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Abstract. Naïve Bayes (NB) is an efficient and effective classifier in many cases. 
However, NB might suffer from poor performance when its conditional independence
assumption is violated. While most recent research focuses on improving NB by 
alleviating the conditional independence assumption, we propose a new Meta learning 
technique to scale up NB by assuming an altered strategy to the traditional Cascade 
Learning (CL). The new Meta learning technique is more effective than the traditional 
CL and other Meta learning techniques such as Bagging and Boosting techniques while
maintaining the efficiency of Naïve Bayes learning.
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1   Introduction

Naïve Bayes (NB) is a simple Bayesian classifier which assumes conditional independence 
of the domain’s attributes. Research has shown that NB exhibits high accuracy over other 
classifiers in many cases [5]. Moreover, because it is efficient, due to its linear time 
complexity for training, NB has been widely applied to many practical applications such as 
text classification [20].

The main problem with NB is that it suffers from poor performance if the conditional 
independence assumption is violated [20]. Previous research emphasizes the improvement of 
NB by alleviating the assumption [5][19][26]. For example, NB can be improved by 
selecting an effective set of attributes which satisfy the conditional independence 
assumption [17] or by combining decision tree with Naïve Bayes [16]. More recent research 
focuses on One-Dependent-Estimation (ODE) [14][26][29][30] by building a simplified 
Bayesian network structure in that each node has a single parent node.

However, these improved approaches sometimes still suffer from either ineffectiveness or 
a high time and space complexity as compared to the original NB while they achieve quite a 
success in some circumstances. More simply, one can apply a Meta learning technique such
as Adaptive Boosting (AdaBoost) [9] to improve individual classifiers. This seems more 
attractive because a Meta learner promises a high efficiency by using a linear combination of 
individual classifiers. Unfortunately, the previous Meta learning techniques attempted 
[2][25] failed to scale up NB due to the stability of NB [1][7][23][25].

In this paper, we propose a new Meta learning technique to scale up NB by altering the 
strategy of the traditional Cascade Learning (CL) [11][24][28]. When the traditional CL 
achieves its goal by constructing a new feature space for the Meta level, it is observed that it
often failed to construct a proper feature space for discrimination in the Meta level. Instead, 
the proposed new Meta learning technique, called Cascading Customized Couple (CCC), is 
a domain-based CL built by the construction of sub-domains from the original domain. 



The main advantages of this method consist of the following two aspects:
Firstly, it is more efficient than previously proposed approaches for scaling up NB

because it is a linear combination of two NB classifiers without a significant increase of the 
time and space complexity of NB; Secondly, it is more effective than either the traditional 
CL in most cases by assuming an altered strategy to the CL, or other Meta learning 
techniques such as Bagging and Boosting techniques for scaling up NB.

2   Previous Research

2.1   Meta Learning and Cascade Learning

Previous research has proposed Meta learning techniques to scale up individual classifiers. 
Bootstrap aggregating (Bagging) [2] builds a Meta learner by building diverse models on 
subsamples (or bags) obtained by sampling uniformly with replacement on the original 
training set. Adaptive Boosting (AdaBoost) is a Meta Learning algorithm [9], which 
improves any learning algorithm by repeatedly calling a weak classifier. In each round, the 
weights of each incorrectly classified example are increased and the weights of each 
correctly classified example are decreased, so that the new classifier focuses on the 
incorrectly classified examples. MultiBoostAB [25] assumes the Adaboost technique and 
wagging (sampling with different weights) technique to enhance the original AdaBoost by 
wagging a set of sub-committee of classifiers so that each of them is formed by AdaBoost. 

Cascade Learning (CL) [11][24][28] is quite different from the Bagging and Boosting 
techniques in that it emphasizes a straightforward relationship among individual 
components. For example, previously proposed cascade learning techniques such as cascade 
generalization [11] and stacked generalization [24][28] build a set of classifiers on the 
original domain. They also output class probability distributions for each instance in the 
original domain. A new domain can be constructed from the original domain by using these 
class probability distributions as its feature values in the Meta level. 

