
Supervised Learning with Unsupervised Output Separation
Nathalie Japkowicz

School of Information Technology and Engineering
University of Ottawa

150 Louis Pasteur, P.O. Box 450 Stn. A
Ottawa, Ontario, Canada K1N 6N5

ABSTRACT
In supervised learning approaches, the output labels are im-
posed by the knowledge engineer who prepared the data.
While knowing the labels of a data set is quite useful, in
cases where data points belonging to very different data
distributions are agglomerated in the same class, a learn-
ing algorithm can have difficulties modeling these classes
accurately. In such cases, it should be useful to separate
the main classes into a number of more homogeneous sub-
classes. This paper assumes that the above problem is quite
common and describes a simple combination method that
attempts to fix it. It then tests the approach on 5 domains
taken from the UCI Repository. The results show that in
three out of five cases, the approach has a positive effect,
in one case, it breaks even and in the fifth case, it degrades
the previously established performance.

KEY WORDS
Machine Learning, Decision Trees, Combination of Clas-
sifiers, Clustering

1 Introduction

Supervised learning is a lot easier than unsupervised learn-
ing. Indeed, in supervised learning a function must be in-
duced that maps training vectors to a subset of given labels.
In unsupervised learning, no labels are given but a func-
tion has to be learned which first, creates a set of coherent
labels and second, maps training vectors to these labels.
Though easier, supervised learning lacks the flexibility of-
fered by unsupervised learning. Indeed, what if the labels
accompanying a training data set are imperfect and overly
constraining? What if, for example, they lump two subcat-
egories together which, though similar in some respect, are
completely different in others? In such a case, it is conceiv-
able that a supervised learning system would have difficul-
ties assigning these different examples to the same class:
too much variability would be present within a supposedly
homogeneous class.

The purpose of this paper is to investigate this issue.
In particular, we place ourselves midway between super-
vised and unsupervised learning by using an unsupervised
method of re-labeling already labeled data sets in a way
that respects both the initially given labels and the data dis-
tribution that was not necessarily taken into account by the

knowledge enginner when s/he assigned the initial labels.
Because, however, the distribution of the data is hidden, the
“most appropriate” re-labeling is difficult to derive. We,
thus, decided to generate a number of different re-labeling
of the same data set. A classifier is then run on these vari-
ous versions of the same data set and their results are com-
bined using a voting technique. Several variations of this
general approach are considered and the results they ob-
tained on five data sets are reported.

The remainder of the paper is divided into four sec-
tions. Section 2 discusses previous work in the areas in
which our approach lies. Section 3 describes the details of
our approach, Section 4 describes the experiments we con-
ducted and their results, Section 5 discusses our results and
Section 6 concludes the paper and discusses future work.

2 Previous Work

The approach described in this paper is at the cross-roads
of two different sub-disciplines of the field of Machine
Learning. The first sub-discipline is that of combining su-
pervised and unsupervised learning to improve classifica-
tion accuracy while the second is that of combining differ-
ent supervised models in order to, also, improve accuracy.
In this section, we review the sate-of-the-art in both sub-
disciplines and locate our method within them.

2.1 Combination of Supervised and Unsu-
pervised Learning

The combination of supervised and unsupervised methods
is a recent approach used in the area of Machine Learning.
Such a combination has different goals. On the one hand,
it can be attempted in order to improve the classification
accuracy of a supervised classifier by biasing that classifier
using information coming from the unsupervised process
(see, for example, [Stainvas99]). On the other hand, it can
be used as a way to integrate large amounts of unlabeled
data in the supervised learning process (see, for example,
[Blum & Mitchell, 98]). In both cases, the process can
be internal or external, that is, the supervised and unsu-
pervised steps can be taken simultaneously or they can be
taken independently.

The method described in this paper combines super-



vised and unsupervised learning as a way tobias the infor-
mation fed to the supervised classifier. It is not concerned
by the use of unlabeled data to enhance classification ac-
curacy. As well, it can be described as anexternalrather
than an internal method since the unsupervised step is first
performed followed by the supervised one.

2.2 Combinations of Supervised Learning
Models

As discussed by [Dietterich, 97], combining supervised
classifiers is an important current research direction in Ma-
chine Learning. The approaches attempted to combine var-
ious classifiers use the idea that the combined classifiers
should disagree with one another. In other words, in order
for improvement to be possible, there should be some vari-
ance in the combined methods. [Dietterich, 97] lists four
general ways of creating variance among a same classifier:
sub-sampling the training data, manipulating the input fea-
tures, manipulating the output targets, and injecting ran-
domness. Furthermore, he lists three general combination
methods: unweighted voting, weighted voting and using a
gating function.

