
ITI 1120 Fall 2012 - Assignment 3

Available: Sunday, Oct 27, 2012

Due: Sunday Nov 11, 2012, 11:59 pm (midnight)

Instructions

This assignment is to be done INDIVIDUALLY. Follow the instructions in the lab manual for

submitting assignments through the Virtual campus. The following are specific instructions for this
assignment:

1) For question 1, provide a Word file A3Q1.doc file with the algorithms developed for the question.

2) For question 2, provide a Word file A3Q2.doc file with the algorithms developed for the question.
3) For question 3, submit the Java files A3Q3.java and Circuit.java. The Java code should also be

inserted in the files A3Q3.doc for commenting.

4) Zip all the .doc, .java, and .class files in a3_xxxxxx.zip, where xxxxxx is your student number, and
submit it through the Virtual Campus.

Your algorithms should be developed using the format used in class. In the Java code, use the coding

structures presented in class. Do not use other structures, such as the switch and break statements.

Marking Scheme (total 100 marks)

 Regulations and Standards: 5 marks
 Question 1: 30 marks

 Question 2: 25 marks
 Question 3: 40 marks

Exploring an R-L-C electric circuit

Consider the following electrical circuit that contains one source and three passive electric circuit

elements, the capacitor C, , the inductor L, and the resistor R. The voltage source V (a battery) provides
the energy that will charge capacitor when the switch is in position 1 which connects the capacitor to the
battery.

The following table provides reasonable values for each of the circuit components:

Component Unit Minimum Maximum

V volts 4 15

C farads 1 X 10-9 1 X 10-7

L henrys 1 X 10-3 1 X 10-1

R ohms 5 10

When the switch is thrown from the voltage source to the resistor (capacitor is fully charged), the charge

q(t) of the capacitor varies with time as given by the following equation:

2

2
1

() cos
2

R
t

L
R

q t VCe t
LC L

The function q(t) oscillates and decreases over time as shown in the following graph.

The objective of this assignment is to develop a program that allows the generation of values for q(t)

given values for each of the four components. The following page shows a sample output from the
program. Use it as a guideline for developing your software.

V

(volts)
C

(farads)

L

(henrys)

R

(ohms)

Switch

1 2

q(t)

t

(sec)

VC = initial

charge

Sample Output

ITI1120 Winter 2012, Assignment 3, Question 3

Name: Gilbert Arbez, Student# 81069665

Enter a value for V (4 to 15): 10

Enter a value for C (1e-9 to 1e-7): 1e7

Bad value: 1.0E7

Enter a value for C (1e-9 to 1e-7): 1e-7

Enter a value for L (1e-3 to 1e-1): 1

Bad value: 1.0

Enter a value for L (1e-3 to 1e-1): 0.1

Enter a value for R (5 to 10): 50

Bad value: 50.0

Enter a value for R (5 to 10): 10

--

Voltage Source V = 10.0 volts

Capacitor C = 1.000E-07 farads

Inductor L = 1.000E-01 henrys

Resistor R = 10.0 ohms

--

Reset component values? n

Run a simulation? y

Enter a maximum time (sec): 1.0

Enter a time step (sec): 0.05

--

Time t Q(t)

0.000E000 1.000E-006

5.000E-002 -7.279E-008

1.000E-001 3.859E-009

1.500E-001 -7.128E-011

2.000E-001 -1.562E-011

2.500E-001 2.755E-012

3.000E-001 -2.957E-013

3.500E-001 2.449E-014

4.000E-001 -1.573E-015

4.500E-001 6.397E-017

5.000E-001 1.287E-018

5.500E-001 -6.183E-019

6.000E-001 8.135E-020

6.500E-001 -7.676E-021

7.000E-001 5.694E-022

7.500E-001 -3.117E-023

8.000E-001 7.007E-025

8.500E-001 1.080E-025

9.000E-001 -2.044E-026

9.500E-001 2.248E-027

1.000E000 -1.896E-028

--

Run a simulation? n

Do you want to quit (y/n)? y

Program Terminated

Question 1 – Design of the User Interface

Appendix A provides two algorithms for interacting with the user; the main algorithm and the algorithm
getCircuitComp. The main algorithm interacts with the user as follows.

