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Abstract. Border identification (BI) was previously proposed to help learning systems focus on the most relevant portion of the training set so as to improve learning accuracy. This paper argues that the traditional BI implementation suffers from a serious limitation: it is only able to identify partial borders. This paper proposes a new BI method called Progressive Border Sampling (PBS), which addresses this limitation by borrowing ideas from recent research on Progressive Sampling. PBS progressively learns optimal borders from the entire training sets by, first, identifying a full border, thus, avoiding the limitation of the traditional BI method, and, second, by incrementing the size of that border until it converges to an optimal sample, which is smaller than the original training set. Since PBS identifies the full border, it is expected to discover more optimal samples than traditional BI. Our experimental results on the selected 30 benchmark datasets from the UCI repository show that, indeed, in the context of classification, PBS is more successful than traditional BI at reducing the size of the training sets and optimizing the accuracy results. 
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1 
Introduction

The role of the training patterns located on the border lying close to the boundary separating samples of various classes has been studied in previous research [3]

 REF _Ref165273986 \r \h 
[5]. The results show that a neural network trained with border patterns performs worse on the training set, but significantly better on the test set than one trained on the class cores [5]. In this paper, we re-investigate the role of training patterns on the border for reduction of training set size with respect to other common induction algorithms. 
There is a demand for this research area in many practical applications. Indeed, learning on massive amounts of data can exhaust computational resources and, thus, hinder learners from building good classifiers [6]

 REF _Ref165261657 \r \h 
[9][15]. The work reported in this paper can help find an efficient and effective solution to meet this demand of reduction of training sets. 

We propose a new technique called Progressive Border Sampling (PBS). It uses Progressive Sampling (PS) techniques to progressively learn optimal borders by avoiding the limitation of the traditional Border Identification (BI) methods proposed in previous research. The new method consists of the following two main aspects.

First, PBS can identify the latent full border specified by the entire set of labeled cases and extract the data points from the border lying close to the boundary. The full border identified by PBS is different from the one identified by traditional methods.
Second, an optimal border can be progressively learned by PBS. Therefore, a set of data points from the optimal border that are considered particularly informative can be used as a new training set.
We conducted experiments on a number of selected small benchmark datasets from the UCI repository [1]. The empirical results show that PBS tends to produce optimal samples from the original training sets such that classifiers trained on the resulting samples tend to be more accurate than the ones trained on BI. Therefore, we emphasize the potential of PBS for large datasets by any optimized heuristics.
The remainder of this paper is organized as follows. In Section 2, we introduce the traditional BI method for border identification. In Section 3, we develop the notion of a border by showing the limitation of the traditional BI technique which often results in the computation of an incomplete border. Our new approach, PBS, is proposed in Section 4. In Section 5, we describe our experimental design and results. We conclude and suggest future work in Section 6. 
2 
Border Identification
A border does not concretely exist in a training set. A latent border, called a border for short, is specified in a labeled training set by the set of data points lying close to the boundary [3]

 REF _Ref165273986 \r \h 
[5]

 REF _Ref165264799 \r \h 
[7]. 
2.1 
Previous Methods
The state-of-the-art methods for identifying borders consists of two categories: similarity distance methods [3]

 REF _Ref165273986 \r \h 
[5] and active learning [2]. 
The similarity distance method for Border Identification, denoted as BI, can be described as follows [3]

 REF _Ref165273986 \r \h 
[5]. For each data point, the k-nearest neighbors from other classes are identified as data points on the border. As a result, a border can be created by scanning the whole training set.  The Nearest-neighbor editing algorithm [4] pertaining to this category can be used to find a border by constructing the full Voronoi diagram in which all adjacent data points are connected with each other. The main drawbacks are that one cannot add training data later because the pruning step requires knowledge of all the training data ahead of time, and its  complexity of O(d3n(d/2(ln(n)) [4] is still intractable for many practical applications.
Active learning [2] as an indirect method has been applied to the problem of border identification by reducing the region of uncertainty [2]. The method depends on the selection of learners used, e.g., feedforward neural networks and mixtures of Gaussians, etc [2]. 
In this paper, we embrace the first category of work that uses a similarity distance method and develop a new approach in that category that avoids some of the limitations of traditional BI as follows.

