72.40 0.41 0.63
La: | 82.50 0.86 0.82

Li: | 62.90 0.56 0.63

JRip BC: | 71 0.43 0.60
La: | 77.20 0.83 0.78

Li: | 64.60 0.53 0.65

SMO BC: | 69.60 0.39 0.59
La: | 89.50 0.92 0.87

Li: | 58.30 0.014 0.50

Bagging BC: | 67.8 23 .63
La: | 86 0.90 0.88

Li: | 71 0.624 0.73
Adaboost  BC: | 70.30 0.46 0.70
La: | 87.70 0.91 0.87

Li: | 66.10 0.534 0.68

RandFor BC: | 69.23 0.39 0.63
La: | 87.70 0.91 0.90

Li: | 69 0.64 0.74

Table 1: Performance by Traditional Measures on the Breast
Cancer (BC), Labour (La) and Liver (Li) domains.

rable to those obtained by AdaBoost, our reference. Once
again, what is remarkable about our visualization approach
is that the graph of Figure 3 tells us immediately that an ab-
normal situation has been detected with respect to SMO and
NB and that this problem is of a different nature in each case.
This is quite useful given how tedious and mistake-bound
the reading of large result tables can be. Our approach can
be used to filter out problem spots, that can then be carefully
analyzed, using only the portion of the result tables that fo-
cus on this problem spot.

Though we only used binary domains in this example, we
could have, instead, mixed binary and multi-class domains
using the same approach, thus finding a way to aggregate
values that could not, otherwise, be aggregated together.

4 Experiments on Single MultiClass
Domains using Confusion Matrices

In this section, we consider how our approach fares on mul-
ticlass domains. In particular, we consider the Anneal do-
main from UCIL Anneal is a 6-class domain (though one of
the classes is represented by no data point). The data set is
quite imbalanced since the classes contain 684, 99, 67, 40,
8 and 0 instances, respectively. The results obtained on this
domain are displayed in Figure 4 along with the companion
table entitled “Anneal Projection Legend”. This time, the
graph encourages us to beware of NB (8) and Adaboost (9),
though it also shows us that Adaboost and NB’s problems
are not related. We compare the results of Figure 4 to the



NB | J48 [ Ibk | JRip

SMO | Bag Boost | RandFor

86.30 | 98.40 | 99.10 | 98.30

97.40 | 98.20 | 83.60 | 99.30

Table 2: Accuracies on the Anneal Data Set

accuracy results obtained on this domain, displayed in Table
2.

While the accuracies (the only simple compact measure
that can be used in multi-class domains) suggest that NB
and Adaboost do not classify the data as well as the other
domains, it does not alert us of the seriousness of the prob-
lem to the same extent that our approach does. Indeed, while
it is true that NB’s accuracy of 86.3% is comparatively much
lower than SMO’s accuracy of 97.4%, because in and of it-
self 86.3% is not a bad accuracy on a 6-class problem, it is
conceivable that if a user had a specific interest in using NB
rather than SMO or any other good method, s/he could de-
cide that the tradeoff in accuracy is not worth a switch to a
classifier other than NB since NB’s accuracy is good enough
for his/her particular application. This is quite different from
the story painted in Figure 4 in which SMO and Adaboost are
exaggeratedly far from the ideal in comparison to the other
classifiers.
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Figure 4: Projection of the results on a MultiClass domain:
Anneal

Anneal Projection Legend

Classifier | Classifier | Distance Distance from
number name from origin | previous classifier
1 Ideal 0

2 RandFor | 5

3 Ibk 7 4

4 J48 12 6

5 JRip 12 6

6 Bagging | 13 3

7 SMO 20 11

8 NB 148 139

9 Adaboost | 151 211

In order to interpret the results, it is important to remem-
ber that the Anneal problem is severely imbalanced. The

effects of this imbalance are clearly seen in the confusion
matrices of Adaboost and NB in Tables 3 and 4.

