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Abstract

In this paper, we propose novel resampling algorithms with architectures for efficient distributed im-
plementation of particle filters. The proposed algorithms improve the scalability of the filter architectures
affected by the resampling process. Problems in the particle filter implementation due to resampling are
described and appropriate modifications of the resampling algorithms are proposed so that distributed im-
plementations are developed and studied. Distributed resampling algorithms with proportional allocation
(RPA) and non-proportional allocation (RNA) of particles are considered. The components of the filter
architectures are the processing elements (PEs), a central unit (CU) and an interconnection network. One of
the main advantages of the new resampling algorithms is that communication through the interconnection
network is reduced and made deterministic, which results in simpler network structure and increased sam-
pling frequency. Particle filter performances are estimated for the bearings-only tracking applications. In
the architectural part of the analysis, the area and speed of the particle filter implementation are estimated
for different number of particles and different level of parallelism with FPGA implementation. In this paper
only sampling importance resampling (SIR) particle filters are considered, but the analysis can be extended

to any particle filters with resampling.

I. INTRODUCTION

Particle filters (PF) are very suitable for non-linear and/or non-Gaussian applications. They
show great promise in addressing a wide variety of complex problems [6], [18]. However, their
application in real-time systems is limited due to their inherent computational complexity. The
main goal of this paper is to develop distributed PF algorithms and to propose corresponding
parallel architectures which allow for shorter particle-filter execution time. We show that the
parallel architectures can be implemented on state-of-the-art FPGA chips. By showing that fast
implementation of PF's is feasible, we hope that the gap that exists between PF theory and their

hardware implementation will be reduced.



The SIR algorithm [7] is composed of three steps:

1. sampling step — generation of new particles, in which M particles 2™ for m =1, ..., M are drawn
from an importance function 7(z),

2. importance step — computation of particle weights w™ for m =1,..., M, and

3. resampling step — drawing of M particles 2™ from the set 2™ for m = 1,..., M according
to the resampling function a(™ whose support is defined by the particles 2™ [17]. Commonly
am = w(™ for m=1,..., M.

The resampling step is critical in every implementation of particle filtering because without it, the
variance of the particle weights quickly increases, i.e., very few normalized weights are substantial.
Then, the inference is degraded because it is made by using only a very small number of particles.
The idea of resampling is to remove the particle trajectories with small weights and replicate the
trajectories with large weights. Resampling was proposed for use in particle filtering in various
works including [2], [3], [13], [14], [15], [16]. The following problems are recognized and addressed
for distributed implementation of resampling: (a) there is no natural concurrency among iterations
because the new iterations depend on the previous ones, (b) communication among the PEs after
resampling is extensive, and (c¢) connections among the PEs are not known before the run-time and
are changed after each sampling period. Modifications of the resampling algorithms that intend to
overcome these barriers and move towards a fully distributed implementation are developed and
studied.

The main design goal here is to minimize the execution time of the PF. This is done through
exploiting data parallelism and pipelining of operations. In Section II, a parallel architecture for
PFs is introduced and the minimum execution time is defined. In order to decrease PF execution

time, an algorithm that allows for distributed resampling and reduced communication in the net-
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work is proposed. This algorithm is presented in Section III and is named distributed Resampling
with Proportional Allocation (RPA). It yields the same resampling result as the sequential resam-
pling method (for example systematic resampling). Further improvement of the execution time is
achieved through making the communication through the network deterministic and local. These
algorithms use non-proportional sampling (Resampling with Non-proportional Allocation - RNA),
and they are presented in Section IV. Different architectures suitable for distributed RPA and
RNA algorithms are discussed in Section V. The objective in these architectures is to pipeline the
communication through interconnection network (particle routing) with the subsequent sampling

step. There, we also evaluate architecture parameters on an FPGA platform.

II. DISTRIBUTED PFs
A. Distributed architecture

The distributed architecture for the PFs is shown in Figure 1. It consists of processing elements
(PEs) and a central unit (CU). Since there are no data dependencies during particle generation
and calculation of the weights, these steps can be easily parallelized and pipelined. This segment of
particle filtering is a data parallel single instruction multiple data (SIMD) algorithm [4]. As such,
particle generation and weight calculation for the M particles can be partitioned in K PEs, where
1 < K < M. Each PE performs the same operations in time on different particles and each PE is
responsible for processing N = M /K particles where both K and N are integers. The CU carries
out partial or full resampling and particle routing as well as overall control. Full resampling means
that the overall resampling procedure is performed by one logic unit. In the following sections, we
will show that resampling can be distributed to PEs and that the CU is then responsible only for

a small portion of resampling.
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PE1 PE2

PE4 PE3

Fig. 1. Architecture of the distributed PF with a CU and four PEs.