2.2 
Definition of a Border in the BI context

Informative data points are defined for delineating a border as follows.
Definition  AUTONUM  \* Arabic  Given a data point p in a training set, the informative data points of p are its nearest neighbors from the other class. A set of informative data points is a border. 

Basically, this definition follows either Duch’s definition of border [3] or Foody’s definition of border [5].  


[image: image1]
Figure 1. Identification of border in a synthesized training set.

Example 1. Given a labeled (circles and squares) synthesized binary training set with 10 data points, as shown in Figure 1, we use the BI method to identify its border. For each circle point, we find its informative data points. As a result, all informative data points of the circle class is Bc = {3, 4}. Similarly, all informative data points of the square class is Bs = {1, 2}. The border B = Bc ( Bs = {1, 2, 3, 4}.

However, as shown in Figure 1, a learned classifier built on B might have low performance for predicting data points 5, 6, 7, and 8. We observe that the resulting border does not contain the data points 5 and 7. No boundary between 2 and 5 or 4 and 7 can be easily learned. The data at 5 and 6 or 7 and 8 are far from the others. 

3 
Full Border Identification
We avoid the limitations of the current BI method by introducing the concept of a full border, which reflects our observation as follows. 

3.1 
Full Border

In Figure 1, we consider how 9 and 10 are close to the border. The data point at 1 on the border is the nearest point to 9. They are both in the circle class. Similarly, 3 on the border is the nearest point to 10. They are both in the square class. 

Definition  AUTONUM  \* Arabic  A data point is redundant iff it is not on the identified border and is nearest to an informative data point with the same class label from the border. 
As we can see, in Figure 1, the points 9 and 10 are two redundant data points while the points 5, 6, 7, 8 are neither informative data points nor redundant ones. For the points 5, 6, 7, and 8, we need to define a new border among these data points for learning the hyperplane. We formalize this case by the following definitions. 
Definition  AUTONUM  \* Arabic  A border identified by the BI method is defined as a near border. The border which cannot be directly identified by the BI method is called a far border.
The simple definition of far border may allow developing a proper method to identify far borders. In practice, far borders in this paper can be defined by Example 2.
Example 2. Given the synthesized training set as shown in Figure 1, redundant data points 9 and 10 can be removed according to the near border Bn = {1, 2, 3, 4}. The remaining data points are neither the part of a border nor redundant data points. They are 5, 6, 7, and 8. As a result, the far border consisting of 5 and 7 can be effectively identified as informative data points of the border from the remaining data points. As a result B = Bn ( Bf = {1, 2, 3, 4} ( {5, 7} = {1, 2, 3, 4, 5, 7}. 
3.1.1. Farther border. A far border can be a farther border to another already extended one. The farther border can be identified as informative data points of the previously extended border by removing its corresponding redundant data points. This is a recursive process. Simply stated, farther borders are also far borders.
For example, as discussed before, suppose we obtain the extended border B = {1, 2, 3, 4, 5, 7}. After removing its redundant data points 6 and 8, the remainder is empty. It shows that we cannot find anymore farther borders in this case. 
3.1.2. Multi-classes. In Example 2, we describe a method for identifying a full border on a binary domain. For multi-domains, a full border can be found in a pairwise way which is similar to the 1-1 strategy used in learning algorithm for multiclass applications [14].  
Suppose we have a training set with c classes. Bij is a border between the class i and the class j. We have
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, where those Bij are not necessarily exclusive from each other, i.e., sampling without replacement.
3.1.3. Optimal border and bias. A full border should be adequate for training and helps a learner build an optimal classifier. An optimal border is biased towards more informative data points than a narrow full border for building an optimal classifier.
Instead of Definition 1, the semantics of a border can be given as follows.
Definition 4. The semantic border is defined as an optimal border consisting of all the near and far borders.
3.2 
Illustrations
On the first synthesized data set, as shown in the leftmost graph of Figure 2, BI with Radial kernel distance function [8], i.e.,
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for a Mahalanobis distance by assuming the independences among variables, only identifies an incomplete border, as shown in the second graph, while a full border is identified by our new method BI2 (see Section 4.1) in the third graph, i.e., those informative data points covered by ovals were not identified by BI. The rightmost graph also shows the result of BI2 with Cosine, which is believed not to be optimal due to the sensitivity of translation for Cosine similarity [13]. However, on the second synthesized data for a complicated XOR problem, as shown in the leftmost graph of Figure 3, the BI algorithm with Cosine similarity can only find an incomplete border, as shown in the second graph, while BI2 with Cosine shows its complete capability to identify a full border in the third graph. The rightmost graph also shows the result by BI2 with Radial Kernel similarity. 
Cosine has the natural normalization to the unit sphere [13] and more informative points obtained in class core [5]. Cosine metric is adopted in this paper for illustration although the case shown in the rightmost graph of Figure 2 is far from ideal. 
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Figure 2. BI and Radial Kernel. A synthesized data corresponding to Example 1.
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Figure 3. BI and Cosine. A complicate XOR problem.