Although Bagging, AdaBoost, and MultiBoostAB demonstrates success in many practical 
applications, they often suffer from failures to scale up NB due to the stability of NB
[1][7][23][25]. CL, on the other hand, has difficulty creating a proper feature space for
purpose of discrimination in the Meta level so that it is improper to be used for scaling up 
NB in many cases.

2.2   Naïve Bayes and Enhancement

Given a training set with a probability distribution P, in supervised learning, Bayesian 
learning defines a classifier with a minimized error, i.e.,
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Naïve bayes (NB) [6][18] assumes the probabilities of attributes a1,a2,…,an to be 
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NB can be trained in the linear time complexity O(mn), where m is the number of 
attributes and n is the number of examples in the training set. Moreover, NB is a stable 
classifier, and has exhibited a high performance over other classifiers in many applications.

On the other hand, a number of studies promise the improvement of NB by overcoming 
the restrictions of the conditional independence assumption. We summarize these methods 
into the following three categories:

(I) select a subset of attributes such that they satisfy the conditional independence 
assumption. For example, Selective Bayesian Classifiers (SBC) [19] uses forward selection 
in a greedy search to find an effective subset of attributes, with which a better Naïve Bayes 
is built. 

(II) Combine a decision tree with Naïve Bayes. For example, NBTree [16] builds a local 
NB on each leaf of a decision tree. 

(III) Build a simplified Bayesian network structure by allowing a simple relationship 
between attributes given a class [14][26][29][30]. Tree Augmented Naïve Bayes (TAN) [10]
extends tree-like Naïve Bayes, in which the class node directly points to all attribute nodes, 
and an attribute node has only one parent attribute. TAN has a time complexity of 
O(m2logm) for structure learning, and then a time complexity O(nm2+km2v2+m2logm) for 
training, where m and n are defined as above; k is the number of classes, and v is the average 
number of values for each attribute. 

TAN is also regarded as a One-Dependent Estimation (ODE) technique. Other ODE 
techniques [14][26][30][29] improve TAN without searching for the simplified Bayesain 
network structure. For example, Aggregating One-Dependence Estimators (AODE) [26]
achieves higher accuracy than NB by averaging over a constrained group of 1-dependence 
NB models built on a small space. AODE has the time and space complexities of O(nm2)
and O(k(nm)2), respectively. Although other ODE techniques including AODE is more 
efficient than TAN, they are still more complicated than NB with respect to the time and 
space complexities.

In this paper, we consider a novel Meta learning technique to scale up NB.

3   Cascading Customized Naïve Bayes Couple

3.1   Cascade Learning

As we know from Section 2.1, traditional CL defines the base level and constructs a new 
feature space for the Meta level [28]. Given a dataset D = {(yi, xi), i = 0,…, n – 1}, where yi

is a class value, xi is a vector of attribute values, and n is the number of examples in D, for 
the purpose of scaling up NB, we build K NB models on D in the base level by using k-cross 
validation for diversity. The kth model outputs a probability prediction pik for an input (yi, 
xi), where k = 0, …, K – 1. Therefore, we obtain a new dataset {(yi, pik), k = 0,…, K – 1, and i
= 0,…, n – 1} for the Meta level where another NB model is built on the new feature space. 

However, this CL is not easily realized in practice because it is unclear how to construct a 
proper feature space for discrimination in the Meta level [24], and it is also difficult to make 
NB diverse because NB is a stable learner. To overcome this obstacle, we adopt an altered 
strategy for CL and propose a new definition of a domain-based CL as follows. 
Definition 3.1. Domain-based Cascade Learning (DCL) is an ensemble learning technique 
that learns individual classifiers from the original domain by building each component on its 
own sub-domain which can be reconstructed in terms of the outputs of previously built 
component learners. All components together make a decision.



