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Machine Learning: Lecture 1 

Overview of Machine Learning 
(Based on Chapter 1 of Mitchell T.., 

Machine Learning, 1997) 
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Machine Learning: A Definition 

Definition: A computer program is said to 
learn from experience E with respect to some 
class of tasks T and performance measure P, if 
its performance at tasks in T, as measured by P, 

improves with experience E. 
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Examples of Successful 
Applications of Machine Learning 

❧ Learning to recognize spoken words (Lee, 
1989; Waibel, 1989). 

❧ Learning to drive an autonomous vehicle 
(Pomerleau, 1989). 

❧ Learning to classify new astronomical 
structures (Fayyad et al., 1995). 

❧ Learning to play world-class backgammon 
(Tesauro 1992, 1995). 
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Why is Machine Learning 
Important? 

❧ Some tasks cannot be defined well, except by 
examples (e.g., recognizing people). 

❧ Relationships and correlations can be hidden 
within large amounts of data. Machine 
Learning/Data Mining may be able to find these 
relationships. 

❧ Human designers often produce machines that 
do not work as well as desired in the 
environments in which they are used. 
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❧ The amount of knowledge available about 
certain tasks might be too large for explicit 
encoding by humans (e.g., medical diagnostic). 

❧ Environments change over time. 
❧ New knowledge about tasks is constantly being 

discovered by humans. It may be difficult to 
continuously re-design systems “by hand”. 

Why is Machine Learning 
Important (Cont’d)? 
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Areas of Influence for Machine 
Learning 

❧ Statistics: How best to use samples drawn from 
unknown probability distributions to help decide 
from which distribution some new sample is drawn? 

❧ Brain Models: Non-linear elements with weighted 
inputs (Artificial Neural Networks) have been 
suggested as simple models of biological neurons. 

❧ Adaptive Control Theory: How to deal with 
controlling a process having unknown parameters 
that must be estimated during operation?  
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Areas of Influence for Machine 
Learning (Cont’d) 

❧ Psychology: How to model human performance on 
various learning tasks? 

❧ Artificial Intelligence: How to write algorithms to 
acquire the knowledge humans are able to acquire, 
at least, as well as humans?  

❧ Evolutionary Models: How to model certain 
aspects of biological evolution to improve the 
performance of computer programs? 
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Designing a Learning System: 
An Example 
1. Problem Description 
2. Choosing the Training Experience 
3. Choosing the Target Function 
4. Choosing a Representation for the Target          

Function 
5. Choosing a Function Approximation 

Algorithm 
6. Final Design 
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1. Problem Description:                  
A Checker Learning Problem 

❧ Task T: Playing Checkers 
❧ Performance Measure P: Percent 

of games won against opponents 
❧ Training Experience E: To be 

selected ==> Games Played against 
itself 
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2. Choosing the Training Experience 
❧ Direct versus Indirect Experience [Indirect 

Experience gives rise to the credit assignment problem 
and is thus more difficult] 

❧ Teacher versus Learner Controlled Experience   
[the teacher might provide training examples; the learner 
might suggest interesting examples and ask the teacher 
for their outcome; or the learner can be completely on its 
own with no access to correct outcomes] 

❧ How Representative is the Experience? [Is the 
training experience representative of the task the system 
will actually have to solve? It is best if it is, but such a 
situation cannot systematically be achieved]   
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 3. Choosing the Target Function 
❧ Given a set of legal moves, we want to learn how to 

choose the best move [since the best move is not necessarily 
known, this is an optimization problem] 

❧ ChooseMove: B --> M is called a Target Function 
[ChooseMove, however, is difficult to learn. An easier and related 
target function to learn is V: B --> R, which assigns a numerical 
score to each board. The better the board, the higher the score.] 

❧ Operational versus Non-Operational Description of a 
Target Function [An operational description must be given] 

❧ Function Approximation [The actual function can often not 
be learned and must be approximated] 
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4. Choosing a Representation for 
the Target Function 
❧  Expressiveness versus Training set size [The 

more expressive the representation of the target function, 
the closer to the “truth” we can get. However, the more 
expressive the representation, the more training examples 
are necessary to choose among the large number of 
“representable” possibilities.] 

❧ Example of a representation: 
●  x1/x2 = # of black/red pieces on the board 
●  x3/x4 =  # of black/red king on the board 
●  x5/x6 = # of black/red pieces threatened by red/black 

V(b) = w0+w1.x1+w2.x2+w3.x3+w4.x4+w5.x5+w6.x6 

wi’s are adjustable  
or “learnable”  
coefficients 

^ 
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5. Choosing a Function 
Approximation Algorithm 

❧  Generating Training Examples of the form 
<b,Vtrain(b)> [e.g. <x1=3, x2=0, x3=1, x4=0, x5=0, 
x6=0, +100 (=blacks won)] 
●  Useful and Easy Approach: Vtrain(b) <- V(Successor(b)) 

❧  Training the System  
●  Defining a criterion for success [What is the error that 

needs to be minimized?] 
●  Choose an algorithm capable of finding weights of a 

linear function that minimize that error [e.g. the Least 
Mean Square (LMS) training rule]. 

^ 
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6. Final Design for Checkers Learning 
❧  The Performance Module: Takes as input a new board 

and outputs a trace of the game it played against itself. 
❧  The Critic: Takes as input the trace of a game and outputs 

a set of training examples of the target function 
❧  The Generalizer: Takes as input training examples and 

outputs a hypothesis which estimates the target function. 
Good generalization to new cases is crucial.  

❧ The Experiment Generator: Takes as input the current 
hypothesis (currently learned function) and outputs a new 
problem (an initial board state) for the performance system 
to explore In this course, we are mostly concerned 

with the generalizer 
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Issues in Machine Learning (i.e., 
Generalization)  
❧ What algorithms are available for learning a concept? 

How well do they perform? 
❧ How much training data is sufficient to learn a concept 

with high confidence? 
❧ When is it useful to use prior knowledge? 
❧ Are some training examples more useful than others? 
❧ What are best tasks for a system to learn? 
❧ What is the best way for a system to represent its 

knowledge? 