4 
PBS Algorithm
We propose a new method called Border Identification in Two Stages, denoted as BI2, for identifying a full border. Based on this BI2 method, Progressive Border Sampling (PBS), described thereafter, progressively mines an optimal border.

4.1 
BI2
Figure 4 presents the BI2 algorithm, which assumes two stages to identify a full border for a binary domain. It has three inputs: two categories Ci and Cj; their previously identified border Bij between the class label i and the class label j. At the very beginning, Bij is empty. 

At the first stage, BI2 generates the near border between classes Ci and Cj from Step 1 to Step 4 by generating the informative data points of either Ci from Cj or Cj from Ci. 1stNN(p, Cx) with x: i or j at Steps 1 and 2 searches for all the 1-nearest neighbors of p from Cx in terms of similarity metrics. At Steps 3 and 4, Bij, Ci, and Cj will be updated. At the second stage from Step 5 to Step 6, BI2 will identify far borders in the two classes, Ci and Cj, with the remaining data points, separately, by farBorder(). As a result, BI2 simply assumes an inertial way without heuristics.  

From Step 7 to Step 13, farBorder() in BI2 initializes D′ with the set of the remaining data points D and the identified far border Bf with empty. Bk is one of its inputs, which is denoted as the resulting border in the kth iteration between Ci and Cj at this point, and corresponds to Bij from Step 5 or Step 6. 


[image: image13]
Figure 4. BI2 algorithm.
The while loop between Step 8 and Step 12 first removes all the redundant data points in the remaining database using removeRedundant() at Step 9 according to Theorem 1, i.e., D′ = {x | (x(y, x ( D′ ( y ( Bk ( y ( 1stNN(x, Bk) ( l(x) ( l(y)), where the l(x) function returns the class label of x. As a result, those tied points are also informative data points, i.e., l(x) = l(y′). Step 10 is the only exit point of the while loop. It is activated on condition that D′ is empty. A far border B′f is identified at Step 11 by generating the informative data points of Bk from D′. At Step 13 after the exit at Step 11, the identified far borders Bf must be removed from the original D. 

The main procedures in BI2 are several iterations of the 1stNN() and removeRedundant() procedures in the while loop of farBorder(). The time complexity of BI2 can be analyzed as follows. 
Suppose n = |D| and ni = |Ci|, n = (ni. The time complexity of 1stNN() for two classes Ci and Cj is always O(fninj) for its informative data points, where f is  the number of features in a training set. 
The time complexity of removeRedundant() has an upper bound of O(fninj). The time complexity of the second stage from Step 5 to Step 6 can be computed by O(frninj), where r is the depth of the iteration in the while loop of farBorder(). 

Therefore, BI2 has a time complexity of O(frninj) for the binary case. Empirically, r is bounded by a small number (« n). For example, r in Anneal of UCI is 4.
Theorem 1. If p is identified by BI2 as a redundant point with respect to any border B extended from the near border, then p is still redundant with respect to the full border. Proof: suppose p′ is the nearest neighbor of p from B. We can prove that (q from a class different from p’s, we have dist(p′, p) < dist(p, q), where dist() is  the selected distance metric. Hence, p cannot be identified as an informative point later on.
4.2 
PBS
Technically, Progressive Sampling (PS) [9] can maximize the accuracy of a model by learning on a small sample from the original large population. The standard PS [9] starts with a small sample and generates progressively larger ones until the model’s accuracy no longer improves. The convergence detection is related to a learning curve, denoted as acc(n), created by a base learning algorithm, and represented by  a curve plotting accuracy versus sample size.
The PBS algorithm is proposed to learn an optimal sample for building a model, which identifies a proper border. It utilizes the progressive learning technique [9], as mentioned above, to iteratively learn a small sample by identifying a full border until it converges to an optimal border. 