Predicted/ | a | b | ¢ d|e f
True class

a 0]07]8 01]0 0
b 0110199 01]0 0
C 010684 |00 0
d 0010 01]0 0
e 0010 0670
f 01]01|40 01]0 0

Table 3: The confusion Matrix for AdaBoost

Predicted/ | a | b C d|e f
True class

a 710 1 01]0 0
b 019910 0]0 0
C 3138564010 79
d 01]0 0 01]0 0
e 01]0 0 0670
f 010 2 01]0 38

Table 4: The confusion Matrix for NB

As shown in Table 3, Adaboost only gets the points from
the largest class and the third largest class well-classified,
ignoring all the other classes. From Table 4, we see that
NB classifies all the classes accurately, except for the largest
class. We do not have enough space, here, to include the
confusion matrices of the other methods, but we can report
that they all did quite a good job on all classes. In effect this
means that all the classifiers but NB and Adaboost are able
to deal with the class imbalance problem, and that NB and
Adaboost both behave badly on this domain, although they
do so in different ways. This is exactly what the graph of
Figure 4 tells us. The accuracy results do suggest that NB
and Adaboost have problems, but they do not differentiate
between the two kind of problems.

5 Multi-facetted Classifier Evaluation

The purpose of this section is to explore the kind of advan-
tages our framework’s flexibility can provide. We begin by
pointing out that the visualizations we displayed in our pre-
vious graphs are only relative assessments. For example, in
the graph of Figure 4, we can see that all the classifiers, aside
from NB (8) and AdaBoost (9) are very close together. After
viewing the entire graph, we may want to zoom in on the
tight cluster formed of classifiers 2 to 7, included. This is
done in Figure 5 (whose legend is the same as that of Figure
4).



Figure 5: Projection of the partial results on a MultiClass
domain: Anneal

From this figure, we can see that SMO (7) does not per-
form as well as the other classifiers (though a lot better than
NB and AdaBoost in Figure 4), that RandFor (2) and IBk (3)
are the best classifiers on this problem, followed by J48 (4),
JRip (5) , which are somewhat equivalent in performance
(though somewhat different from one another) and, finally,
Bagging (6). An implementation that would allow the user
to zoom in and out of graphs in that fashion would, thus, be
quite a useful analytical tool.

Another issue we wish to investigate is the use of differ-
ent distance measures. All our experiments, thus far used
the Euclidean distance (L2 Norm), we wondered what the
outcome would be if we were to use the Manhattan distance
(L1 Norm), instead. The results are shown in Figure 6 which
comes accompanied by the table entitled “Anneal L1 Norm
Projection Legend”.

There is only one qualitative difference between the
graphs produced by the L1 and the L2 norms: NB (8) ap-
pears closer to ideal than Adaboost (9) in Figure 6, than it
did in Figure 4. Since the L2 norm penalizes the presence
of major concentrated misclassification errors more than the
presence of small ones (since each concentration of error
gets squared), and the L1 norm simply counts the number
of misclassification errors present, we can reason that NB
makes fewer errors than Adaboost, altogether, but that the
majority of its errors are concentrated in one or a few large
spots. In contrast, we can reason that although Adaboost
makes more errors than NB altogether, its errors are more
broadly distributed and appear in large numbers of small
clusters. Another look at the confusion matrices of Tables 3
and 4 confirms this hypothesis. Indeed, we see that Adaboost
makes 147 mistakes versus 123 for NB, thus explaining NB’s
better performance with the L1 norm. In addition, since we
see that, inconsiderate of class E, on which the two clas-
sifiers behave the same way, NB makes its major mistakes
on class C, the largest class, whereas Adaboost makes no
mistake on class C, but, instead, misclassifies all the other,
smaller classes (except for class E), we understand where the
results obtained with the L2 norm, which equate Adaboost
and NB’s performance, come from. Thus, we can see how,

provided that we understand the meaning of the various dis-
tance measures we may use, each of them used simultane-
ously can quickly give us some important insight into the
comparative performance of our classifiers.
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Figure 6: Projection of the results on a MultiClass domain,
using the L1 Norm: Anneal

Anneal L1 Norm Projection Legend

Classifier | Classifier | Distance Distance from
number name from origin | previous classifier
1 Ideal 0

2 RandFor 12

3 IBk 16 10

4 148 28 16

5 JRip 30 14

6 Bagging 32 8

7 SMO 46 26

8 NB 246 244

9 AdaBoost | 294 528

In the last part of this study, we consider other views of
our Anneal domain: L2 norm views in which the multi-
class problem has been reduced to two classes. In particular,
because of space constraints, we focus on the view of Class
A versus all the other classes.

