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Robust Permutation Tests for Matched-Pairs Designs

WILLIAM J. WELCH and LEOPOLDO G. GUTIERREZ*

A branch-and-bound algorithm is described for finding the permutation (randomization) P value in matched-pairs designs
without enumeration of the entire reference distribution. It is not restricted to test statistics that are linear in functions of the
observations, and permutation tests based on trimmed means are investigated. We apply the algorithm to six examples,
demonstrating that the use of a moderately trimmed, instead of an untrimmed, mean can sometimes lead to substantially smaller
P values and shorter confidence intervals. Confidence intervals are obtained by trial-and-error inversion of the P value.
Permutation tests arise in randomization inference, though they can be applied to nonrandomized studies. Under the random-
ization model, permutation tests are exact, giving the correct probability of a Type I error, without distributional assumptions.
The observed test statistic is compared with the reference set of test statistics that would occur under all possible randomizations.
Thus inference is based on the known randomization distribution. This robustness of validity, however, does not necessarily
carry over to robustness of efficiency. The mean pair difference, the test statistic often suggested for permutation analysis of
matched-pairs designs, is well known to lack robustness to outliers and long-tailed distributions. With a trimmed mean, however,
robustness of efficiency also appears possible. Trimming two observations from each tail performs well, relative to no trimming,
in the six examples studied. This stretegy reduces a one-sided P value of .380 (no trimming) to .028 in a 14-pair example
comparing fault rates on telephone equipment. The width of the 95% confidence interval is similarly reduced, by 42%. In the
largest example, a cloud-seeding experiment with 37 pairs, the width of the 95% confidence interval for the effect of seeding

is reduced by 24%. Thus gains in efficiency large enough to be of practical interest appear possible.

KEY WORDS: Branch and bound; Randomization; Randomization test; Rerandomization; Trimmed mean.

1. INTRODUCTION

Permutation tests were first described by Fisher [1966,
chap. 3 (1Ist ed. 1935)]. In the context of randomized ex-
periments, they are also known as randomization or re-
randomization tests. Even if normality assumptions are
correct, permutation tests can be as powerful as standard
parametric tests (e.g., see Hoeffding 1952; Lehmann and
Stein 1949), yet no distributional assumptions are nec-
essary. The only assumption, treatment-unit additivity
(Kempthorne 1955), is questionable for some experiments
but unnecessary under the null hypothesis of no treatment
effects.

Why, then, are permutation tests not widely applied?
Basu (1980) argued that the randomization distribution is
irrelevant for inference, but even among statisticians with
no philosophical objections, the technique is not wide-
spread. We believe there are two fundamental problems.

The first is computational difficulty. For the matched-
pairs design considered in this article, the reference set
has 2" test statistics for an experiment with n pairs. Dwass
(1957) suggested sampling the randomization distribution,
but to avoid different investigators obtaining different
analyses, many test statistics must be sampled. Pagano and
Tritchler (1983) and Tritchler (1984) introduced path-
breaking algorithms for testing and for constructing con-
fidence intervals. These methods have running times that
are polynomial in 7, but they are restricted to test statistics
that are linear in the observations or in functions of the
observations (such as ranks). John and Robinson (1983)
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gave an algorithm for one- and two-sample problems. Ga-
briel and Hall (1983) described methods based on pivotal
statistics that make testing, confidence intervals, and (even
more formidable) power computations feasible (see also
Hall 1985). The main disadvantage of these recent devel-
opments is that they are restricted to simple—linear or
pivotal—test statistics.

The second problem is the limited practical advantage
of permutation tests as currently advocated. The much
more convenient parametric ¢ test is usually a good ap-
proximation to the permutation test for matched-pairs de-
signs if the test statistic is the mean difference, a common
choice. [Pitman (1937) and B. L. Welch (1937) gave results
for randomized, complete-block designs in general.]