The above definition of DCL, or simply CL without any confusion, finds its roots in 
previous research related to cascade generalization [11] and stacked generalization [24][28].
Some ideas similar to CL in Definition 3.1 have been raised in previous research. For 
example, the Cascade-Correlation method learns the architecture of artificial neural 
networks using a strategy similar to CL [8]. A mixture of local experts [13] can be built on a 
partitioned domain by assuming the Expectation Maximization (EM) algorithm for the 
mixture [15]. Recursive Bayesian Classifiers (RBC) [17] is a suggestive schema that uses a 
hierarchy of probabilistic summaries instead of a single schema, i.e., RBC partitions 
instances and recursively builds simple NB on each partition. Our method proposed in this 
paper can be regarded as an implementation of this hierarchy.

3.2   Customized Classifier

The main idea behind this altered CL is related to a new classifier, called Customized 
Classifier (CC). For example, NB is a linear classifier [6], and it can become a CC. Suppose 
that a training set is divided into many small subsets. Therefore, an individual NB classifier
can be built on the partitioned training set for classifying a target subset. We describe several 
related concepts as follows.
Definition 3.2. A labeled training set can be regarded as a domain, which describes some 
domain knowledge. A subset of the training set can be regarded as a sub-domain. 

A sub-domain does not have to contain examples belonging to the same category 
although examples in each original class naturally constitute a sub-domain. Not any sub-
domain but those sub-domains that cross the class boundary are more likely to be
informative.

The original domain can be divided into many sub-domains if necessary, and sub-
domains can be labeled by artificial class labels as additional classes. Therefore, a classifier 
can be customized on the partitioned domain in terms of the related sub-domain.
Definition 3.3. A Customized Classifier (CC) is a classifier, which can classify an input in 
the related sub-domain, and can reject the classification on an input outside the sub-domain. 

Definition 3.3 can be further explained as follows. A CC can output the class distribution 
of an input with respect to both of the original classes and the additional classes. For an 
input outside the related sub-domain, the CC intends to classify it by outputting a class 
membership probability of 0 or an equal class membership probability for the original 
classes. This leads to the rejection of classification on the input by eliminating its effect on 
the final classification if an averaging combination rule is used. 

Although the number of CC is not limited, we emphasize the use of a couple of individual 
CCs in this altered CL. In particular, we suggest Cascading Customized Couple (CCC) for 
scaling up NB. The principles of CC and CCC can be simply described in Example 3.1.
Example 3.1. Given a domain D with two original classes, c1, c2, without any loss of 
generality, two CC classifiers, denoted as H1 and H2, are built from D, where H1 has its sub-
domain S1 and the outside of the sub-domain is labeled by c3; H2 has its sub-domain S2 and 
the outside of the sub-domain is labeled by c4. 

Given an input x  S1 with a true label c1, because x is in the sub-domain S1 of H1, H1 can 
correctly classify x. Suppose we have P1(c1|x) = 0.6, P1(c2|x) = 0.3, and P1(c3|x) = 0.1

Because x is not in the sub-domain S2 of H2, H2 cannot classify x into either c1 or c2. 
Instead, H2 classifies x into its additional class c4, Suppose we have

P2(c1|x) = P2(c2|x) = 0.2, and P2(c4|x) = 0.6, i.e., H2 rejects classifying x into either c1 or c2

because P2(c1|x) = P2(c2|x). Therefore, 
p1 = (P1(c1|x) + P2(c1|x) / 2 = 0.4
p2 = (P1(c2|x) + P2(c2|x) / 2 = 0.25
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3.3   Learning Algorithm

The main issue is that it is difficult to exactly build CCs. Instead, we intend to build 
approximate CCs for diversity as follows. 

Given a training set D, the initial domain is the whole training set with original class 
labels. The first CC0 is built on D using a base learner, i.e., NB. CC0 actually is a traditional 
classifier built on the original training set. The learning algorithm is completed if CC0 totally 
fits the training set D without misclassifications. 

Otherwise, the misclassifications need to be further classified. To this end, we can add 
additional classes to label the corresponding correct classifications. As a result, all 
misclassifications become a sub-domain, and the outside of the sub-domain is labeled by 
artificial labels as the additional classes. The original training set D becomes a new training 
set D1 with the sub-domain containing the misclassifications and the additional classes 
corresponding to the classified examples. The second CC1 is built on D1 and the learning 
algorithm ends up with a couple of CC classifiers. 