Such views also provide interesting insight into the be-
haviour of our classifiers. For example, in Figure 7, which

Anneal Class A Projection Legend

Classifier | Classifier | Distance Distance from
number name from origin | previous classifier
1 Ideal 0

2 SMO 2

3 RandFor | 2 0

4 1Bk 2 0

5 Bagging | 5 4

6 J48 5 0

7 JRip 7 2

8 Adaboost | 14 7

9 NB 4 14
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Figure 7: Projection of the results on a MultiClass domain,
compressed into two classes: Anneal, Class A

comes accompanied by the table “Anneal Class A Projec-
tion Legend”, we learn that NB (9) is not a bad classifier
with respect to class A. Rather, we can see that JRip (7) is
the one that causes problems on that class, along with Ad-
aBoost (14), which remains the most problematic of them
all. Looking at Tables 3 and 4 , as well as at the confusion
matrix for JRip (which cannot be included here for lack of
space), confirms the relative positions of Adaboost, NB and
JRip in Figure 7. Indeed, Adaboost misclassifies all 8 exam-
ples of class A, but does not make any false positive errors
with respect to A; NB only misclassifies 1 example of class
A and makes 3 false positive errors on it; and JRip misclassi-
fies 4 class A examples and does not make any false positive
errors on it. Note that if the L1 norm were used instead of
the L2 norm, JRip and NB would each be as far away from
ideal as the other. Because the L2 norm emphasizes the fact
that JRip (and Adaboost, even more) have a high concentra-
tion of errors in a single spot, these two classifiers fare worse
than NB on this problem.

We conclude that our framework allows us to pinpoint
tradeoffs between the different measures and focuses we
choose quite rapidly. These are not as clear when using tra-
ditional evaluation methods, which are not inherently visual.
Because human beings tend to process visual information
much faster and probably better than they do other kinds of
information—"“A picture is worth a thousand words”—we
suggest that our approach has great potential for the future.

6 Conclusion and Future Work

We conclude this study by summarizing our findings and
suggesting areas for future work.

6.1 Summary

This paper presented a new evaluation method which, rather
than aggregating the entries of the confusion matrices per-
taining to the performance of a classifier into a single mea-
sure, treats all the performance data pertaining to that clas-
sifier as a high-dimensional vector. The vectors represent-
ing classifiers are then projected into a 2-dimensional space
by a distance-preserving projection method. This approach

presents several advantages, including the fact that it offers
a visualization method that allows data mining practitioners
to spot immediately any irregularity in the behaviour of their
classifiers. It also indicates whether the detected irregulari-
ties are similar to each other or not. This particular method
is, but one implementation of the general framework we ad-
vocate that views the problem of classifier evaluation as one
of analyzing high-dimensional data.

6.2 Future Work

As presented, our approach may appear limited to the com-
parison of single classifier’s performance, thus precluding
the evaluation of threshold-insensitive classifiers and the
computation of statistical guarantees in our results. In-
deed, unlike ROC Analysis, (Fawcett 2003) and Cost-
Curves (Drummond & Holte 2006), our current approach
is threshold-sensitive. This restricts its use to balanced data
sets with known cost-matrices (if the cost-matrix is known, it
can be integrated to our distance function). In case where the
costs are unknown, it cannot be used as presented here. The
advantages of our method over ROC Analysis, and Cost-
Curves, however, are the same as those described earlier:
ROC Analysis and Cost-Curves uses biased summaries of
the confusion matrices in their computations and are appli-
cable to single binary problems only.

We believe that we could use our framework to analyze
classifiers in a threshold insensitive way as well. This way,
we would be coupling the advantages of ROC Analysis and
Cost-Curves to those of our current method. We could, for
example, concatenate the results obtained by the same clas-
sifier using different thresholds within a single vector and
project that vector into our two-dimensional space. Alterna-
tively, we could separate the performance at each threshold,
projecting a single point for each classifier at each thresh-
old level. This would create clouds of classifier performance
that could then convey the same kind of information (though
more detailed) than ROC graphs.

With respect to the computation of statistical guarantees,
we believe that we could easily integrate the results of sev-
eral cross-validation folds within a single vector or plot the
results of each fold for each classifier, giving us, as above a
cloud of points for each classifier that would, this time, offer
a visualization of the variance of that classifier. More for-
mally, we could then apply a statistical test to the results of
this projection.

We are also planning to expand our understanding of our
framework by experimenting more thoroughly with different
performance data representations (e.g., the outcome of clas-
sification on each test data point), different projection meth-
ods, as well as different distance measures. We believe that
once it is carefully studied, this framework could become an
integral part of the classifier evaluation process.
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