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Outline

• Supervised vs. unsupervised learning

• Supervised learning aided by additional un-

labeled data

• Paradigms for supervised classification

– Sampling

– Diagnostic

– Regularization depending on input distribution

• Baseline Methods:

– Unsupervised learning, then cluster assignment

– Expectation-maximization techniques

– Expectation-maximization with separator

– Expectation-maximization on diagnostic models
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Outline (continued..!)

• Literature review

– Early work

– Expectation-maximization on a joint density model

– Co-training (paper 2: Understanding the

behavior of Co-training)

– Adaptive regularization

– The Fisher kernel

– Restricted Bayes Optimal Classification

– Transduction
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Outline (continued..!)

• Related Problems

– Active learning

– Coaching, learning how to learn

– Transfer of knowledge from a related task

• Caveats and trade offs

– Labels as missing data

– Diagnostic versus generative methods

– The sampling assumption
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The Problem

• compress data without loss of information

• Occam’s razor: hidden inherent simplicity of rela-

tionships

• Knowledge of the latent variables reduces the com-

plexity of describing the observables

• A model family is a conditional probability distribu-

tion P (A|B, θ), where

– A and B are disjoint sets of variables

– θ ∈ Θ is a latent variable associated with the

model family {P (A|B, θ)|θ ∈ Θ}

– The elements A|B are indexed by the values of θ
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The Problem Divided

• Introduce a clustering variable k of a finite range

• A|B can be described by A|B, k

• An alternative option is to use functional relation-

ships to describe a functional model where the ob-

jective is to separate structure from noise models
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Supervised learning

• examples x ∈ X

• Labels t ∈ T

• An unknown probabilistic relationship P (x, t)

• Learn from data {(xi, ti)|i = 1, · · · , n}

• (xi, ti) are drawn independently from P (x, t)

• Classification or pattern recognition (T is finite)

• Regression (T ∈ R)
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Unsupervised learning

• Follows a well-defined goal

• Minimize the generalization error in classification

• Minimize the expected loss in regression

• No definitive criteria but ”interesting structures”

• Samples {xi|i = 1, · · · , m} are drawn independently

from P (x)

• Perform a density estimation

• Principal Component Analysis (a latent variable u,

noise over x|u in 2-d)

• Factor Analysis (relational over the prior P (θ))

• Mixture Models (a latent variable is a grouping vari-

able from a finite set)
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Unsupervised learning aided by
additional unlabeled data

• Classification problem P (x, t) with unlabeled data

• labeling x from P (x) is expensive according t P (t|x)

• Given an unknown probabilistic relationship P (x, t)

between data points x and class labels t ∈ T =

{1, · · · , c}

• Predict t from x, i.e. find a predictor t̂ = t̂(x) such

that the generation error of t̂, Px,t{t̂(x) 6= t} is small

(close to Bayes error)
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Unsupervised learning aided by
additional unlabeled data (continued..!)

• An algorithm computes t̂ from:

– labeled sample Dl = {(xi, ti)|i = 1, · · · , n}where

(xi, ti) are drawn independently from P (x, t)

– unlabeled sample Du = {xi|i = n + 1, · · · , m}

where xi are drawn independently from the marginal

distribution P (x) =
∑c

t=1 P (x, t)

– Prior knowledge about the unknown relationship

• Du is empty, then supervised learning

• Interesting case, n = |Dl| is small and m = |Du| �

n
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The sampling paradigm (generative
methods)

• Model the class distributions P (x|t) using model fam-

ily P (x|t, θ)

• Class priors P (t) are modeled by πt = P (t|π)

• This is called a joint density model because we model

P (x, t) by πtP (x|t, θ)

• For a fixed θ̂ and π̂, estimate P (t|x) by Bayes for-

mula:

P (t|x, θ̂, π̂) =
π̂tP (x|t, θ̂)

∑c
t′=1 π̂′

tP (X|t′, θ̂)

• We can obtain the predictive Bayesian predictive dis-

tribution P (x|t, Dl) by averaging P (x|t, θ, π) over

the posterior P (θ, π|Dl)

• We have labeled and unlabeled examples, we maxi-

mize the joint log likelihood of both Dl and Du:

n∑

i=1
logπtiP (xi|ti, θ) +

n+m∑

i=n+1
log

c∑

t=1
πtP (xi|t, θ)
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The diagnostic paradigm (diagnostic
methods)

• Model conditional distribution P (x|t) directly using

{P (t|x, θ)} to get a complete sampling of data

• Also, model P (x) using P (x|µ)

• We are interested in updating θ only or in predicting

t on unseen points

• θ and µ are a-priori independent, P (θ, µ) = P (θ)P (µ)

