
ITI 1120 Fall 2012 - Assignment 4

Available: Sunday, November 11, 2012

Due: Wednesday, November 21, 2012, 11:59 pm

Instructions

This assignment is to be done INDIVIDUALLY. Follow the instructions in the lab manual for

submitting assignments through the Virtual campus. The following are specific instructions for

this assignment:

1) For question 1, provide a Word file A4Q1.doc containing the algorithm developed for the

question as well as the programming model that shows the results of tracing the algorithm.

A Visio file is provided for completing the programming model or you may use the

programming model provided in the Appendix of this document.

2) For question 2, submit the Java file A4Q2.java. The Java code should also be inserted in the

files A4Q2.doc for commenting

3) For question 3, submit the Java file A4Q3.java. The Java code should also be inserted in the

files A4Q3.doc for commenting.

4) Zip all the .doc, .java, and .class files in A4_xxxxxx.zip, where xxxxxx is your student

number, and submit it through the Virtual Campus. Please DO NOT return the JUnit test

files that have been provided.

Your algorithms should be developed using the format used in class. In the Java code, use the

coding structures presented in class. Do not use other structures, such as the switch and break

statements.

Marking Scheme (total 100 marks)
 Regulations and Standards: 5 marks
 Question 1: 25 marks

 Question 2: 20 marks

 Question 3: 50 marks

Question 1 (25 marks)

a) Develop a recursive algorithm, reverseChArray that reverses the characters in a character array

containing n characters. For example, the contents of the character array {„a‟, „ ‟, „s‟, „t‟, „r‟, „i‟,

„n‟, „g‟} becomes {„g‟, „n‟, „i‟, „r‟, „t‟, „s‟, „ ‟ , „a‟ } (hint: note that characters in positions 0 and

n-1 are exchanged, as are characters in positions 1 and n-2, 2 and n-3, …..).

The algorithm is given a reference to a character array, cArr, as well as the index of the first array

element under consideration, ixStart, and the index of the last array element under consideration,

ixEnd.

b) Complete the programming model in Appendix A to illustrate how memory is changed by

tracing the recursive algorithm when the contents of the array is {„a‟, „b‟, „c‟, „d‟, „e‟ } (n=5).

Show how the contents of the variables (and any changes) in the working memory of each

recursive call.

Question 2 (20 marks)

Translate the algorithm developed in question 1 to a recursive Java method and put it into the

class A4Q2, stored in the file A4Q2.java. Class A4Q2 should not contain a main algorithm. Test

your method using the JUnit class A4Q2Test.java provided. Do not submit the A4Q2Test.java

file as part of your assignment.

Question 3 (50 marks)

Consider an n x m matrix, the grid matrix, containing Boolean values in which a path is defined

by “true” values. For example:

falsefalsetruefalsefalse

falsefalsetruetruefalse

falsefalsefalsetruefalse

falsefalsefalsetruefalse

Note that the path can move in horizontal or vertical directions (not diagonally) and always will

start on a border and terminate on a border (i.e. first/last row or first/last column). Also a path

can never be adjacent to itself, that is, any point in the path cannot be adjacent to more than two

points of the path, the previous point and the next point in the path. That is, with the exception of

the starting and ending points in the path, only two of the elements surrounding a point in the

path can have true values in the vertical and horizontal directions.

Your task is to complete the file A4Q3.java that has been provided. You do not have to supply

algorithms for this question. But do take the time to think about the logic of the methods before

you start coding. Make notes and even draft out algorithms – it will save you time.

The principle Java method in the class A4Q3 is named findpath and has the header:

public static int [][] findPath(boolean [] [] grid, int row, int col)

The method will return a reference to an integer matrix, the path matrix that defines the path

defined in the grid matrix of Boolean values. The method parameters are defined as follows:

 grid: a reference to the n x m Boolean matrix containing a path of “true” values (hint:

dimensions of the matrix is given by grid.length and grid[0].length).

 row, col: row and column index values of the first point in the path of the matrix; these values

define a position on a border (i.e. an element in either row 0 or n-1, or in column 0 or m-1).

