
1

Solutions to the Problems of Chapter 8
Petar Popovski

1. Let Tn denote the average number of slots required to complete binary tree
algorithm when there are initially n tags. We will derive a recursive relation
that relates Tn so the values Tk where k < 1. The initial conditions are T0 = 1
(only one idle slot when there are no tags) and T1 = 1 (one single-response slot
when there is a single tag). The initial conditions are identical for basic binary
tree protocol and the modified binary tree protocol. In deriving these equations
it is helpful to think in terms of the framework with enabled intervals.

(a) We first derive T2:

T2 = 1 +
1

4
(T2 + T0) +

1

2
(T1 + T1) +

1

4
(T0 + T2) (8.1)

where:

• The first summand 1 is due to the collision that always occurs when start-
ing the tree protocol with n = 2 tags.

• The second summand denotes that, with probability 1

4
the tokens of the

two tags will be in the interval [0, 0.5). Thus, the resolution of the interval
[0, 0.5) will take on average T2 slots and we have to add to it the slot
T0 = 1 used when the reader enables the interval [0.5, 1) that does not
contain any token.

• The third summand denotes that, with probability 1

2
, there will be one

token in [0, 0.5) and one in [0.5, 1). In that case, in addition to the initial
collision, there will be T1 + T1 = 2 additional slots.

• The last summand accounts for the case in which there are no tokens in
[0, 0.5) and two tokens in [0.5, 1)

If (8.1) is solved using only T2 as unknown, we obtain:

T2 = 5 (8.2)

Using the reasoning above, the expression for T3 can be derived as:

T3 = 1 +
1

8
(T3 + T0) +

3

8
(T2 + T1) +

3

8
(T1 + T2) +

1

8
(T0 + T3) (8.3)

Using the value of T2 from (8.2), the value of T3 is found to be:

T3 =
23

3
(8.4)

The expressions for general value of n can be found in:

R. Rom and M. Sidi. Multiple Access Protocols: Performance and Analysis.

Springer-Verlag, 1991.

2

(b) In the modified binary tree algorithm, if an idle slot follows after a collision,
then the next certain collision is avoided. Now the expression for T2 is:

T2 = 1 +
1

4
(T2 + T0) +

1

2
(T1 + T1) +

1

4
(T0 + T2 − 1) (8.5)

where −1 within the last summand denotes that one slot is saved by avoiding
certain collision in [0.5, 1) when there are no tokens discovered in [0, 0.5). Solving
this equation gives T2 = 4.5.

The expression for T3 when MBT is used is:

T3 = 1 +
1

8
(T3 + T0) +

3

8
(T2 + T1) +

3

8
(T1 + T2) +

1

8
(T0 + T3 − 1) (8.6)

which results in T3 = 7.

(c) If there are n = 2 tags and the reader knows that in advance, then

T2 = 1 +
1

4
T2 +

1

2
T1 +

1

4
T2 (8.7)

Now the summand 1 has a different interpretation. It is the slot that is spent
when initially the interval [0, 0.5) is enabled. If, with probability 1

4
, there is

collision in this first slot, then the average remaining duration is still T2, as the
reader knows that there are two tokens in [0, 0.5), which is equivalent to the
knowledge it had at the beginning (two tokens in [0, 1). However, after [0, 0.5)
is resolved and two tokens are discovered, the reader will not enable [0.5, 1) as
it knows there are no tokens. Continuing to analyze the sum in (8.7), with
probability 1

2
the interval [0, 0.5) contains one token such that only T1 slots will

be used in resolving [0.5, 1). The reader can analogously find out the meaning
of the third summand. Solving (8.7), we obtain T2 = 3.

When n = 3, the first enabled interval is [0, 1

3
). Then the following can

happen:

• If the reader observes collision in this interval, then it does not know
whether there are three or two tokens in [0, 1

3
). Therefore, after observing

that collision, a good move is to enable the interval [1
3
, 1). If that interval

is empty, then it knows that there are three tokens in [0, 1

3
). On the other

hand, if there is a single token in [1
3
, 1), then it knows that there are two

tokens in [0, 1

3
). Note that there can be no collision in [0, 1

3
) and [1

3
, 1), as

there are only three nodes.

• If the reader observes a single reply in [0, 1

3
), then it knows there are two

tokens in [1
3
, 1).

• If the reader observes no tokens in [0, 1

3
) (idle slot), then it knows there

are three tokens in [1
3
, 1).

Putting the above statements in formulas, we obtain:

T3 = 1 +

(

1

3

)3

(T0 + T3) +

(

3

2

) (

1

3

)2
2

3
(T1 + T2) +

(

3

1

)

1

3

(

2

3

)2

T2 +

(

2

3

)3

T3

(8.8)

3

where the second summand contains T0 due to the idle slot perceived when [1
3
, 1)

is enabled. The third summand contains T1 due to the single slot perceived
when [1

3
, 1) is enabled. Solving (8.8) and using the derived value T2 = 3, we

find T3 = 44

9
.

2. The pseudocode is given below. This version of the tree protocol is referred
to as stack algorithm, originally invented by B. Tsybakov.

level = 0; state= active;

if initiation signal received

transmit;

while state== active

receive feedback;

if feedback==COLLISION

if level == 0

b = randombit;

if b == 1

level = level + 1;

else

if feedback==SINGLE

if level == 0

state= terminated;

else

level = level − 1;

else

level = level − 1;

if level == 0

transmit;

3. The problem is that in this case the reader does not have a deterministic
criterion to decide whether the collision has been resolved. After the reader
initiates the tree protocol and it does not observe the channel in a single state,
then it cannot know whether that is because there are no tags or there are
n > 1 tags. Hence, in this case the reader should preferably treat the slots in
which it does not perceive successful transmission as collisions rather than idle.
However, it should not deterministically treat each of the no-success slots as a
collision – this is because if the real state of the slot is idle, then the protocol
enters into an infinite loop. Algorithms to treat these cases have been described
in:

T. Berger, N. Mehravari, D. Towsley, and J. K. Wolf, “Random multiple-
access communication and group testing,” IEEE Trans. Commun., vol. COM-
32, no. 7, pp. 769–779, July 1984.

4. If the framed ALOHA has K slots, then the probe sent by the reader can be
understood as enabling the following intervals in a sequential manner: [0, 1

K
),

[1

K
, 2

K
), . . . [K−1

K
, 1). The tags generate random tokens. Each tag transmits

in the slot in which the enabled interval contains its token. At the end of the
frame, the tags receive feedback about the slots in which a single transmission
was observed by the reader. Then the reader sends another probe and initiates

4

another frame, possibly with a different length K1. The unresolved tags gener-
ate new random tokens. Note that this is different from tree protocols, where the
tokens are retained. This explains the fundamental difference between tree pro-
tocols and ALOHA: tree protocols persistently resolve collisions, while ALOHA
protocols randomize the transmissions in order to avoid collisions.

5. After a clipped binary tree (CBT) is terminated, the EBT algorithm enables
an interval of length which 2−L, where L is selected such that, based on an
estimate n̂ of the total tag population, the probability of observing a single
transmission in that interval is maximized. This is achieved by making 2L

≈ n̂.
Recall that a probe in Class 1 protocol enables, in a sequential manner, eight
intervals. Therefore, the bit mask used in PingID should contain L bits such
that 2L+3

≈ n̂.

6. This is because the collision resolution algorithm will continue to resolve the
“collision”. If an idle slot is interpreted as collision, then, if there are no errors
in the next two slots, they will both be perceived as an idle. On the other hand,
if a single is interpreted as a collision, and there are no errors in the next two
slots, then one will be perceived as collision and the other as single.