As shown in Figure 5, at Step 1, getClassset(D) performs a scan on D to partition the data and put data points into exclusive classes. From Step 2 to Step 11, PBS learns an optimal sample by identifying local optimal borders between two classes in a binary way. Bij at Step 3 is denoted as the local optimal border between Ci and Cj, and initialized with empty. C′i and C′j are the copies of Ci and Cj, respectively, and Cij is their union used in the test at Step 7. At Step 6, PBS invokes BI2 to identify a local full border in two stages given Ci and Cj, and the previously generated Bij.

ValidateNBModel() in Step 7 validates Bij by training a NB classifier on Bij and testing it on Cij. Acc describes a learning curve by recording the results of validation with accuracy. 

At Step 8, IsConvergence() is used for convergence detection given the current point k and the history of validation in Acc. Its analysis and design are described in Section 4.3. The local optimal border is defined with the previously generated Bij at Step 9 if convergence occurs. Otherwise, the current Bij is kept at Step 10. At Step 11, we obtain an optimal sample B by performing the union of all the local optimal borders Bij.

Because the time complexity of BI2 is O(frninj) (see Section 4.1), the time complexity of PBS can be obtained in a straightforward manner by sum of all O(frninj), i.e., (i ( j(frtninj ) = frt((ninj – (
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 ( n), where r is the maximum depth of iteration in the second stage of BI2 and t is the maximum number of tries in the loop of Step 5 for all local optimal borders in PBS. 

The value of t depends on the convergence detection. According to the method defined for convergence at Step 8, empirically, PBS always converges to an optimal border with a small number of tries. The average number of tries in the given benchmarks datasets from UCI is 4 while the maximum number of tries in PBS is never more than 6 by assuming the inertial way of BI2 for the resulting sample. 

[image: image18]
Figure 5. PBS algorithm.
4.3 
Convergence Detection

A base learning algorithm is needed for building a learning curve in Step 8 as shown in Figure 5. Naïve Bayes (NB) has a number of advantages and has been used for sampling [6]. We use NB with Gaussian estimator (GNB) instead of NB with Maximum Likelihood estimator (MNB) [8] because GNB is more efficient than MNB. 
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Figure 6. The rule for convergence detection.

PBS intends to effectively manipulate the progress of the learning curve of Naïve Bayes, which is a linear machine [4]

 REF _Ref179176117 \r \h 
[8]. Furthermore, this adaptive learning curve has been observed as shown for PBS on the Letter dataset in the right graph of Figure 6, and shown for two general fashions in the left graph of Figure 6, and it is different from the traditional learning curve obtained with the power law [6]

 REF _Ref165261657 \r \h 
 \* MERGEFORMAT [9]. 
In IsConvergence() at Step 8 of Figure 5, we define a rule with two points in a learning curve for convergence detection. That is, Acc[n2] – Acc[n1] ( 0. For example, in Figure 6, n2 and n′2 are two convergent points corresponding to two learning curves. 
Table 1. The characteristics of 30 benchmark datasets from UCI.