The randomization argument does not depend on the
particular test statistic employed. Winsorized means were
considered by Lambert (1985) for the two-sample prob-
lem. W. J. Welch (1987) showed that rerandomizing the
median in matched-pairs designs offers protection against
outliers and is computationally very straightforward. In
this article we use trimmed means, aiming to combine
much of the median’s robustness with the mean’s effiency
for approximately Gaussian distributions. Moreover, the
branch-and-bound algorithm we describe enables the exact
P value to be calculated without explicit enumeration of
the entire reference distribution.

2. THE PERMUTATION TEST

For randomized, matched-pairs designs the model of
treatment-unit additivity can be written as

d = A=*u, i=1,...,n, D

where d; is the observed difference between treatments A
and B for pair i, A is a constant treatment effect, and u;
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is the absolute difference in experimental-unit effects for
pair i. Randomization permutes the treatment labels within
each pair, and we have +u; or —u; if the randomization
happens to assign treatment A to the unit with the higher
or lower unit effect.

Hence under Hy: A = 0, the n observed differences
would have been *d,, . .., *d,, or equivalently *|d,,

., *|d,|, for the 2" possible randomizations. We shall
consider testing Hy: A = 0 against H,: A > 0 throughout.
The P value for this test is the proportion of the 2" test
statistics T(x|d,|, . . . , %|d,|) greater than or equal to the
observed statistic T, In this article, T will be a trimmed
sum with n, (possibly zero) observations trimmed from
each tail. The trimmed mean and trimmed sum are equiv-
alent statistics, but the sum avoids division. The alternative
H,: A <0is handled by reversing the sign of T,. Similarly,
for H,: A # 0, because of the symmetry present, Ty, is
replaced by |T,,| and the resulting P value is doubled.
Tests of Hy: A = A, are converted to Hy: A = 0 by sub-
tracting A, from all observed differences.

This article considers the case of unrestricted random-
ization. If the units within pairs can be meaningfully dis-
tinguished—for example, older-younger—then a re-
stricted randomization with AB and BA each occurring
n/2 times may be more appropriate.

3. THE ALGORITHM
34 Branch and Bound

The branch-and-bound algorithm extends Fisher’s (1966,
chap. 3) idea of partitioning the reference set of test sta-
tistics according to the number of positive signs attached
to |dy|, . . ., |d,|. Branch and bound is typically applied
to optimization problems, but the idea carries over to the
P-value counting problem. Our extension also allows trim-
ming.

The algorithm recursively generates a tree structure.
Nodes of the tree correspond to subsets of test statistics
in the randomization reference set defined by one or more
constraints. If the absolute differences are ordered |d,;)| =
-+ = |d,,| and s, takes the value 1 or 0 to indicate whether
|d| is assigned a positive or a negative sign (i = 1, . . .,
n), then these constraints are of the form

f+e-1
smin = Z s(i) = smax~ (2)
i=f

A constraint can therefore be written (f, €, Sumin, Smax)s
where sy, and sy, bound the number of positive signs
attached to |d;p)|, . . . , |d+._1), f indexes the first ordered
absolute difference with a sign affected by the constraint,
and e is the number of signs affected or the extent of the
constraint. It is also convenient to keep track of the trim-
ming associated with each constraint: the ¢ largest and #
smallest signed differences from |d;p|, . . . , |dif1.-1)| are
trimmed.

Let C be one or more constaints (2), and let (C) denote
the subset of test statistics allowed by C. The algorithm
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commences at the root node defined by
n
Coo: 0= E Spy=n, L =n, ts=n,
i=1

for which 7(C,,) is the entire reference set. If n,(C) is a
function returning the number of test statistics T in t(C)
at least as extreme as T, then the P value is 27"1,(C,oo)-

In our algorithm, the function r,(C) generates k new
sets of constraints Cy, . . . , C; that partition the test sta-
tistics 7(C) of the current, ancestor node into sets t(C,),

., 7(C,) associated with k descendant nodes. The de-
pendence of k on C is omitted. For each of C;, . . . , C,
easily computed lower and upper bounds, T,;, and T,
on the test statistics in 7(C;) are then employed to try to
avoid enumerating t(C;). If T, = T, then all test sta-
tistics 7' in 7(C;) must satisfy T = T, and the P value is
incremented. Similarly, if T,,,, < T, then T < T, for all
T in ©(C). Only if Ty, < Tops = Tmax do we enumerate
7(C;) by recursively calling »,(C;).