We distinguish three operations that carry out the resampling task:

1. Computation — involves the bare resampling procedure whose result is an array of indexes which
show the replicated particles and their addresses.

2. Communication — represents exchanging of particles among the PEs based on the resampling
results. We refer to it as particle routing. Particle routing defines the protocol and the network
architecture for exchanging particles and it is the main focus of the paper.

3. Scheduling — includes (a) determination of which particles in the PEs are routed and which are

stored locally, (b) placing of particles in the destination PEs, and (c) addressing used for indexes.

In this paper we define the execution time of PF's as the time necessary to process one observation
by the PF, and it corresponds to the sampling period.

In order to achieve minimum execution time, one-to-one mapping between the PF operations
and hardware resources is done which allows for utilizing operational concurrency. Hence, several
operations can be executed at the same time and their blocks are pipelined in hardware implemen-
tation. The execution time of the generation and weight computation of every particle is LT,

where Ty is the clock period and L in the latency due to pipelining. Thus, the first particle is
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available at the output of the importance step block after LT, and every next particle, due to
pipelining, after T,;,. Resampling cannot start until the sum of all the weights is calculated so that
resampling cannot be overlapped in time with the sampling and importance steps. The internal
operations of resampling are also pipelined so that they take M clock cycles as well. Hence, the
minimum execution time of non-distributed PF is (2M + L)T. [1].

Further reduction of execution time is achieved by replicating hardware resources (parallelism).
When K PEs are used, the minimum execution time is (2M /K + L)T,.. The main goal of this
paper is to develop algorithms and architectures that can reach the minimum execution time. Our
strategy towards achieving the minimum execution time is to allow for deterministic communication
during particle routing. Then, we can overlap the particle routing and the next sampling step to
allow for pipelining in hardware of their operations, so that the particle routing will not increase
the execution time of the PF.

Next, we show why the communication pattern is non-deterministic and the connections among
the PEs are changed after each sampling period. Let the number of particles that PFEj produces
after resampling be N®) for k = 1,.., K, 0 < N® < M and EleN(k) = M. It is important
to note that N*) is a random number which depends on the overall distribution of the weights.
The PEs with N*) > N have surplus of particles and they need to exchange particles with the
PEs with shortage of particles for which N*) < N. The number N*) changes after each sampling
period so that it is necessary to connect different PEs in order to perform particle routing. The
number of particles that have to be exchanged among the PEs is Ny = EﬁN(kbN(N(k) —N) =

EK

k;N<k><N(N - N(k))'
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B. Centralized resampling

In centralized resampling, particle generation and weight calculation are performed in parallel in
PEs and resampling is sequential and it is carried out by the CU. The sequence of operations and
directions of communication are shown in Figure 2(a). The CU collects the N weights from each
PE (M weights overall) in order to perform resampling and returns N replication factors to each
PE (M replication factors overall).

The number of particles transferred between PE} and the CU is [IN®) — N| for k = 1,..., K.
The direction of communication is from the PE to the CU for the PE with particle surplus after
resampling (N*) — N > 0) and from the CU to the PE for the PE with particle shortage (N®*) - N <
0). While the communication of weights and indexes is deterministic, the particles are routed in
a non-deterministic fashion. The overall amount of particles that has to be transferred through
the network is M /2 for the worst case. Even in the fully connected network, the scalability of
the implementation is significantly affected by the sequential resampling and particle routing. One
version of centralized resampling which is implemented on a network of personal computers is

described in [21].

III. DISTRIBUTED RPA

In this section, a method based on stratified sampling with proportional allocation is described.
The sample space is divided into K disjoint areas or strata, where each stratum corresponds to
a PE. The density of particle weights can then be written as a mixture of K densities restricted
to the corresponding strata. Proportional allocation among strata is used, which means that
more samples are drawn from the strata with larger weights. After the weights of the strata are

known, the number of particles that each stratum replicates is calculated using residual systematic
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(a) (b)

Fig. 2. Sequence of operations performed by the k-th PE and the CU for (a) centralized resampling and (b)
RPA. The direction of communication as well as data that are sent are presented. The abbreviations
are: S-sampling, I-importance computation, R-resampling, PR-particle routing.

resampling (RSR) described in [1], and this process is denoted as inter-resampling since it treats

the PEs as single particles. Finally, resampling is performed inside the strata which is referred to

as intra-resampling. So, the resampling algorithm is accelerated by using loop transformation or
specifically loop distribution [22], which allows for having an inner loop that can run in parallel
on the PEs (intra-resampling) with small sequential centralized pre-processing (inter-resampling).