• The likelihood factor is:

P (Dl, Du|θ, µ) = P (Tl|Xl, θ)P (Xl, Du|µ)

• which implies:

– P (θ|Du, Dl) is proportional to P (Tl|Xl, θ)P (θ)

thus P (θ|Du, Dl) = P (θ|Dl)

– θ and µ are a-posteriori independent

– P (θ|Dl, µ) = P (θ|Dl)
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The expectation-maximization
algorithm

• Used for learning in the presence of unobservable

variables

• We need to know the general form of the probability

distribution governing these variables

• The EM algorithm can be used to:

– Train Bayesian belief networks

– Train radial basis function networks

– Unsupervised clustering algorithm

– Basis for forward-backward algorithm for learn-

ing Partially Observable Markov Models
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The EM algorithm

• Data D is generated by a probability distribution of

k normal distributions

• Simplify k = 2, each data point is generated by:

– randomly select one of the k normal distributions

– generate a single random data point xi according

to the selected distribution

• A special case where step 1 has a uniform proba-

bility and the k normal distributions have the same

variance σ2 (known!)

• The learning outputs the hypothesis h = (µ1, · · · , µk)

• Find the maximum likelihood hypothesis of the means

to maximize P (D|h)

• For a single normal distribution

– The sum of squared errors is minimized by the

sample mean: µML = 1
n

∑n
i=1 xi
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The EM algorithm (continued..!)

• For a mixture of k different normal distributions:

hidden variables! then we have data of the form

(xi, zi1, zi2) where zi indicates which distribution the

data point was generated from

• The EM algorithm searches for the maximum likeli-

hood hypothesis by

– repeatedly re-estimating the expected values of

the hidden variables zij

E[zij ] =
P (x = xi|µ = µi)

∑2
n=1 P (x = xi|µ = µi)

=
e
− 1

2σ2
(xi−µj)

2

∑2
n=1 e

− 1

2σ2
(xi−µn)2

– recalculating the maximum likelihood using these

expected values

µj =
1

n

n∑

i=1
E[zij]xi
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Problems with EM algorithm

• Can get stuck in a local optima (reasonable high

marginal likelihood)

• On some models containing structural choices, the M

step is intractably hard

• A standard fix is simulated annealing (run a sequence

of EM algorithms on data and use its solution to ini-

tialize the next one) to find a reasonable deep opti-

mum
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Co-Training algorithm

• Addresses the problem where strong structural prior

knowledge is present

• A robust variant of the EM algorithm to compute

a MAP approximation to Bayesian inference if we

assume compatibility of target concept and the input

is a conditional prior

• Differences between EM and Co-training:

– Feature split

– Labeling unlabeled data (EM does them all in

each round!)

– EM uses all unlabeled example, while Co-training

is incremental
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Co-Training experiments

• Create 2 class problem from 4 data sets

• First 2 data sets provide +ves

• Second 2 datasets provide -ves

• Words in 1st and 3rd datasets are from the same

vocabulary

• Words in 2nd and 4th datasets are from the different

vocabulary

• true class-conditional independence

• redundancy between features

• run random test/split for co-training

• EM and naive Bayes use 6 labeled, 1000 unlabeled,

and 976 tests
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Experimental algorithms

• Co-training using feature split

• Co-Training EM is an iterative algorithm that uses

feature split. First, train A with A-set from labeled

data, then A probabilistically labels the unlabeled

examples. The train B with B-set which uses the

labeled examples (originally and those produced by

A) and relabels the unlabeled examples

• EM algorithm

• Self-training is an incremental algorithm without us-

ing feature split. Initially, it builds a classifier from

the labeled examples, then converts most confidently

predicted examples into labels of training examples

and reuses them for next iteration until all examples

are labeled.
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Experimental Results

Dataset with an independent feature split
Method Labeling Feature Split Error

co-training incremental uses 3.7%

co-EM iterative uses 3.3%

EM iterative ignores 8.9%

self-training incremental ignores 5.8%

Dataset with random feature split
Method Labeling Feature Split Error

training incremental uses 5.5%

co-EM iterative uses 5.1%

EM iterative ignores 8.9%

self-training incremental ignores 5.8%
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Conclusions

• Co-training performs better than EM when feature

set independence is a valid assumption

• EM uses naive Bayes classifier to assign class prob-

abilities for unlabeled examples. These are poorly

estimated because in text data word independence is

violated. Co-training makes limited use of the un-

derlying assumptions of independence.

• EM is likelihood-based and is not specific to the clas-

sification task and suffers when the natural clustering

of unlabeled examples does not correspond to class-

based cluster.

• Co-training is more discriminant, it adds examples

to its labeled set to help the classification