 Request from the user the circuit component values by calling the algorithm getCircuitComp.
This is done at the very start of the program and within the outer loop of the algorithm.

 The outer loop of the algorithm allows the user to repeat two steps. The first is to prompt the user

to reset the values of the components. To reset the component values, the algorithm
getCircuitComp is called. The second step is to simulate the operation of the circuit as described

in the next point.
 An inner loop is used to simulate the operation of the circuit. To perform this simulation, the user

is asked to provide a time length and a time step for simulation. These values are used to generate

a time array using the algorithm genTimeArr, which is then passed to the genQArray algorithm to
create and fill a q value array. Results can then be displayed using the displayQFunction. These

called algorithms are developed in Question 2. The inner loop prompts the user to run another
simulation and thus allows the user to run a number of simulations for different time values
before resetting the component values.

Note also that the values of the components (battery, capacitor, inductor, and resistor) are all stored in an
array. The four constants VIX, CIX, LIX, and RIX are defined globally so that all algorithms can use

these constants as indices into the component value array.

The getCircuitComp algorithm is used to prompt the user for values of each component in the circuit.
You will notice that for each such value, there is a pattern in the steps taken to interact with the user:

 Setup a loop that monitors the value of flag (a Boolean variable)
 Prompt the user for a value (and store in the array)

 Check the value provided by the user
 If the value is valid (within expected range), set flag to false (to break out of loop)
 If the value is not valid, print an error message.

Note that these algorithms are rather complex. It should then be possible to identify tasks in each
algorithm that can be captured in other algorithms. Then the original algorithms can call these new

algorithms and consequently the original algorithms will become simpler.

a) Expand the main algorithm into the following algorithms:
i. An algorithm that prompts the user to reset the component values. This algorithm is given the

reference to the existing component array. First the current values are displayed (see the example
output). If the user chooses to reset the component values, a reference to a new array (created with

a call to the getCircuitComp algorithm) is returned, otherwise the reference to the original array is
returned.

ii. An algorithm that allows the user to run one or more simulations.

iii. Update the main algorithm to make calls to the above new algorithms.

b) Expand the getCircuitComp() algorithm into the following algorithms.

i. Define an algorithm that receives as givens a prompt string, a minimum value and a maximum
value. The algorithm prompts the user until it obtains a valid value. The result of the algorithm is
the valid value read in from the user.

ii. Revise the algorithm getCircuitComp to make the necessary calls the algorithm developed above.

Question 2 – Design of the Circuit Software

The circuit software consists of an algorithms for simulating the operation of the circuit.
a) Develop an algorithm, computeQ, that returns the value for the function q(t) for a given time and

given component values provided in the component values array.
b) Develop an algorithm, genTimeArray, that generates an array of time values given a maximum length

of time (tMax) and a time step (tStep). Thus the array will contain the values t0, t1, t2, …, tmax, where

t0 = 0, and ti = ti-1+tStep for i=1, 2, 3, ….
c) Develop an algorithm, genQArray, that calculates the values of q(t) for a given array of time values

(see b) and a given array of circuit component values . The algorithm shall save the values of the
charge q(t) in an array; the reference to the array is the results of the algorithm. Use the algorithm
from part a above to compute the values of q.

d) Develop an algorithm, displayQFunction, that displays the contents of time and the q value arrays.
See the example output for the format.

Question 3 - Implementation and Testing

a) Translate the algorithms developed in question 1 to Java methods and place them into the class
A3Q3, stored in the file A3Q3.java.

b) Translate the algorithms developed in question 2 to Java methods and store them in the class Circuit,
stored in the file Circuit.java. Define the constants VIX, CIX, LIX and RIX in this class outside the
methods using the following syntax (shown for VIX):

public static final int VIX = 0; // Index to the battery value in

 // the components value array

The keyword final makes the variable VIX a constant with the value 0. These constants will be
available to all methods in the Circuit class. As well, the constants can be accessed from outside the

class using the expressions like Circuit.VIX (this is similar to the constant Math.PI available in the
Math class).