Thus the branch-and-bound algorithm branches to sub-
problems by partitioning the test statistics and uses bounds
to avoid enumeration of some subproblems. If the bounds
fail, the procedure calls itself recursively.

Partitioning an ancestor commences by choosing one of
its ¢ constraints (f, €, Syin, Smax)- This constraint, acting on
ldo| G = f,...,f+ e — 1), is replaced by a pair of new
constraints acting on |d|[i = f,...,f + e® — 1] and
ldol [i = f + eV, ..., f + e — 1], respectively. The
value of e is common to all descendants. Thus each des-
cendant copies ¢ — 1 ancestor constraints unchanged and
replaces the selected constraint by two new constraints
[£9, e, s&, s@ (j = 1,2), where fO = f, f® = f +
e®, and e® = e — e™. Heuristics for choosing both the
constraint to be replaced and e will be outlined later.

The descendants differ in the values of s) and s{)
(j = 1, 2) for the new constraints. Computation of the
bounds T, and T, is considerably simplified if s{) =
s( for all descendants. As the replaced ancestor con-
straint assigned Sy, . . . , Smax POSitive signs and the two
new constraints have extents e® and e®, one descendant
must be created for each value of s{) in the range s} =
max[sy, — e@,0],. .. ,min[e®, s.,]. Remaining positive
signs are allocated to the second new constraint: s& =
max[smn — sO, 0] and s@, = min[s,, — s, e@]. For
each descendant it is also convenient for bound compu-
tation if the replaced constraint’s t; and ¢ are divided so
that the new constraint j has #” and ¢ trimmed signed
differences (j = 1, 2); rules are given in the Appendix.

The foregoing partitioning rules lead to independent
constraints, facilitating bound computations. For a node
with ¢ constraints, Tp, = 2., TY), is a sum of contri-
butions from each constraint. Calculation of TY), is de-
scribed in the Appendix. Ty, is given by an analogous
sum.

Our partitioning heuristics aim for small values of T,
— T for the descendant nodes. Any descendant with
Twax = Tin must have Ty = Tops OF Tray < Tops. Con-
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versely, large values of Ty, — T, Often lead to Ty, <
Tops = Tax and further partitioning.

We replace the weakest of the ¢ ancestor constraints:
the one with the largest contribution to the ancestor T,,,
— Thuin- Let (f, €, Smin, Smax) denote the chosen constraint.
To make TY), — T (j = 1, 2) small for both new con-
straints, e should partition |dy|, . . . , |di+.-y)| into two
homogeneous sets. This is easiest to see in the case of the
first new constraint, where s = s@,. If the |d,,| are
identical fori = f,...,f + el — 1, then TQ = TQ,.
Any |d|’s that are trimmed when calculatmg both Tin
and T, contributions for the ancestor constraint are ig-
nored: Let i, and i, be the first and last iini = f, . . .,
f + e — 1such that |d| is not trimmed. Then if i; < i,,
we find the i for which |d;| — |d<,+l)| is maximized over i
— land put e® =i + 1 — f to separate
|d;»| and |d<,+l)| If iy = i,, however, we arbitrarily partition
to the left of i; and choose eV = max(i; — f, 1).

Finally, it is sometimes possible to tighten a constraint
(£, €, Smins Smax) With Spin < Spa. The procedure applies to
the root node, as outlined by Fisher (1966, chap. 3), and
to the second new constraint formed when partitioning
(the first new constraint always has Sy, = Smax). When
partitioning, the tightening algorithm is only invoked if
the new node cannot be bounded immediately. Consider
assigning exactly s,,, positive signs to |d,| (i = f, . . .,
f + e — 1). The revised contribution to the node T,,;, and
hence Ty, itself are calculated. If Ty, = T, then all test
statistics with exactly s,,,, positive signs assigned to |d|
@=1f,...,f+ e — 1)are known to contribute to the
Pvalue, and S,,,, may be decremented by 1. The procedure
continues iteratively, decrementing sy, While Ty = Tops.
Analogous iterations then commence, incrementing s,
while Ty < Tops.