	Datasets 
	#attr/cl
	#ins
	t/r
	#PBS
	%
	Datasets 
	#attr/cl
	#ins
	t/r
	#PBS
	%

	Anneal
	39/5
	898
	3/4
	418
	46.55
	Labor
	17/2
	57
	3/1
	33
	57.89

	Audiology
	70/24
	226
	2/2
	211
	93.36
	Letter
	17/26
	20000
	5/2
	18540
	92.70

	Autos
	26/6
	205
	3/3
	187
	91.22
	Lymph
	19/4
	148
	3/2
	121
	81.76

	Balance-s
	5/3
	625
	3/1
	215
	34.40
	Mushroom
	23/2
	8124
	3/1
	1220
	15.02

	Breast-w
	10/2
	699
	3/2
	257
	36.77
	P-tumor
	18/21
	339
	3/3
	326
	96.17

	Colic
	23/2
	368
	3/2
	257
	69.84
	Segment
	20/7
	2310
	3/2
	1343
	58.14

	Credit-a
	16/2
	690
	3/2
	452
	65.51
	Sick
	30/2
	3772
	3/3
	766
	20.31

	Diabetes
	9/2
	768
	6/2
	574
	74.74
	Sonar
	61/2
	208
	4/2
	174
	83.65

	Glass
	10/6
	214
	3/3
	177
	82.71
	Soybean
	36/18
	683
	2/2
	593
	86.82

	Heart-s
	14/2
	270
	3/3
	200
	74.07
	Splice
	62/3
	3190
	4/2
	2847
	89.25

	Hepatitis
	20/2
	155
	3/2
	79
	50.97
	Vehicle
	19/4
	846
	4/2
	707
	83.57

	Hypothyroid
	30/4
	3772
	4/4
	548
	14.53
	Vote
	17/2
	435
	4/1
	181
	41.61

	Ionosphere
	35/2
	351
	6/3
	275
	78.35
	Vowel
	14/11
	990
	3/2
	970
	97.98

	Iris
	5/3
	150
	3/2
	40
	26.67
	Waveform
	41/3
	5000
	4/3
	4283
	85.66

	Kr-vs-kp
	37/2
	3196
	4/2
	2440
	76.35
	Zoo
	18/7
	101
	21
	58
	57.43

	Avg.
	
	
	
	
	
	
	
	
	3/2
	
	65.47


5 
Experiments

We conducted experiments on 30 benchmark datasets from UCI [1]. The characteristics of these datasets are described in Table 1, where the columns  are the names of the datasets, the number of attributes and classes(#attr/cl), the number of instances (#ins), the maximum number of tries (t) for border identification  between two classes and the maximum depth (r) of iteration of far borders, the number of data points selected by PBS (#PBS), and the percent (%) of data selected by PBS over the overall number of instances (the ratio of #PBS over #ins). A small fraction of #PBS over #ins is preferable. For instance, Mushroom is reduced to 15.02%. As a result, PBS reaches convergence in the 30 benchmarks of UCI with a maximal value of t = 6 for Diabetes dataset and a minimal value of t = 2 for Audiology dataset. The depth of iteration for far borders reaches a maximum of 4 in the Anneal dataset and a minimum of 1 in the Mushroom dataset, etc. The averages are shown at the bottom.
We compared the performance of Naïve Bayes (NB), Support Vector Machine (SVM)[10], and Decision Tree (C4.5)[11], built on optimal borders produced by PBS (PBS), on full training sets (Full), and on simple traditional borders produced by traditional BI (BI), which is set with cosine metric and width 1 without loss of its generality while other metrics for BI do not show their merits. We use Weka’s implementation [16] with default settings, e.g., NB with Gaussian estimator, SVM with polynomial of 1 for kernel function and constant C of 1 for soft margins, and C4.5 with no reduced error pruning and no C4.5 pruning and no Laplace smoothing.
In Figure 7, we summarize the results obtained for the analysis of time complexity (a) with respect to PBS and BI, and sample sizes (b) with respect to PBS, Full, BI, and the size of far borders (Far) by PBS, in each fold of 10CV. It is shown that PBS is never 5 times slower than BI on average. The sample size of PBS never is 3 times larger than that of BI, where 30 percent of the border points by PBS are far borders on average. For instance, in Mushroom, only 1143 points with 5 far border points are identified by PBS in 168 seconds for modeling as compared with 7311 points by Full.
The paired t-test with 95% confidence level by resampling in 10CV is applied between PBS and Full, and BI. In Table 2, in a small column in front of each result, ‘w’ and ‘l’ denote that PBS wins and loses, respectively, against Full and BI while an empty space represents a draw. 
In Hypothyroid, PBS produces a low accuracy for NB while PBS is more successful for nonlinear classifiers, e.g., C4.5. It can be explained that the optimal boundary of NB by PBS leads to a lower accuracy than that built on full datasets because NB learner simply ignores the minor class for high accuracy on datasets with high imbalanced classes. The accuracy metric might not be a proper measure for evaluation on imbalanced datasets while the F-measure, G-Mean, or AUC [7] have been used for evaluation of models on imbalanced domains. We calculate the AUC values for the three learned classifiers corresponding to PBS and Full on Hypothyroid, respectively: 0.9225/(l)0.9387(NB); 0.8241/(w)0.7036(SVM); 0.9618/0.9513(C4.5). According to the AUC values, PBS improves SVM and resembles Full for C4.5 while it only slightly degrades the performance of NB. On the other hand, in Hypothyroid, the size of the optimal border by PBS is 462 with 164 informative data points identified on far borders as compared with 3394 points in the full training set while the size of border by BI is only 291. However, the performance of the classifiers built by BI is much poorer than that built by PBS.
In summary, PBS improves NB in most cases, e.g., non-class imbalanced domains, while PBS with the inertial way of BI2 degrades SVM, somewhat, and C4.5 for accuracy in some cases as compared to the modeling on the full training sets in 10CV. Furthermore, PBS improves the traditional BI methods overall, although PBS generally produces somewhat larger samples than BI (1.5 times on average). The results for the t-test on the 30 datasets are shown at the bottom of Table 2, where w\ \l denote win\draw\lose for PBS in each case. These results confirm our analysis.