Because CC1 is built in terms of the outputs of CC0, we say that they are cascaded with 
each other on D, and they are combined with each other to become a CCC classifier. 
However, we intend to only build approximate CCs, i.e., CC0 and CC1, for diverse models.

Figure 1. Cascading Customized Couple induction algorithm.

CCC algorithm
input D: original domain; 

L: a specified base learner, e.g., NB
output H:CCC, the resulting CCC classifier 
1 saveLabels(D)
2 B = 

// first CC
3 h1 = L(D), B = B  {h1}
4 E = h1(D), CT = D – E

// second CC
5 if(|CT| < |D|)
6 addClasses(CT, D, 0)
7 h2 = L(D), B = B  {h2}
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9 restoreLabels(D)
10 return H:CCC(B)



According to the above discussion, we propose the Cascading Customized Couple (CCC) 
induction algorithm to learn a CCC classifier, as shown in Figure 1.

The CCC algorithm builds a CCC classifier with its two inputs: the original training set D
and a base learner L(), i.e., NB. Because the algorithm performs labeling on D, the algorithm 
initially saves all original labels of examples in the training set D by saveLabels() at Step 1 
while it restores all original labels of examples at Step 9 by restoreLabels() after it builds the 
couple of approximate CC classifiers or simply CC classifiers without any confusion.

At Step 2, B is initialized as an empty set, which is used for collecting the resulting CC 
classifiers. The first CC learner h1 is built on D at Step 3 using the base learner L() = NB() to 
build a traditional NB classifier. At Step 4, the misclassifications E of h1 on D are computed, 
and the correct classifications CT on D are obtained by removing the misclassifications E
from D. 

At Step 5, if |CT| = |D|, then the first CC fits in D, CCC does not build the second CC for 
classifying training errors. Otherwise, the algorithm classifies those misclassifications 
contained in E from Steps 6 to 7.

At Step 6, addClasses()  is used for adding artificial class labels to the original domain D, 
and re-label those correct classifications obtained at Step 4 to the corresponding additional 
classes in terms of their original class labels. In the last phase, at Step 8, the learning 
algorithm defines a CCC classifier, which is an ensemble learner containing the resulting CC 
classifiers in B, with a modified averaged combination schema for decisions, where C is a 
set of original class labels while C′ is a set of original class labels and artificial class labels.

Figure 2. addClasses Algorithm in CCC Algorithm.

addClasses algorithm
input S: subdomain; 

i: beginning index
D: original domain

output D’: a new domain with additional classes
begin
1 L = , L’= , j = 0, k = i
2 foreach p  S
3 c = p.classLabel
4 if(c  L)
5 L[j] = c // current class label
6 L’[j] = c.k // c.k is a new class label
7 p.classLabel = L’[j]
8 k++; j++
9 else
10 p.classLabel = L’[j’], where L[j’] = c
11 addClassLabels(L’, D)
end.
Proc addClassLabels(L’, D)
begin
12 i = 0; k = |D.classes|
13 foreach c = L’[i]
14 D.classes[k + i] = c
15 i++
end



The CCC induction algorithm defines additional classes on a training set for building 
cascaded CC classifiers. These additional classes help define the hyperplanes of a CC 
classifier to classify its sub-domain. Additional classes are defined by invoking the 
procedure addClasses(), as shown in Figure 2, where input i is used as an indicator variable 
for defining new additional classes. 

The addClasses procedure from Step 2 to Step 10 re-labels each instance p in S with a 
new additional class label c.k. But p will be re-labelled with the same label if the current 
label of p is the same as the current label of another instance. L records all the current labels 
and L′ records all the new additional class labels. Finally, at Step 11, the procedure extends 
the list of original class labels of D with new additional class labels.

saveLabels() at Step 1 and restoreLabels() at Step 9, as shown in Figure 1, can be simply 
implemented in linear time complexity. Also, addClasses() adds additional class labels into 
D for those correctly classified examples in CT in a linear time complexity. A base learner 
NB is a traditional induction algorithm, which has a linear training time O(mn)[6]. CCC has 
the time complexity O(kmn) for misclassifications, where k is the number of the original 
classes. Therefore, the CCC has a linear time complexity O(kmn) for training. 