The weight of the PE is calculated as a sum of the weights of the particles inside the PE, i.e.

wk) = sz\il w®*) for k =1,..., K. A diagram and the sequence of operations performed by the

PE and the CU are shown in Figure 2(b).

The algorithm for RPA is shown by Pseudocode 1. The inputs of the algorithm are the PE weights
and the output is the number of particles N*) that each PE will produce after resampling, where

E(N®) = MW® for k =1,..., K. The RSR algorithm is applied to get N®), for k = 1,2,...,. K
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by propagating the uniform random number in a similar fashion as in the systematic resampling
algorithm. In the algorithm, N*) is obtained by truncating (W(k) —Uy)- M. The minimum value of
the truncated product is —1 so that the minimum value of N*) is zero. Resampling is performed in
each PE in parallel during the intra-resampling step. The input of the intra-resampling algorithm
is the number of particles that should be generated in the resampling procedure. We have to stress

that there is no difference in results between RPA and sequential resampling.

DiI1STRIBUTED RPA ALGORITHM

Purpose: Calculation of the number of particles N*) for the intra-resampling algorithm.
Input: Array of PE weights W) for k=1, ..., K.

Method:
Generate random number U; ~ U[0,1/M]

fork=1to K
N® = |(WF) —Uy) - M|+1
Send N to PE
Ugy1=Up + % — W
end
do in parallel
Intra-resampling for all PEs
end
Pseudocode 1. A distributed RPA algorithm that utilizes the RSR approach.
The RSR algorithm is very attractive for hardware implementation since it has only one loop
(there are two loops in systematic resampling), it can be easily pipelined so that it can calculate a

replication factor per clock cycle, and it easily deals with different number of particles at the input
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and at the output. In systematic resampling while loop has unknown number of iterations which
makes it difficult to apply pipelining. Of course, the same resampling result would be obtained if
residual or systematic resampling are applied as the inter-resampling algorithms.

An example of particle exchange for the RPA algorithm is shown in Figure 3. The PF architecture
with four PEs is considered, where each PE processes N = 100 particles. The distribution of
the normalized PE weights before resampling is presented in the table. After inter-resampling,
the number of particles that each PE will produce is determined and it is 200,50,105 and 45
respectively. So, PEs 1 and 3 have surpluses of particles. In this example, PE; sends 50 particles
to both PE> and PFEy, and PFE3 sends 5 particles to PEjy.

)= @=
Weights of the PEs before resampling N™=200 N*=50

OO
PE weights before

resampling

) 05 L
0.125
3) 0.2625 ° 5
4) 0.1125

N® =105 N@ =45

)

(
(
(
(

S EERE

Sum 1

N®=w ®Opm

Fig. 3. An example of particle exchange for the RPA algorithm.

The main advantage of distributed RPA over centralized resampling lies in reducing the amount
of deterministic communication and in the distributed resampling where the resampling is executed
concurently in the PEs instead in the CU (Figure 2). The time for the resampling procedure in
distributed RPA is reduced M /(M /K + K) times, where M /K corresponds to the intra-resampling
time and K is a time for inter-resampling. It can readily be shown that maximum reduction is
achieved when K = +/M. It is important to note that inter-resampling requires global communi-
cation among the PEs, while intra-resampling is completely local within the PEs. The 2M words

representing weights and indexes that are exchanged in the centralized resampling are reduced to
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11
2K words (W®*) and N*)) in RPA. However, scalability of the implementation is still affected by
the particle routing step, which is unchanged. If we assume equal clock period for resampling and
the other PFs steps, then T,, = (2M/K + L + K + M, )Ty, where K represents the delay due to
inter-resampling and M, is the delay due to particle routing. When the PEs and the CU are con-
nected with a single bus, then the delay M, becomes dominant. Scalability of the design is affected
so much by the bus structure, that there is almost no gain in pursuing parallel implementation.
An efficient architecture that uses K buses and supports pipelining of the particle routing with the

sampling step is proposed in Section V-A.

IV. DisTRIBUTED RNA

Even though distributed RPA allows for distributed and parallel implementation of resampling,
it requires a complicated scheme for particle routing which implies a complex CU design and area
increase. Besides, there is a need for an additional global pre-processing step (inter-resampling)
which introduces an extra delay. These problems can be solved by using an RNA algorithm. The
main advantage of RNA is that routing of particles can be deterministic and planned in advance

by a designer.