The method described in this paper creates vari-
ance by manipulating theoutputtargets and uses bothun-
weightedand weighted votingfor combining the differ-
ent decisions. In addition, as suggested by [Shapire, 97],
AdaBoost (a sub-sampling, weighted voting combination
method) is used in some experiments in conjunction with
the output manipulation approach.

While manipulating the output has previously been
used in the combination framework (see [Dietterich &
Bakiri, 95]) the purpose for which that approach was used
is quite different from ours. [Dietterich & Bakiri, 95] de-
vised their method to improve the classification accuracy
in multi-class problems by reducing them to binary class
problems. We, on the other hand, expand binary classifica-
tion problems1 into multi-class classification ones with the
hope of increasing their classification accuracy.2

3 The Approach

The approach we propose can be divided into three steps.
In a first step, we separate each class into a number of sub-
classes, using an unsupervised learning technique, and we
re-label each training example as a function of these new
subclasses. In a second step, supervised learning is applied
to various versions of these new problems. Finally, the re-
sults obtained on each version of the problem are combined

1But we could also work with multi-class problems.
2Actually, once our multi-class problems are generated, nothing pre-

vents us from using [Dietterich & Bakiri, 95]’s approach to improve our
handling of these new problems. This was not attempted in the exper-
iments reported in this paper, but we believe that it could yield some
improvement, especially when the number of created subclasses grows
significantly.

in a decisive vote. Each step of this process are described
in more detail below.

3.1 Step 1: Output Separation

In this part of our approach, a simple unsupervised learning
system, k-means, is used. k-means requires the number of
clusters to be specified in advance. However, because the
appropriate number of clusters required to best character-
ize the two classes is not clear, we experimented with two
types of subdivisions: the first one subdivided the positive
and the negative classes into 5 subclusters each while the
second subdivided each class into 3 subclusters each. The
clustering was performed separately on each class, since,
while we wanted to separate the classes into subclasses, we
did not want any cross-clustering to occur (i.e., we wanted
to avoid creating sub-clusters containing both positive and
negative examples). In addition, because the optimal clus-
tering is not known, we introduced some variability by run-
ning k-means 5 times within each experiment and, subse-
quently, combining the results obtained on each variation
(see Step 3).

3.2 Step 2: Supervised Multi-class Learning

As just described, the first step of our method created 5 dif-
ferent multi-class learning problems per experiment. Each
of these problems contains 10 (sub)classes (5 positive and 5
negative ones) in the first version of our experiments and 6
(sub)classes (3 positive and 3 negative ones) in the second.

The purpose of the second step of our method is to
apply a supervised classifier to each of these new multi-
class problems with the hope that learning how to classify
subclasses of the positive or the negative classes is an easier
task than classifying an example directly as positive or neg-
ative. C5.0 and C5.0-Boosted were used in this part of our
work since both approaches apply to multi-class problems.

An important aspect of our experiments to mention at
this point is the fact that we are not concerned about one
example being misclassified as belonging to a subclass to
which it does not belong, as long as its real subclass and its
assigned subclass both belong to the same higher class (i.e.,
they are both positive or negative subclasses). For exam-
ple, assume that the positive class was subdivided into sub-
classes 1, 2 and 3 while the negative class was subdivided
into subclasses 11, 12 and 13. Misclassifying a class 3 ex-
ample for a class 1 or 2 example or misclassifying a class
11 example for a class 12 or 13 examples are not errors
that should be accounted for. On the other hand, misclassi-
fying a class 3 example for a class 11, 12 or 13 example or a
class 12 example for a class 1, 2 or 3 example should be ac-
counted for since the positive/negative boundary, this time,
has been crossed. This emphasizes the fact that our output
separation method was designed to help classification but
not to impose yet another strict labeling of the data.



3.3 Step 3: Voting

In the last step of our approach, the results obtained for
each example on the five different versions of the initial
problem are combined in a weighted or a non-weighted
fashion, using the certainty factor output by C5.0 or C5.0-
Boosted as the weights in the first one of these cases. As
mentioned previously, classification errors that do not cross
class boundaries are not taken into consideration: all we are
interested in is whether the subclass assigned to an example
is positive or negative. The results of these votes constitutes
the final decision on each example.