Because CCC changes the class labels of examples for training cascaded CC classifiers, it 
only requires an extra space O(n) for saving the original class labels of examples. Therefore, 
a customized NB classifier requires the space complexity of O((k+k′)mv+n) for its 
parameters and the original labels of examples during the training time, where k′ is the 
number of additional classes. The space complexity of the resulting CCC with a base learner 
NB for a nominal case is O((k+k′)mv) while the space complexity for a continuous case is 
O((k+k′)m).

3.4   An Example

Given a dataset V with two classes, i.e., the square class (minority), denoted as ‘�’, and the 
diamond class (majority), denoted as ‘’, as shown in Figure 3(a), we show how CCC works 
on this synthetic dataset.

CCC with a base NB builds its first classifier. CCC runs the learned NB to correctly 
classify most examples, which are assigned to a minus class, denoted as a ‘’, and a solid 
dot class, denoted as ‘’, for the original diamond class and the original square class, 
respectively, as shown in Figure 3(b). The learner also misclassifies a few diamond 
examples and a few square examples. As we can see, the NB classifier as a linear classifier 
divides the original domain with a straight line. 

CCC continues by building the second classifier and classifying the remaining 
misclassifications on the new sub-domain after all correct classifications are re-labeled with 
additional class labels, i.e., ‘’ and ‘’ for those classified data points belonging to the 
diamond class and the square class, respectively. 

Figure 3. An Example of CCC with a base NB.

(b)(a)



Finally, the resulting CCC is composed of two CC classifiers: the first one is can be 
regarded as the level-0 model outputting correct classifications and misclassifications 
instead of probability vectors in the traditional CL while the second one can be regarded as 
the level-1 model built on the customized domain. The combination rule defined at Steps 8, 
8.1, 8.2, and 8.3 in CCC consists of two normalizations. Clearly, this new strategy is quite 
different from the traditional CL, Bagging, and AdaBoost techniques.

5   Experiments

We conducted experiments to evaluate the proposed new Meta learner CCC on 33 datasets.
32 benchmark datasets are chosen from the UCIKDD repository [12] and another one is a 
synthesized dataset, which is obtained from a scientific application [21]. The scientific 
application is described as follows: a possible method of explosion detection for the 
Comprehensive nuclear-Test-Ban-Treaty [21][22] consists of monitoring the amount of 
radioxenon in the atmosphere by measuring and sampling the activity concentration of Xe-
131m, Xe-133, Xe-133m, and Xe-135 by radionuclide monitoring. Several samples are 
synthesized under different circumstances of nuclear explosions, and combined with various 
measured levels of normal concentration backgrounds to synthesize a training dataset, which 
is called Explosion, for use with machine learning methods. The characteristics of these
datasets are described in Table 1, where the columns  are the names of the datasets, the 
number of attributes (#attr), the number of instances (#ins), the number of classes (#c). 

To justify the proposed Meta classifier CCC to scale up NB, we chose four Meta learning 
algorithms for scaling up Naïve Bayes (NB) [18], i.e., Stacking [28], AdaBoost [9], 
MultiBoostAB [25], and Bagging [2]. These induction algorithms are chosen from the 
Waikato Environment for Knowledge Analysis (Weka) tools [27].