Readers interested in the detailed implementation of
the algorithm may obtain a C source listing from the first
author.

=i1,..
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3.2 Example Branch-and-Bound Computations

Ryan, Joiner, and Ryan (1985, pp. 101-104) outlined
an experiment to compare two materials for the soles of
boys’ shoes. The differences (multiplied by 10) in mea-
sured wear for 10 boys are 8, 6, 3, —1, 11, -2, 3, 5, 5,
and 3.

Assuming that the two materials were randomized to
the boys’ left and right shoes (the details are not given),
we shall test Hy: A = 0 against H,: A > 0. With two
observations trimmed from each tail, T,,, = 6 + 3 + 3
+ 5 4+ 5 + 3 = 25. (Other levels of trimming are explored
in Sec. 4.) The ordered absolute differences |d,| are 11,
8,6,5,5,3,3,3,2, and 1. Note that different observations
will be trimmed when calculating the 1,024 trimmed sums
T(x11, £8, +6, =5, =5, =3, =3, +3, +2_+1) in the
reference set.

Figure 1 shows the tree generated by the algorithm. The
root-node constraint is defined by f = 1, e = 10, s, =
0, and s, = 10; but tightening leads to s, = 8 and sy,
= 9, as shown in parentheses in Figure 1. The revised T,
and T,,, are also shown in parentheses.

To partition the revised root node, the single constraint
is replaced by pairs of new constraints to form descendants
7(Cy), . . ., ©(G;). Only C; is unbounded. Tightening is
also ineffective for C;, the second constraint is replaced,
and descendants C,, Cs, and C, are generated. All of these
descendants are bounded, and the algorithm terminates.

Contributions to the P value occur when C,,, is tight-
ened by reducing s, and when node Cy is bounded by
Tin = Tops. From e, Sy, and s,,,, the one-sided P value

is {0 + ARG + DI}/2° = .0039.

3.3 Differences Equal to Zero

If |dy| = 0, then the sign attached to |d,;| is immaterial.
Thus differences exactly equal to 0 may be discarded, n
is adjusted, and some computational simplification occurs.

Crout
S € 8min 8max 1 S Tmin Tonax
110 0 1022 -25 25
(8 9) (17 25)
Cy Cs Cs
f € 3min 8max tL 83 Trnin Tmax  J € Smin Smax L 85 Tonin Tonax f € Smin 8max tL %3 Tomin Tmax
15 3 322 5 6 1 5 4 421 10 1 15 5 520 16 16
65 5 500 12 12 6 5 4 501 9 11 65 3 402 6 9
17 18 19 22 3 4) 6 9
22 25
C, Cy Ce
f & Smin Smax tL ¢S Tonin Timax /€ Srmin Smax UL Bs Toin Toax [ € 8min Smax tL 83 Tmin Tmax
15 5 520 16 16 1 5 5 520 16 16 15 5 520 16 16
63 1 102 3 3 6 3 2 201 6 6 63 3 300 9 9
92 2 200 3 3 9 2 1 201 1 2 92 o 102 0 0
22 22 23 24 25 25

Figure 1.

Example of a Branch-and-Bound Tree.
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One must take care, however, to determine whether the
discarded zeros are trimmed. For example, suppose n =
10 differences include two that are exactly 0 and n, = 1.
Let n, denote the number of positives attached to the
undiscarded |dy), . . . , |dg|- ff ny = 0, we trim 5 = 1,
but t, = 0 of the signed |dyy), . . . , |dig|; the largest signed
difference is trimmed from one of the discarded zeros.
Similarly, if n, = 8 then t; = 0. Thus we need to start
from three root nodes defined by

8
0= s55=0, £, =0, ts=1,
i=1

8
1 = z S(i) = 7,
i=1
and

8
8523(,')58, tL=1$ ts=0.
i=1

4. SOME EXAMPLES

We ran the branch-and-bound algorithm for the six data
sets briefly described in Table 1. In each case we varied
n,, the number of observations trimmed from each tail,
from 0 to n/2 — 1 (n even) or to (n — 1)/2 (n odd).

