
Dynamic interconnection networks:
the crossbar switch

Alejandro Ayala
School of Information Technology and Engineering

University of Ottawa
800 King Edward Avenue

Ottawa, Ontario, K1N 6N5, Canada

Abstract—This paper describes various aspects and imple-
mentaions of the crossbar interconnect. The performance of
a multiprocessor system depends on having an efficient bus
architecture. In System-on-a-Chip (SoC) there are different archi-
tecture types such as single stage networks, multi-stage networks,
omega networks and crossbar networks. This paper focuses on
the latter, the crossbar network. Most modern architectures
adopted the crossbar switch for interconnecting microprocessors
and resources such as memory. The use of the crossbar switch
in these modern architectures will be evaluated. Furthermore,
there is a discussion on the different techniques used to increase
the performance of the crossbar switch. Performance is measure
in terms of how efficiently the crossbar can send data between
input and output.

I. INTRODUCTION

The performance of the multiprocessor SoC is not depen-
dent solely on the speed of the CPU but also on how the bus
architecture is designed. Having an efficient bus architecture
and arbitrating contention plays an important role in increasing
the performance of the system. An M x N crossbars is a
switching fabric which allows M inputs to connect to N
outputs without blocking. Blocking only occurs when two
inputs want to talk to the same output. The use of buffers
at either the input or output ports allow to prevent any data
loss when trying to get two or more inputs to access the
same output. The crossbar switch has being used in several
modern architecture designs. The following sections discuss
these designs.

II. MODERN HARDWARE DESIGN

A. Intel Xeon 7500 architecture

The Intel Xeon 7500 series processor architectures uses an
8 port crossbar switch which implements the Intel QuickPath
Interconnect (QPI) and routing layers. The Intel QPI is
point-point interconnection link developed by Intel [1] to
compete with HyperTransport. Prior to using QPI the Intel
architecture was using the Front Side Bus (FSB) [2] which
was the bus that carried data between CPU and the memory
controller(northbridge) and I/O controller(southbridge).
The off-chip single memory controller often was the
bottleneck which prevented faster CPUs from improving
the overall performance of the system. Now, with crossbar
implementation the microprocessor were able to integrate the
northbridge on-chip for faster access. Figure 1 shows the

crossbar switch/router used by the Xeon 7500 series processor.

Fig. 1. Intel Xeon 7500 series crossbar [2]

One can see that there are 2 crossbars. Each crossbar has 4
ports, connecting the caching agent, home agent and QPI links.
The caching agents are used to provide flow control to the Last
Level Cache (LLC) coherence engine, the home agents and
the crossbar. The home agents are responsible for processing
requests and snoop responces from caching agents, providing
data responces to the system via the crossbar and read/write
commands through the memory controller. Basically these two
agents translate messages from or to the QPI in able to talk
to the respective resource either the cores or memory. The
crossbar contains arbiters in order to prevent contention to
any of the resources. There is a local arbiter on the crossbar
and also a global one in case input from one crossbar wants
to communicate to the output on the other crossbar.

B. AMD Opteron 64 architecture

The AMD Opteron 64 uses a similar approach to the on-
chip interconnect as we saw with Intel’s QPI. However, AMD
was first to introduce an integrated northbridge approach. They
use a 5 port crossbar to interconnect the microprocessor cores
with the memory controller and HyperTransport links. AMD
was also challenged by the fact that the FSB was slow and
connecting multiple cores or microprocessors did not improve
the overall system as well as they wanted. Using the cross-
bar switch to integrate the memory controller onchip helped
speedup the system. Figure 2 shows the difference between
using the FSB and integrating the memory controller. As one

Monster
Note
measured

Monster
Note
tell me numbers

carg
Note
define performance. is it throughput? 

carg
Note
responses

carg
Note
to accelerate



Fig. 2. Evolution of x86 blade server architecture: Traditional FSB archi-
tecture (a) and AMD’s Direct Connect architecture (b) [3]

can see the bottleneck in Figure 2(a) is the single external
memory controller which interconnected the microprocessors
with the memory. Using the on-chip crossbar is faster and
more cost-effective than having a separate chip for memory
and I/O access.