In more detail, in the weighted case, the decision for
a given example E is calculated by applying the following
formula:∑version5

i=version1 certaintyi(E)

where the functioncertaintyi returns the probability value
returned by C5.0 or C5.0-Boosted on versioni of the prob-
lem for example E multiplied by -1 if E was classified as
negative in versioni and by 1 if it was classified as posi-
tive. The overall classification of E is positive if the above
formula yields a positive number and negative, otherwise.

In the non-weighted case, the decision for E is calcu-
lated by the following formula:∑version5

i=version1 classi(E)

whereclassi(E) is +1 if E is classified as positive in ver-
sion i of the problem and -1, otherwise. Again, the overall
classification of E is positive if the above formula yields a
positive number and negative, otherwise.

4 Experiments

As discussed in the previous section, several types of com-
binations were considered:

• Non-boosted and Non-Weighted (NB-NW)

• Non-Boosted and Weighted (NB-W)

• Boosted and Non-Weighted (B-NW)

• Boosted and Weighted (B-W)

These four schemes were evaluated on five different
data sets all obtained from the UCI Repository for Machine
Learning: Haberman, Ionosphere, Pima, Sonar, Wisconsin
Breast Cancer Diagnostic (WBCD). These data sets were
chosen because they are all the UCI data sets that 1) con-
tain only continuous attributes (necessary condition for the
k-means process); 2) contain no missing attributes (again,
a requirement of the k-means process); and 3) are binary
classification processes.3

3As mentioned previously, it would have been possible to use data sets
containing more than two classes, but we decided to restrict this study to
two-class problems so as to limit the growth of class numbers once the
outputs get subdivided. A more detailed study could also include data sets
defined over more than two classes.

The experiments were conducted using 10-fold cross-
validation and the folds were paired from one experiment
setting to another (for example, fold 3 for a given data set
contains the same training and testing examples in all the
settings of our experiments).

The results for the four schemes are reported in terms
of accuracy in columns 4-7 of table 1: In more detail, col-
umn 4 reports the results obtained in the non-weighted non-
boosted case; column 5 reports the results obtained in the
weighted non-boosted case; column 6 reports the results
obtained in the non-weighted boosted case; and column 7
reports the results obtained in the weighted boosted case.
In addition, columns 2 and 3 report the results obtained by
C5.0 and C5.0-Boosted, respectively and column 8 reports
the percentage difference in accuracy observed between the
best of columns 2 and 3 (that do not use our scheme) on
the one hand and, the best of columns 4-7 (that do use our
scheme) on the other hand. In every case, the best result is
indicated in the table in boldface characters and a positive
value in column 8 indicates a better performance by some
instance of our scheme while a negative value indicates a
better performance by regular or boosted C5.0. Finally, col-
umn 1 simply lists the name of the data set tested along with
the subdivision used (5 positive and 5 negative subclusters
or 3 positive and 3 negative ones). For each data set, the
first line corresponds to the experiments obtained with the
5-5 subdivision while the second corresponds to those ob-
tained with the 3-3 subdivision. Since the results reported
in columns 2 and 3 are not affected by these subdivisions,
they are reported only once, on the first line.

5 Discussion

The results reported in Table 1 suggest that the combination
scheme described in this paper can be quite useful. Indeed,
it yields over 10% increase (and in one case, over 25% in-
crease) over C5.0-Boosted (the better of the two standard
classifiers—C5.0 and C5.0-Boosted—for all data sets) in
three out of 5 cases (Pima, Sonar, WDBC). In another case,
it breaks about even (Haberman) and in the last case, it
deteriorates the C5.0-boosted results by about 16% (Iono-
sphere). Though quite encouraging, these results, however,
could be shown to be significant at the s=.05 significance
level only in the case of the Pima data set. Significance
was established at significance level s=.1 in the case of the
Sonar data set while in all other cases, no reasonable sig-
nificance level could be established.4 This is caused by
the high degree of variance displayed at the various folds
of the cross-validation experiments probably caused by the
fact that the data sets did not contain enough data points,
especially in light of the large number of subclasses gener-
ated by the unsupervised process.

All these observations lead us to believe that while the
approach we described has some merit, it would perform

4A paired t-test for one sided intervals was applied to determine the
significance of our results.



better with larger data sets and/or in conjunction with a
multi-class stabilizing method such as [Dietterich & Bakiri,
95]’s output correcting codes approach. Another way to
improve the results would be to determine carefully how
many subclusters constitute an optimal subdivision of each
class. For the time being, in particular, we subdivided the
positive and the negative classes into the same number of
subclusters. However, it is quite likely that a different num-
ber of subclusters for each class would be more appro-
priate. If enough data are available, optimal numbers of
subclusters can be determined by cross-validation experi-
ments. Alternatively, unsupervised learning methods that
determine on their own the optimal number of subclusters
into which a data set should be partitioned could also be
used.