Table 2 gives the P values. Clearly, choice of test statistic
can be important: For the faults data, where n = 14, the
P value ranges from .024 (n, = 4) to .380 (n, = 0). The
sample mean with no trimming lacks robustness to the
single outlier present in this data set. The smallest P values
are also achieved with moderate trimming for the mari-
juana data (n = 9, n, = 1), the shoes data (n = 10, n, =
2), the plants data (n = 15, n, = 2), and the rain data (n
= 37, n, = 2); but the comparisons with no trimming are
less striking.

Because a permutation test is exact for the model of
treatment-unit additivity, Equation (1), under the null hy-
pothesis, small P values suggest greater power under the
alternative. Moreover, as will be seen, tests with smaller
P values appear (not surprisingly) to be associated with
narrower confidence intervals for the treatment effect. It
would definitely not be valid, however, to choose a test
statistic minimizing the P value a posteriori. For an exact
test, the test statistic must be chosen a priori.
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There is, of course, an enormous literature on trimmed
means and other robust estimators of location. Rosen-
berger and Gasko (1983), for example, recommended
trimming 25% of the observations from each tail, or less
if very-heavy-tailed distributions are excluded. For the
small-to-moderate samples of Table 2 (where a permuta-
tion is feasible), the simple rule of trimming two obser-
vations from each tail would have given a P value close
to the minimum.

The computer time to calculate these P values tended
to increase with n but decrease with the amount of trim-
ming. Requirements were trivial for the five smallest data
sets where n = 9, 10, 14, 15, and 25. The grapefuit data
with 25 pairs have a reference set of about 34 million test
statistics. Even in the worst case, however, the branch-
and-bound algorithm called n, only 555 times and took
about three seconds on a Data General MV/1000 mini-
computer.

The rain data with 37 pairs were much more expensive
to analyze. The worst case (n, = 0) ran for about 98 min-
utes on a Data General MV /1000, calling n, about 8 million
times; but trimming nine observations from each tail (about
25% trimming), for example, reduced the running time to
about 30 seconds.

P values for the rain data are all fairly high: For all
trimming levels, there is little evidence to reject Hy: A =
0 against H,: A # 0. Confidence-interval comparisons are
more interesting, though. A 100(1 — «)% two-sided con-
fidence interval for A can be constructed from the set of
values of A, with a P value for Hy: A = Ag against H,: A
# A, exceeding a. Trial and error with the branch-and-
bound algorithm yielded 95% confidence intervals of —78
to 30 for n, = 0 and — 64 to 18 for n, = 2. Thus trimming
two observations from each tail reduced the width of the
confidence interval by 24%. The corresponding compar-
ison for the faults data showed a 42% reduction in con-
fidence-interval length.

5. SUMMARY AND DISCUSSION

The branch-and-bound algorithm makes the matched-
pairs permutation test computationally trivial for up to
about 25 pairs. Larger experiments seem rare, but we
successfully enumerated one example with 37 pairs, which
has a reference set of about 1.4 x 10" test statistics. Use

Table 1. Example Data Sets

Name Reference n Comparing

Marijuana Weil, Zinberg, and Nelsen (1968) 9 Changes in performance on the Digit Symbolization Test for na-
ive subjects smoking high-marijuana and placebo cigarettes for
15 minutes

Shoes Ryan et al. (1985, pp. 101-104) 10 Wear on two materials for the soles of boys’ shoes

Faults Welch (1987) 14 Reciprocals of fault rates for test and control telephone equip-
ment