The crossbar onchip has five ports connecting the System
Request Queue (SRQ), memory controller, and three Hyper-
Transport ports. The command headers and data packets are
logically separated each using its own crossbar. The command
crossbar routes commands from the HyperTransport at a rate
of 1 per clock [3], these commands can be 4 or 8 bytes long.
The data crossbar routes the command payloads which are 4 to
64 bytes long. Figure 3 depicts the architecture of the Opteron
using the crossbar for interconnection.

Fig. 3. AMD Opteron Architecture [3]

C. Sun UltraSparc T2

The UltraSparc T2 architecture uses a high bandwidth, non
blocking crossbar to communicate with the L2 cache. Figure 4
shows the architecture of the UltraSparc T2. There are 8
cores (inputs) and 8 L2 caches plus the I/O hub (outputs).
The good thing about a crossbar is that enables the system
to send data simultaneous without blocking. The crossbar is
divided into two modules logically: processor to cache(PCX)
and cache to processor(CPX) as seen in Figure 5. Each

module has its own data slice, through which the data can be
transferred from a certain source input to the output according
to the authorization message generated by arbiter. The arbiter
takes action when several inputs issue requests for the same
destination output by issuing authorization messages to the
source input who gains priority. The crossbar being used by
the UltraSparc is composed of three stage crossbar pipeline:
request, arbitration and data transfer as described in [4].

Fig. 4. Sun UltraSparc Architecture [5]

Fig. 5. Sun UltraSparc Crossbar [4]

III. CHARACTERISTICS OF CROSSBAR SWITCHES

From previous section modern architecture design using
crossbars where described. The Intel Xeon 7500 series, AMD’s
Opteron 64 and Sun’s UltraSparc T2. For crossbar switches,
packets can be buffered at either output ports, input ports, or
crosspoints of the crossbar.

A. Output buffer

Output queued (OQ) switches need to transfer the packets
immediately from input to output queue since there is only
space available at the output. Problem with OQ is that it needs
a speedup of N for an N x N switch, since at most there could
be N inputs trying to transmit data to an output as explained
in [6]. This make OQ switches hard to scale up.



B. Input buffer

Instead of having the buffer at each output port, we can
also have buffers at the input ports. Therefore, no need to
have a speedup for the input port. Input queued (IQ) switches
are popular in the market since they are economical hardware
architecture and have efficient scheduling algorithms as shown
in [6]. AMD’s Opteron uses this type of buffer in their
crossbars. For the command crossbar the input buffer is 60
bit while the data crossbar uses multiple of 64 bytes to
optimize their data throughput. As stated before the size of
the command headers are 4 to 8bytes (32 to 64bits) and data
payload is 4 to 64bytes.

C. Buffer crossbars

Combined Input-Crosspoint-Output Queued (CICOQ)
switches or buffer crossbars, are a special type of Combined
Input-Output Queued (CIOQ) switches, where each crosspoint
of the crossbar has a small buffer. These switches simplify
the scheduling greatly and output contention is eliminated.
For example if N inputs try to send to same output there
is no need to schedule the packets as before, just send the
packets to the queue and then the output will retrieve packets
one by one from the queue [6].

D. System request queue

The SRQ in the AMD’s Opteron architecture is used to
connect the cores to the crossbar. It prioritizes connection to
the crossbar switch for both CPU cores, so that access to the
system bus is managed more effectively, resulting in a smooth
use of system resources as described in [3].

IV. KNOCKOUT SWITCH

The crossbar switch is a great interconneted network fabric
where no blocking occurs when packets destined to different
outputs, the problem occurs when multiple packets arrive at
the same output simulataneaous. The knockout switch was
proposed here [7] to solve this problem. The knockout switch
is a fully interconnected switch (ie. all input are connected
to all outputs), just like the crossbar. Each output port uses a
bus interface that has several functions such as filtering and
queuing [7].