6 
Conclusion and Future Work

In practice, all labeled training sets contain a latent border. The semantic border can be defined as an optimal border consisting of all near and far borders. Our proposed algorithm, the Progressive Border Sampling technique can progressively learn optimal samples by avoiding the limitation of the traditional Border Identification (BI) method. One of the main advantages of PBS is shown that it can reduce training sets more effectively with an acceptable learning cost and no loss of performance than the traditional BI can. Our experimental results on 30 benchmarks from the UCI repository show that PBS helps classifiers build models similar to those built on full training sets in most cases (87 for win or draw versus 13 for lose) and overwhelmingly outperforms the traditional BI technique for the reduction of training sets.

Future work will focus on any improvement of the potential scalability of this quadratic PBS for sample selection on large datasets by using Monte Carlo integration [12], and evaluation of strength of Radial kernel function or other metrics for PBS.
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Figure 7. (a) The scaled elapsed times and (b) sample sizes of PBS, Full and BI.

Table 2. The performance (acc) of NB, SVM, and C4.5 built by PBS, Full, BI.

	datasets
	NB
	SVM
	C4.5

	
	PBS
	
	Full
	
	BI
	PBS
	
	Full
	
	BI
	PBS
	
	Full
	
	BI

	Anneal
	86.81
	
	86.42
	w
	82.51
	95.66
	l
	96.94
	w
	87.30
	98.33
	
	98.55
	w
	95.32

	Audiology
	72.35
	
	71.90
	
	73.69
	80.71
	
	80.72
	
	80.28
	75.39
	
	76.08
	
	74.96

	Autos
	53.00
	
	54.90
	
	51.49
	69.55
	
	69.60
	
	68.31
	81.65
	
	83.14
	w
	75.79

	Balance-s
	89.28
	
	90.63
	
	87.93
	87.92
	w
	86.56
	
	87.43
	77.69
	l
	79.61
	w
	74.66

	Breast-w
	96.28
	
	96.07
	
	96.36
	96.71
	
	96.71
	
	96.50
	93.49
	
	94.06
	
	93.06

	Colic
	79.73
	
	78.76
	
	79.33
	81.54
	
	82.20
	w
	77.32
	80.30
	
	82.06
	
	79.50

	Credit-a
	80.29
	w
	77.61
	l
	81.67
	85.14
	
	84.64
	w
	84.13
	80.87
	
	82.46
	
	78.77

	Diabetes
	74.29
	
	75.26
	
	72.27
	76.11
	
	76.70
	w
	73.77
	71.56
	
	73.84
	w
	65.24

	Glass
	54.23
	w
	46.99
	
	51.93
	55.35
	
	58.32
	w
	50.89
	68.68
	
	69.58
	
	65.63

	Heart-s
	85.00
	w
	83.33
	
	83.70
	82.78
	
	83.89
	
	81.30
	74.63
	
	75.37
	
	74.63

	Hepatitis
	85.08
	
	83.19
	
	85.40
	83.15
	
	84.54
	w
	78.27
	77.33
	
	78.54
	
	70.65

	Hypothyroid
	70.76
	l
	95.32
	w
	45.27
	84.40
	l
	93.64
	w
	47.77
	94.96
	l
	99.54
	w
	92.14