NB is set with Gaussian Estimator for continuous values and Maximum Likelihood 
Estimator for nominal values; Stacking is set with 10 folds and NB as the base learner and 
Meta learner, thus denoted as SNB; AdaBoost runs with the base learner NB and 10 models, 
thus denoted as BNB; MutilBoostAB is set with 10 iterations and the base learner NB, thus 
denoted as MNB; Bagging is set with 10 iterations and the base learner NB, thus denoted as 

Table 1. The characteristics of datasets.
Datasets #attr #ins #c Datasets #attr #ins #c
Anneal 39 898 5 Lymph 19 148 4

Audiology 70 226 24 Mushroom 23 8124 2
Autos 26 205 6 P-tumor 18 339 21

Balance-s 5 625 3 Segment 20 2310 7
Breast-w 10 699 2 Sick 30 3772 2

Colic 23 368 2 Sonar 61 208 2
Credit-a 16 690 2 Soybean 36 683 18
Diabetes 9 768 2 Splice 62 3190 3

Glass 10 214 6 Vehicle 19 846 4
Heart-s 14 270 2 Vote 17 435 2

Hepatitis 20 155 2 Vowel 14 990 11
Hypothyroid 30 3772 4 Waveform 41 5000 3
Ionosphere 35 351 2 Zoo 18 101 7

Iris 5 150 3 Adult 15 48842 2
kr-vs-kp 37 3196 2 Shuttle 10 58000 7
Labor 17 57 2 Explosion 5 92630 2
Letter 17 20000 26



BgNB. Other parameters of these learning algorithms are set with their default settings. 
To compare the CCC with previous approaches to scale up NB, we also chose five 

algorithms to build the corresponding classifiers, i.e., SBC, TAN, NBTree, AODE, and 
HNB. Because the ODE classifiers such as AODE and HNB only can work on nominal 
cases, numeric attributes are discretized and missing values are replaced by using the 
unsupervised methods Discretize and ReplaceMissingValues in Weka, respectively, before 
experiments can be done. 

Experiments were conducted by 2 runs of the 10-fold cross validation. For each round, 
classifiers were built on 9 folds, and were tested on the holdout fold. The process was
repeated 10 times, and the results were averaged. We used the paired t-test and the Wilcoxon 
signed rank test for significance testing on the results (accuracies) from two classifiers. The 
Wilcoxon signed-rank test or Wilcoxon test is a non-parametric statistical hypothesis test for 
two repeated measurements under the assumption of independence of the differences. It is an 
alternative to the paired t-test when these measurements cannot be assumed to be normally 
distributed. Wilcoxon test is used for single training set rather than multiple datasets [4].

We first conducted experiments to compare CCC with the selected Meta learners to scale 
up NB. The results on first 30 benchmark datasets are shown in Table 2, where the columns 
of the corresponding approaches are followed by additional columns, which depict statistical 
test results ‘w ‘or ‘l’; ‘w’ represents a win of CCC against the corresponding approach while 
‘l’ represents a loss of CCC against the corresponding approach; otherwise, both approaches 
are tied; the averaged accuracies are also reported in the bottom of the table.

As we can see, CCC can improve NB in many cases with respect to the paired t-test. CCC 
only degrades NB on P-tumor with respect to the Wilcoxon test. CCC also outperforms 
other Meta learners in most cases. In particular, CCC does not lose to MNB and Bagging in 
any case with respect to the paired t-test. We summarize all the results of the paired t-test, as 
shown in Table 3, where ##/##/## represents the numbers of win, tie, and loss of CCC over 
other Meta learning approaches, respectively. As we can see from the row ‘CCC’, it is 
clearly shown that CCC outperforms other Meta approaches to scale up NB.

Experimental results on three large datasets are shown in Table 4. The results show that 
CCC degrades NB and is inferior to other Meta learners only on the Adult case. In
Explosion, CCC is tied with the other Meta learners due to a large variance in their results
with respect to the paired t-test although the accuracy of CCC is higher than that of other 
Meta learners. We further analyze the Adult case, where the class distribution is
11687:37155. Our experiment is also to calculate the True Positive Rate (TPR) of the 
minority class. As a result, those TPR from CCC, NB, SNB, BNB, MNB, BgNB are 0.8117, 
0.5116, 0.534, 0.5116, 0.5138, and 0.511, respectively. This shows that CCC can more 
precisely classify the minority class than other Meta learners on this case. We emphasize 
that this is rational in many practical applications [3].