Appendix A - Algorithms for Question 1

Global constants, these constants are accessible to all algorithms
VIX (constant 0 – index for voltage value in component value array)

CIX (constant 1 – index of capacitor value in component value array)
LIX (constant 2 – index of inductance value in component value array)
RIX (constant 3 – index of resistance value in component value array)

GIVENS: (none)

RESULTS: (none)
INTERMEDIATES:

compArr (reference to component value array)

outerLoopFlag (flag to control outer loop)
innerLoopFlag (flag to control inner loop)

answer (character to record y/n answers from user)
tMax (variable for maximum time of simulation)
tStep (time step for simulation)

timeArr (reference to time array)
qArray (reference to q value array)

n (number of elements in the arrays referenced by timeArr and qArray)
HEADER:

main()

BODY: (see next page)

compArr ← getCircuitComp()

outerLoopFlag ← TRUE

outerLoopFlag?

print(“Do you want to quit (y/n)? ”)

answer ← readCharacter()

outerLoopFlag ← answer ≠ „y‟

truefalse

print(“Reset component values (y/n)? ”)

answer ← readCharacter()

answer = „y‟?

compArr ← getCircuitComp()

truefalse

innerLoopFlag ← TRUE

innerLoopFlag?

print(“Run a simulation? ”)

answer ← readCharacter()

truefalse

answer = „y‟?

print(“Enter a maximum time: ”)

tMax ← readReal()

print(“Enter a time step: ”)

tStep ← readReal()

(timeArr,n) ← genTimeArray(tMax, tStep)

qArray ← genQArray(compArr, timeArr, n)

displayQFunction(timeArr, qArray, n)

innerLoopFlag ← FALSE

true
false

GIVENS: (none)
RESULTS:

compArr (Reference to component array with values)

INTERMEDIATES:
flag (flag to monitor when user has entered a valid value)

CONSTRAINTS:
compArr[VIX] has values ranging between 4 and 15 volts

compArr[LIX] has values ranging between 10-3 and 10-1 henrys
compArr[CIX] has values ranging between 10-9 and 10-7 farads
compArr]RIX] has values ranging between 5 and 10 ohms

HEADER:

compArr ← getCircuitComp()

BODY:

flag?

print(“Enter a value for V (4 to 15): ”)

compArr[VIX] ← readReal()

truefalse

compArr ← createNewArray(4)

flag ← TRUE

compArr[VIX] ≥ 4.0 AND

compArr[VIX] ≤ 15.0?

flag ← FALSEprintLine(“Bad value: ” , compArr[VIX])

truefalse

A Continued on next page

flag?

print(“Enter a value for C (1e-9 to 1e-7): ”)

compArr[CIX] ← readReal()

truefalse

flag ← TRUE

flag ← FALSEprintLine(“Bad value: ”, compArr[CIX])

truefalse

flag?

print(“Enter a value for L (1e-3 to 1e-1): ”)

compArr[LIX] ← readReal()

truefalse

flag ← TRUE

compArr[LIX] ≥ 10-3 AND

compArr[LIX] ≤ 10-1?

flag ← FALSEprintLine(“Bad value: ”, compArr[LIX])

truefalse

B

A Continued from previous page

Continued on next page

compArr[CIX] ≥ 10-9 AND

compArr[CIX] ≤ 10-7?

flag?

print(“Enter a value for R (5 to 10): ”)

compArr[RIX] ← readReal()

truefalse

flag ← TRUE

flag ← FALSEprintLine(“Bad value: ”, compArr[RIX])

truefalse

B Continued from previous page

compArr[RIX] ≥ 5.0 AND

compArr[RIX] ≤ 10.0?