	Ionosphere
	83.50
	
	82.63
	
	84.21
	88.03
	
	88.18
	w
	83.76
	90.48
	
	89.90
	w
	87.46

	Iris
	94.33
	
	95.00
	
	94.33
	92.33
	l
	96.67
	
	89.67
	93.33
	
	95.00
	
	93.00

	Kr-vs-kp
	93.13
	w
	87.81
	w
	92.68
	96.07
	
	95.90
	
	96.23
	99.34
	
	99.41
	
	99.30

	Labor
	91.17
	
	93.83
	
	89.50
	89.67
	
	93.83
	w
	83.33
	79.67
	
	81.50
	
	77.33

	Letter
	64.46
	w
	64.02
	
	64.60
	82.25
	
	82.29
	
	82.26
	87.84
	
	88.05
	
	87.96

	Lymph
	82.43
	
	82.79
	
	83.10
	87.17
	
	86.86
	
	88.21
	79.45
	w
	74.12
	w
	73.33

	Mushroom
	98.18
	w
	95.78
	
	97.94
	99.56
	l
	100.0
	w
	98.72
	99.97
	
	100.0
	w
	99.78

	P-tumor
	49.71
	
	50.00
	
	49.71
	47.50
	
	48.24
	w
	46.17
	42.05
	
	43.37
	
	42.49

	Segment
	79.48
	l
	80.24
	l
	81.93
	92.49
	
	92.86
	w
	91.88
	95.24
	l
	96.73
	
	95.48

	Sick
	94.55
	w
	92.74
	w
	90.26
	95.77
	w
	93.88
	w
	87.08
	95.68
	l
	98.79
	w
	90.51

	Sonar
	69.01
	
	68.81
	
	74.49
	81.01
	
	78.15
	w
	76.39
	75.02
	
	76.95
	
	73.52

	Soybean
	92.97
	
	92.90
	
	92.89
	93.41
	
	93.41
	
	93.41
	90.92
	
	90.63
	
	90.84

	Splice
	95.61
	w
	95.44
	l
	95.99
	93.34
	
	93.40
	
	93.12
	92.49
	
	92.57
	
	92.32

	Vehicle
	46.40
	
	45.32
	l
	49.17
	73.35
	l
	74.59
	
	72.11
	72.64
	
	71.87
	
	70.50

	Vote
	93.57
	w
	90.23
	
	94.25
	95.74
	
	95.74
	w
	94.59
	95.74
	
	95.85
	w
	94.14

	Vowel
	63.48
	
	63.59
	
	63.54
	70.25
	
	69.85
	
	69.90
	80.15
	l
	82.22
	
	80.35

	Waveform
	79.75
	l
	79.97
	
	79.77
	86.37
	
	86.48
	
	86.42
	74.84
	
	75.12
	
	74.71

	Zoo
	95.50
	
	95.05
	
	95.50
	96.00
	
	96.00
	
	95.00
	93.00
	
	93.50
	
	92.50

	Average
	79.81
	
	79.88
	
	78.85
	84.64
	
	85.36
	
	81.38
	83.76
	
	84.61
	
	81.86

	t-test
	
	
	9\18\3
	
	4\22\4
	
	
	2\23\5
	
	15\15\0
	
	
	1\24\5
	
	10\20\0
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BI2 algorithm


Input 	Ci, Cj: two classes


	Bij: the previously identified border between Ci and Cj; Bij ( Ci = ( ( Bk ( Cj = (


Update 	Ci, Cj, and Bij


begin


1	Pi = � EMBED Equation.3  ���


2	Pj = � EMBED Equation.3  ���


3	Bij = Bij ( Pi, Cj = Cj – Pi


4	Bij = Bij ( Pj, Ci = Ci – Pj


5	farBorder(Ci, Bij)


6	farBorder(Cj, Bij))


end


farBorder(D, Bk)


7	D′ = D; Bf = (;


8	while(true)


9		D′ = removeRedundant(D′, Bk)


10		if(D′ = () break


11		B′f = � EMBED Equation.3  ���


12		Bk = Bk( B′f; Bf = Bf ( B′f; D′ = D′ – B′f


13	D = D – Bf





PBS algorithm


Input 	D: a sample for training with c classes


Output 	B


begin


1	B = (; C = getClassset(D), C = {Ci | i = 0, …, c}


2	for (i, j, where i  < j, Ci ( (, and Cj ( (


3		Bij = (, C′i = Ci, C′j = Cj; Cij = Ci ( Cj


4		Acc[k] = 0, k = 0, 1, …, K, K = 100


5		while(true) 


6			BI2(C′i, C′j, Bij)


7		Acc[k]=ValidateNBModel(Bij, Cij)


8		if(IsConvergence(k, Acc ))


9				Bij = old; break; 


10		old = Bij, k++


11		B = B ( Bij


12	return B


end
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