A. RNA algorithm

Here, we introduce the term group where a group is formed from one or more PEs. In RPA,
the number of particles drawn is proportional to the weight of the stratum. On the other hand, in
RNA the number of particles within a group after resampling is fixed and equal to the number of

particles per group, Ny = N. So, full independent resampling is performed by each group.

The general PF algorithm with RNA is outlined by Pseudocode 2.
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12
1. Exchange particles among groups deterministically.
2. Generate particles in each group in parallel by sampling xgk’i) ~7(x¢) fork=1,...,Kandi=1,...,N.

3. Perform the importance step in each group in parallel. The weights are calculated by

, , (ki) o (ki) (i)
k k | x x X, .
wf( ’l):wt(_’{)p(y"t )p((kj) I, 1)fork:1,...,Kf:mdlzl,...,]\f.
m(xg )

4. Normalize the weights of the particles with the sum of the weights in the group:

. «(k,i) .
wt(k’z) = St where wHk) = Zjvzl wf(k’j) and W) = W*(’“)/(Zf:1 W) for k=1,..., K.
5. Perform resampling inside the groups and obtain new random measures {i(llft’i),@;(k’i) = W} for

k=1,....,.Kandi=1,...,N.
6. Go to step 1.

Pseudocode 2. PF steps for distributed RNA.

There are several differences in comparison with the original SIR filter and the RPA algorithm.
Here, normalization is performed with the local sum W®*). Resampling is performed locally per
each group and the weights are equal inside the group. A characteristics of RNA is that the
weights after resampling are not equal to 1/M, but they are equal inside the groups Tuvt(k’i) =Wk,
for k =1,2,...,K and ¢« = 1,2,...,N. In addition, routing of particles among the groups after
resampling is necessary due to the possibility of having very unequally distributed weights among
groups.

We distinguish between three methods of particle exchange after resampling: regrouping, adap-
tive regrouping and local exchange. These methods are presented in Figure 4 which is based on the

same example described in Figure 3. The description of these methods is provided in the sequel.

A.1 Distributed RNA with regrouping

In RNA with regrouping, resampling and particle routing are performed inside the groups using

the RPA method. For example, in Figure 4(a) PE; and PFE5 form one and PFE3 and PE, another
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NW=160.. . N@ =40 N® =163 N@ =65, N® =100 N@=100
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@ (b) (©)

Fig. 4. An example of particle exchange for RNA algorithms with (a) regrouping, (b) adaptive regrouping

and (c) with local exchange. Here, S is the sum of weights in the group.

group. The RPA algorithm is applied for both groups. As a result, PE; and PFs produce 160 and
40 particles after resampling, so that 60 particles from PF; are transferred to PF,. At the next
sampling instant, the PEs are rearranged so that they form different groups. For example, the new
groups can be composed of PEy and PE3, and PEs and PFE4. After each time instant, regrouping
is performed so that particles are exchanged among PEs and the variance is reduced.

An example with K = 9 PEs and R = 3 PEs per group is shown in Figure 5. Only the group
that consists of PEq, PE4 and PFE7 has particles with non-negligible weights after the importance
computation and resampling and these PEs are drawn darker in the figure. At the next time
instant, new groups are formed so that the particles with significant weights are propagated to all
PEs. One period of regrouping is denoted as distribution factor D. When all the particles with
non-zero weights are in one PE and the mesh architecture is used, D determines the number of
cycles needed that these particles propagate to all the other PEs. In Figure 5, D = 2.

Since the simplicity of the controllers is one of the design goals, we restrict the number of PEs
per groups to be 2. If the number of PEs in the group is larger, a very complicated controller

is necessary in order to perform fast particle routing as described in Section V-A. When R = 2,
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Fig. 5. Routing in RNA with regrouping for the mesh architecture with K =9, R =3 and D = 2.

the local controllers are simple because there is only one PE with surplus and one with shortage
of particles. Choosing so small value for R could cause high distribution factor and large number
of periods until full propagation of particles is achieved. If R = 2 and K = 16, the minimal

distribution factor is D = 6.

A.2 RNA with adaptive regrouping

RNA with regrouping uses the predefined fixed rules to form the groups and does not take
advantage of knowing the distribution of the group weights. By utilizing this knowledge, it is
possible to reduce the variance after resampling. RNA with adaptive regrouping forms groups from
the PEs with the largest and the smallest PE weights. For example, in Figure 4(b) PE; and PEj3
have the largest and the smallest PE weights so that they form one group. The other group is
formed from the remaining PEs. Inside the groups, the RPA algorithm is applied. Weights after
resampling are calculated based on step 5 of Pseudocode 2. This method utilizes the Randez-Vouz
load balancing algorithm [8], which is a simple greedy algorithm that associates the heavily and the
lightly loaded groups. The main disadvantages of RNA with adaptive regrouping are that groups

contain only two PEs (R = 2) and the connections among the PEs are not local in general.
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A.3 Distributed RNA with local exchange

In RNA with regrouping, the RPA algorithm is still performed inside groups so that the particle
routing process is still random, even though it is done on a smaller set of particles. Randomness
during particle routing makes it difficult for pipelining between the particle routing and sampling
steps.