Fig. 6. Interconnection fabric [7]

Figure 6 shows N inputs, each attached to a broadcast bus.
Each output has a bus interface attached to each input. The
problem the knockout switch is trying to solve is contention to
the same output from different inputs. Figure 7 shows what the
bus interface looks like. The bus interface has 3 main features,
the packet filter, concentrator and share buffer.

Fig. 7. Bus interface [7]

The packet filter will make sure the packet is destine for
the output will pass on. Remember that each bus interface is
attach to the broadcast bus, receiving all packets even those
not destine to them. N packets will go through (if the output
address matches) onto the concentrator. The concentrator will
gather N packets and let L packets go through to the shared
buffer. L packets entering the shared buffer which is composed
of L separate FIFO buffers.

Fig. 8. The 8-input/4-output concentrator [7]

Figure 8 shows how the concentrator gather which L packets
will go through and no get knocked out (here N = 8 and L
=4). As one can see each packet entering the concentrator has
L chances of going through. Figure 7 shows that L outputs
from the concentrator enter an L x L shifter, in order to filled
the L separate buffers in a cyclic fashion [7]. Figure 9 shows

carg
Note
ly

carg
Note
.

carg
Note
s



an example of how the shifter fills the buffer in the right order.

Fig. 9. The 8-input/4-output concentrator [7]

Here we first see that 5 packets got through the concentrator
(bit set to 1 means it got through) on the first time slot. Buffers
1 - 5 will get filled by theses packets. On the second time slot
4 packets get through, now in order to fill buffers starting at
6 we need to shift by 5, so buffers 6,7,8, and 1 will get filled.

V. CONCLUSION

As one can see, having an efficient bus architecture for
interconnecting the microprocessor with resources such as
the memory and other cores is very important. Not only
having fast throughput but being able to arbitrate memory
contention is one of the goals when determining the type
of interconnection network to use. The knockout switch was
proposed to solve the problem of memory contention while
still maintaining high performance. Furthermore, different ap-
proaches were discussed where modern designers like AMD,
Intel and Sun are using the crossbar to achieve higher data
throughput by integrating the memory controller on-chip ver-
sus the old approach of using the front side bus. The benefits of
using the crossbar to integrate memory controller, router and
HyperTransport/QPI interfaces on-chip include lower latency,
power and cost. The crossbar switch has proven to be a
very valuable tool to increase performance and cost effective
switching fabric and was selected by the aforementioned Sun,
Intel and AMD architectures.

REFERENCES

[1] P. Stillwell, V. Chadha, O. Tickoo, S. Zhang, R. Illikkal, R. Iyer, and
D. Newell, “Hippai: High performance portable accelerator interface
for socs,” in High Performance Computing (HiPC), 2009 International
Conference on, 2009, pp. 109 –118.

[2] Intel, http://www.intel.com/Assets/en US/PDF/datasheet/323341.pdf.
[3] P. Conway and B. Hughes, “The amd opteron northbridge architecture,”

IEEE Micro, vol. 27, pp. 10–21, 2007.
[4] A. Huang, J. Gao, C. Feng, and M. Zhang, “Optimization techniques of

on-chip memory system based on ultrasparc architecture,” jan. 2009, pp.
428 –431.

[5] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Sheahan,
L. Spracklen, and A. Wynn, “Ultrasparc t2: A highly-treaded, power-
efficient, sparc soc,” nov. 2007, pp. 22 –25.

[6] D. Pan and Y. Yang, “Localized independent packet scheduling for
buffered crossbar switches,” IEEE Transactions on Computers, vol. 58,
pp. 260–274, 2009.

[7] Y.-S. Yeh, M. Hluchyj, and A. Acampora, “The knockout switch: A
simple, modular architecture for high-performance packet switching,”
Selected Areas in Communications, IEEE Journal on, vol. 5, no. 8, pp.
1274 – 1283, oct. 1987.