We compared CCC with previously proposed approaches such as SBC, TAN, AODE, 
and HNB, which scale up NB by alleviating the conditional independence assumption. As 
mentioned before, experiments were done after numeric attributes were discretized with the 
Discretize method and missing values were replaced by using the ReplaceMissingValues 
method in Weka. Some experimental results are reported in Table 5. 

As we can see, CCC is very competitive with these approaches to scale up NB in these 
cases although CCC might lose to these approaches (other approaches, e.g., AODEsr [30]
and WAODE [14], are omitted without loss of generality) in other cases (omitted due to 
space limitation). In the Splice case, SBC, TAN, and HNB unexpectedly failed to scale up 
NB. CCC is more successful than SBC, TAN, and HNB in this case if the uncorrelated 
attribute ‘Instance Name’ remains in the training set [29]. The results in Table 5 are quite
attractive in practical applications because CCC only builds two individual NB models. 



CCC is much more efficient and has much less space demand than previously proposed 
approaches including recent ODE classifiers such as AODE and HNB.
Table 2. Performance (Accuracy) of CCC, NB and three Meta classifiers on 30 
benchmark datasets.  Those strings such as ‘ww’ represent the results of the corrected 
paired t-test (first) and Wilcoxon rank test (second), respectively. ‘-’ is the case for tie.

Datasets CCC NB SNB BNB MNB BgNB
Anneal 95.43 86.41 ww 35.42 ww 93.65 -w 87.92 ww 86.75 ww

Audiology 72.13 72.12 60.86 ww 79.24 ll 72.12 72.12
Autos 63.87 54.94 ww 38.79 ww 55.40 -w 59.55 56.64 -w

Balance-s 90.71 90.71 91.67 90.63 90.87 90.31
Breast-w 96.07 96.14 96.14 95.35 -w 96.07 96.21

Colic 83.00 78.61 -w 79.02 -w 77.04 ww 79.72 -w 78.48 -w
Credit-a 81.74 78.04 ww 78.41 ww 81.74 79.06 ww 78.12 ww
Diabetes 75.39 75.46 75.39 76.04 76.24 75.72

Glass 48.85 47.42 28.94 ww 47.42 47.42 48.15
Heart-s 84.81 84.26 84.44 83.52 84.63 84.07

Hepatitis 84.60 83.00 83.31 83.90 84.63 83.65
Hypothyroid 97.26 95.27 ww 94.07 ww 95.27 ww 95.39 ww 95.37 ww
Ionosphere 92.32 83.05 ww 83.34 ww 91.18 91.03 82.48 ww

Iris 94.67 95.00 95.00 95.67 95.67 95.67
kr-vs-kp 94.79 87.81 ww 88.08 ww 94.82 89.57 ww 87.75 ww

Labor 93.67 94.67 93.83 93.00 95.50 95.50
Letter 67.44 64.04 ww 56.16 ww 64.04 ww 64.55 ww 64.11 ww

Lymph 80.02 82.36 72.98 -w 79.40 82.36 82.71
Mushroom 99.62 95.78 ww 96.98 ww 100.00 ll 99.59 95.78 ww

P-tumor 46.91 49.41 -l 26.69 ww 49.41 -l 49.41 -l 48.37
Segment 85.19 80.30 ww 82.88 ww 80.30 ww 80.39 ww 80.41 ww

Sick 96.55 92.92 ww 92.70 ww 93.53 ww 93.23 ww 92.66 ww
Sonar 79.61 69.04 ww 69.27 ww 80.58 75.99 -w 69.74 ww

Soybean 92.38 92.90 92.46 91.88 93.04 -l 92.68
Splice 95.91 95.49 -w 95.38 ww 93.97 ww 95.27 ww 95.44 -w

Vehicle 50.94 45.68 ww 45.74 ww 45.68 ww 45.68 ww 45.27 ww
Vote 93.56 90.22 ww 90.22 ww 95.97 ll 91.38 -w 90.11 ww