The findPath method shall produce a list of points (row, col) in a path matrix with dimension

l x 2 where l corresponds to the number of points in the path, i.e. the length of the path. For the

above grid matrix, the method produces a 5 x 2 path matrix that contains:

23

22

12

11

10

The method findPath first creates a path matrix with a single row (and 2 columns) that will

contain the first point of the path. It then will call the recursive method doPath to add the other

points to the matrix. The task of the method doPath is subdivided into smaller tasks implemented

within other methods (you will also find the header of these methods in the provided file

A4Q3.java).

 doPath: this recursive method is responsible for finding the path through the matrix and

building the result matrix using other methods. It uses the method findNextPoint to obtain the

next point in a path. Also, for checking if a point is on the matrix border, it calls method

isOnBorder. The end of a path is found when either the following conditions occur:

o The point returned by findNextPoint is on the border of the matrix (first/last row or

first/last column).

o A null value is returned by findNextPoint (an error has been encountered).

 findNextPoint: this method finds the next point in the path given the current path matrix (hint:

you need to consider the last two points in the current path so that the next point selected is not

the before last point). The next point is returned in an integer array (you must create the array

in findNextPoint) with two elements. The first element contains the row number of the next

point and the second element contains the column number of the next point. If the next point

cannot be found or more than one „next‟ point is found, a null address is returned (note that

you must test to see if more than one „next‟ point exists).

 addPoint: this method shall add a row and column number to the end of the path matrix. It

shall increment its length of the row dimension by one and add the given row and column

numbers (row and col parameters). A new matrix must be created and its reference will be

returned by the method. This way the path matrix to be produced by findPath will have the

exact dimension required to contain the path points. The parameter path will contain null

when the first point is added to the path matrix.

Consider the following call:

int [][] path = addPoint(path, 3, 2)

The intention of the above call is to increase the dimensions of the matrix referenced by the

path variable by one row to then add 3 and 2 into the columns of the new row. The only way

to do this is to create a new matrix, copy the contents of the shorter matrix and add the new

point. Thus, addPoint, must return the reference of the new matrix created. This approach will

be necessary for other methods. That is, the reference stored in path is given to addPoint that

returns a new reference (to the new matrix) which replace the previous reference in path.

 isOnBorder: this method returns true if a given point is found on the matrix border (first row

or last row or first column or last column), and false otherwise. Note that the dimension of the

matrix can be obtained with matrix.length (number of rows) and matrix[0].length (number of

columns).

Hints:

 The dimension of matrix referenced by the reference variable mat, is defined by the length

variables defined for rows and columns. That is, mat.length gives the number of rows in the

matrix, and mat[0].length gives the number of columns of the matrix.

 File A4Q3Test.java has been provided to test all methods. Each of the methods provided in the

A4Q3.java file contain a single return statement. These return statements allow the

compilation of the class as provided, and all JUnit but one of the tests defined in

A4Q3Ttest.java will fail. You can develop each method individually (start with the simple

methods) and run the JUnit tests after you complete one method and before you start the next.

Note that the tests in A4Q3Test.java are ordered to test the simpler methods first.

 The design of the findNextPoint shall be the most challenging. Think about using a separate

method to check if a given point can be considered as a next point. The following list gives the

parameters (givens), value returned (results), and the logic of such a method.

o Parameters: A reference to the grid matrix, the indexes (row and column) of the before

last point in the current path, and the indexes (row and column) of the point to consider.

o Value returned: If the point to consider is valid, then an integer array is created, the

indexes of the point stored in the array, and the array address is returned; otherwise the

null address is returned.

o Method logic: Ensure that the point does not correspond to the before last point and that

the indexes of the point to be considered are valid (compare to the dimensions of the

grid matrix). Then if the element of the point in the grid matrix is true, then the point

can be considered a next point. Note that this method shall not be tested by the JUnit

tests.

This method can then be called by the findNextPoint method to check all of the four possible

points around the last point of a given path. Only one next point may exist – it is thus necessary

to check all four points with four calls. If at least two of the calls indicate a next point, then

findNextPoint must return a null value. If only one of the calls returns a non-null address, then

the address can be returned by findNextPoint. Finally, when the current point is on the border

(first point in the path) set the indexes of the before last point to -1.

Appendix A – Programming Model

GIVENS:

MODIFIEDS:

RESULTS:

INTERMEDIATES

HEADER:

BODY:

CPU

Program Memory Working Memory Global Memory

First Call

Second Call

Third Call