6 Conclusion and Future Work

This paper presented a new classification method that com-
bines unsupervised and supervised learning in the hope of
improving the performance (in terms of classification accu-
racy) of the supervised classifier. The paper is based on the
assumption that class labels assigned by knowledge engi-
neers do not always give rise to homogeneous classes and
that this constitutes a problem for classifiers that do expect
homogeneous classes. The problem is tackled by using
an unsupervised learning technique to subdivide each class
into a series of more homogeneous subclasses and applying
a multi-class classifier on these new problems. Because the
unsupervised process can lead to variations, this technique
is implemented within a combination framework.

The preliminary results we obtained show that, in
three out of five cases, the method is quite helpful, but that
in two others, it either does not help or it hurts the classifi-
cation performance.

There are several areas of future work that could be
considered. First, it would be useful, as mentioned previ-
ously, to create more flexible partitions, not imposing, for
example, the same number of subclusters onto each class.
A second line of future research could take into account
the fact that multi-class classification is not, generally, as
accurate as binary class classification and use, for example,
[Dietterich & Bakiri, 95]’s method to deal with this prob-
lem. In a third line of enquiry, the method we proposed
could be included in a wrapper system that would allow
the unsupervised learning system to conform implicitly to
the particular constraints of the supervised classifier. Fi-
nally, it would be useful to contrast the proposed approach
to research on radial basis functions (RBFs) that present
some similarities. In particular, like our approach, RBFs
use an unsupervised and a supervised step. However, our
approach is a generalization of the RBF method since it
can bestow more flexibility onto the process by allowing
the use of any unsupervised or supervised classification ap-
proach (in RBFs, the unsupervised approach is Gaussian,
and the supervised one is linear). Furthermore, our pro-
cess allows for combinations of different subclustering of

the same data set whereas RBFs do not.

Acknowledgements

This research was funded by a grant from the Natural Sci-
ence and Engineering Research Council of Canada. We
thank Chris Drummond for useful cooments about this re-
search.

References

[Blum & Mitchell, 98] Blum, A., Mitchell, T. (1998)
Combining Labeled and Unlabeled Data with Co-Training,
COLT: Proceedings of the Workshop on Computational
Learning Theory.
[Dietterich & Bakiri, 95] Dietterich, T. G., Bakiri, G.
(1995) Solving Multi-class Learning Problems via Error-
Correcting Output Codes.Journal of Artificial Intelligence
Research2: 263-286.
[Dietterich, 97] Dietterich, T. G., (1997). Machine Learn-
ing Research: Four Current DirectionsAI Magazine. 18
(4), 97-136.
[Domingos, 99] Domingos, Pedro (1999): Metacost: A
general method for making classifiers cost sensitive,Pro-
ceedings of the Fifth International Conference on Knowl-
edge Discovery and Data Mining, 155–164.
[Estabrooks, 00] Estabrooks, A. (2000):A Combination
Scheme for Inductive Learning from Imbalanced Data Sets,
MCS Thesis, Faculty of Computer Science, Dalhousie Uni-
versity.
[Stainvas, 99] Stainvas, I. (1999): Blurred Face Recogni-
tion via a Hybrid Network Architecture,Neural Computa-
tion in Science and Technology,
[Shapire, 97] Shapire, (1997): Using output codes to boost
multi-class learning problems.Tech Report AT & T Re-
search



Data Set C5.0-NB C5.0-B NW-NB W-NB NW-B W-B Improv.
haberman-5-5 28.82 27.20 29.51 28.87 28.50 28.50
haberman-3-3 26.83 27.16 28.40 28.72 + 1.36%
ionosphere-5-5 8.06 5.19 8.33 9.17 6.94 6.94
ionosphere-3-3 9.17 8.33 6.02 6.02 - 15.99%

pima-5-5 27.10 25.80 27.35 25.66 27.20 27.47
pima-3-3 25.91 25.52 23.17 23.17 + 10.19%
sonar-5-5 23.63 16.87 18.34 18.77 13.58 12.63
sonar-3-3 17.77 15.82 15.01 15.54 + 25.13%
wdbc-5-5 6.50 4.21 5.27 5.27 4.39 4.39
wdbc-3-3 4.93 4.93 3.70 3.70 + 12.11%

Table 1. Unsupervised/Supervised Combination Scheme (boosted or not and weighted or not) versus C5.0 (boosted or not)