Vowel 73.23 63.43 ww 65.00 ww 79.75 ll 69.29 -w 63.84 ww
Waveform 80.64 79.96 ww 82.37 ll 79.96 ww 80.32 -w 79.99 ww

Zoo 97.05 95.09 95.55 97.05 97.55 95.09
Average 82.95 79.98 75.70 82.18 81.45 80.11

Table 3. Summary of paired t-test.
NB SNB BNB MNB BgNB

SNB 6/21/3
BNB 1/21/8 3/13/14
MNB 0/23/7 2/17/11 6/22/2
BgNB 0/30/0 3/21/6 8/21/1 6/24/0
CCC 15/15/0 18/11/1 8/18/4 9/21/0 14/16/0

Table 4. Performance of CCC, NB, and other Meta classifiers on three Large datasets.
Dataset CNB NB SNB BNB MNB BgNB
Adult 81.80 83.25 ll 83.34 ll 83.25 ll 83.29 ll 83.23 ll

Shuttle 96.03 93.01 ww 33.01 ww 92.82 ww 93.20 ww 92.93 ww
Explosion 99.15 91.02 99.68 91.02 91.02 91.12
Average 89.98 86.82 72.93 87.32 87.24 86.85



Table 5. Performance (Accuracy) of CCC, NB, and previous approaches for improving 
NB.

Datasets CNB NB SBC TAN NBTree AODE HNB
Balances 91.12 91.20 91.20 87.28 ww 91.20 89.84 -w 90.01
Breastw 97.21 97.28 96.57 ww 94.64 ww 97.21 96.93 96.21

Colic 81.91 79.17 -w 83.82 80.02 -w 80.02 80.95 81.08
Credita 85.29 84.71 84.42 85.00 85.07 86.01 84.93

Diabetes 75.66 76.04 76.76 75.07 75.33 76.95 76.69
Hearts 84.81 84.63 80.00 ww 78.89 -w 82.59 ww 83.89 -w 82.41

Hepatitis 84.25 83.60 82.27 84.54 80.73 ww 84.56 82.29
Iris 95.33 94.67 96.67 91.00 ww 95.00 95.33 93.00 -w

krvskp 94.79 87.81 ww 94.34 92.10 ww 98.26 ll 91.27 ww 92.27 ww
Labor 98.17 98.17 82.67 ww 90.17 -w 97.33 94.67 92.83 -w

Lymph 84.38 84.02 77.62 ww 85.48 83.07 86.38 82.69
Splice 95.91 95.49 -w 52.57 ww 52.57 ww 95.49 96.00 59.11 ww
Vote 93.78 90.22 ww 95.63 -l 94.71 94.60 94.48 94.25
Zoo 95.05 94.05 91.59 94.09 94.59 94.55 98.05

Average 89.83 88.65 84.72 84.68 89.32 89.42 86.13

6   Conclusion and future work

It has been observed that previously proposed Meta learning techniques, Bagging, 
AdaBoost, and MultiBoostAB, failed to scale up Naïve Bayes (NB) due to the stability of 
NB. In this paper, we propose a new Meta learning technique to improve NB. This technique 
is different from recent research which focuses on One-Dependent Estimation (ODE) 
techniques such as AODE and HNB. The new Meta learner adopts the Domain-based 
Cascade Learning (DCL), which is regarded as an altered strategy for traditional Cascade 
Learning for building diverse NB models. We propose the Cascading Customized Couple 
(CCC) algorithm, which only builds a couple of NB. Our analysis and experimental results 
show that CCC is more successful than the previously proposed Meta learning techniques 
used to scale up NB, and more efficient than those ODE techniques. CCC is also very 
competitive with the ODE techniques in some cases. This is very attractive in practical 
applications such as text classification in that one is confronted with large datasets.

Because it is observed in Table 2 that traditional Meta learning techniques such as 
AdaBoost can be more successful than CCC in some cases, it is suggested that CCC might 
be further enhanced by incorporating with the Boosting techniques for Bayesian learning.
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