Plants Fisher (1966, chap. 3) 15 Heights of self- and cross-fertilized Zea mays plants

Grapefruit Croxton, Cowden, and Klein (1967) 25 Percentages of solids in shaded and exposed grapefruit halves

Rain Battan (1966) 37 Rainfalls for seeded and nonseeded days in the Second Arizona

Cloud-Seeding Experiment

NOTE: Possible defects in the randomization of the grapefruit data, noted by Preece (1982), are ignored.
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Table 2. Permutation P Values When n, Observations Are Trimmed From Each Tail

Data set

Marijuana Shoes Faults Plants Grapefruit Rain

n, (n=29) (n = 10) (n = 14) (n = 15) (n = 25) (n = 37)
t test .050 .0085 .329 .025 .0021 .38
0 .047 .0137 .380 .026 .0021 .39
1 .043 .0137 .031 .021 .0025 32
2 .055 .0078 .028 .012 .0028 .28
3 .074 .0313 .026 .019 .0028 .30
4 .109 .0547 .024 .028 .0027 .34
5 .031 .035 .0031 .36
6 .061 .034 .0030 .39
7 .055 .0050 .38
8 .0047 .38
9 .0041 .38
10 .0034 .37
1 .0051 37
12 .0048 .36
13 .40
14 43
15 41
16 .36
17 .37
18 .38

NOTE: P values are two-tailed for the shoes and rain data, one-tailed otherwise.

of a trimmed mean causes no difficulty for the algorithm;
indeed, computational effort decreases with the amount
of trimming.

Six data sets were analyzed in Section 4. Histograms of
the observed differences suggest long-tailed distributions
or outliers in most cases. The permutation test with no
trimming, however, agreed well with the ¢ test, which as-
sumes normality. If the model of unit-treatment additivity
(1) holds, the permutation test has the correct probability
of a Type I error. The close agreement of the ¢ test in this
study, therefore, adds to the evidence that the ¢ test is
robust.

As Miller (1986) pointed out, though, the ¢ test’s ro-
bustness of validity does not extend to robustness of ef-
ficiency. The same comment applies to permutation tests
based on the mean. Smaller P values and shorter confi-
dence intervals were obtained with a trimmed mean in
most of the six examples. We should again caution against
choosing the best of several test statistics. The a priori
strategy of trimming two observations from each tail would
have done well in the examples investigated. Clearly, there
is potential for further work here.

One of the greatest strengths of the randomization ar-
gument is that it is independent of the test statistic chosen.
In principle, therefore, inference is no more complicated
for trimmed means or other robust statistics (computa-
tional difficulties may arise, however). The matched-pairs
design is just the simplest experimental plan; the advan-
tages of permutation tests and randomization inference
undoubtedly have wider application.

APPENDIX: SOME COMPUTATIONAL DETAILS

The rules for allocating a replaced constraint’s £ and f so that
new constraint j trims £ and # signed differences (j = 1, 2)

are
1)
1

=18 - 10,

minft, sO] + max[t, — s© — @, 0],

0 = minfts, e® — sO] + max{t; — [e® — sO] — €®, 0},
and

=t - £

The # largest signed differences are trimmed from, first, the
s&) positively signed |d,,| of the first constraint; second, if #, —
st > 0, from the second constraint; and finally, if f, — s® >
e®, from the negatively signed |d,,| of the first constraint. Di-
viding # is analogous. Note that e® — s is the number of
negative signs allocated to |dy| [i = f®, ..., fO + e® — 1]
by the first constraint.

The contribution TY), to T, from a constraint [, e, s

. N min?
sU)] is given by

b v
Y = 2 |d| — ’_2;‘ |del, (A1)
where
a=fo+ {0
b =0 + s — 1- max{tl — [e® — s], O},
u=fo+s@ + 1,
and

v=f0+ e — 1 — max[t? - 50, 0].

The calculation of T, is analogous. The partial sums in (A.1)
can be looked up in a table.

[Received June 1986. Revised July 1987.]
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