The example of the RNA algorithm with local exchange is shown in Figure 4(c). Resampling
is done inside the PE and then particles are exchanged in a deterministic way only among the
neighboring PEs. Routing is done through local communication. The amount of particles sent
between PEs is fixed and defined in advance. In the example, it is N/4 = 25. This is a very
important difference in comparison with the RNA with regrouping where particles are routed
among the PEs in the group non-deterministically (except when R = 2). Since groups are formed
from one PE, the weights after resampling are set to W () /N. Local communication can give rise to

a large number of periods until full resampling is achieved, which restricts the level of parallelism.

B. Effects of resampling on obtained estimates

In PFs, the output estimate before resampling can be calculated as: g = 2%21 w(™) g(x(m)),
where (™) are the states of the particles, g(+) is an arbitrary function, and w(™) represents a
normalized importance weight [9], [10]. For parallel implementation, the estimate can be written
in the form: g = Zle w k) sz\il wkd) g (kD) /T k) = Zszl WHEGHE)  where ) represents the
expected value of g(z) from a distribution w®?" in the k—th PE. The estimate after applying
distributed RPA is of the form: g = 1/M Zszl sz\il NEDg(z*D) where N* 7 represents the
number of times the particle k,i is replicated after resampling and E(N®9) = w*)A. The

estimate after applying distributed RNA is of the form: g = 1/N Zszl w k) Zf;l N D) g (k)
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where the number of replications of each particle is calculated as E(N*9)) = w*EdN/WHE) - Tt
is easy to show that E(g) = E(g) = Zszl WHGH®)  which is equal to §. This means that both
estimates of g are unbiased. The result is expected for both types of sampling due to Theorem 5.1
from Cochran [5], which claims that if in every stratum the sample estimate is unbiased, then the
overall estimate too, is an unbiased estimate of the population mean.

PFs with full and without resampling can be considered as special cases of the RNA algorithm.
In the first case, K = 1 and the whole resampling is performed inside one PE. In the second case,
K = M so that resampling is performed on a single particle. Since the input and output of the
resampling is only one particle, there is actually no resampling.

It is not easy to compare Var(g) and Var(g) in general. It was observed by simulations that
there was almost no difference in the variances if the weights are equally distributed among the
PEs. However, the variance of the RNA algorithm was much greater in the case when there was
only one PE with non-zero weights. This problem can be resolved by exchanging the particles

between PEs after resampling deterministically (step 1 of the RNA algorithm).

C. Performance analysis

In this section, the performances of the sequential PF and the PF with distributed RNA with
local exchange with different number of PEs are compared. The architectural model that was
chosen for the PF with distributed RNA was the 2-cube torus type network [19]. We considered
2-ary, 4-ary and 8-ary torus networks. In the model it was assumed that each PE had a single
input and output port. The deterministic particle routing was implemented in a way that each PE
exchanged particles with the PE above and on the PE left. In this way, particles were routed with

a statically scheduled communication pattern. The number of particles that was exchanged is the
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Fig. 6. MSE versus the number of particles for different levels of parallelism. In the case of 4, 16 and 64
PEs, RNA with local exchange is applied.
half of the number of particles in PEs N/2. Particles were exchanged in full duplex mode which
means that N/2 resampled particles from one PE were sent to another and at the same time N/2
of resampled particles from the second PE were sent to the first one.
PF's were applied to the bearings only tracking problem with the model from [11]. As performance
metrics we chose the mean square error (MSE). The simulation results are shown in Figure 6. We

can see that all the MSEs are comparable.
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V. PF ARCHITECTURES WITH DISTRIBUTED RESAMPLING

A. Distributed RPA architectures

One possible architecture for distributed RPA with four PEs that allows for pipelining the particle
routing step with the next sampling step is shown in Figure 7. The main idea is to store the particles
that will be routed among the PEs into dedicated memories in the CU and to have very fast interface

capable of reading particles from the CU and routing them to the PEs in one clock cycle.

Mem 11 | PE; Mem 5, | PE2 Mem g3 | PE3 Mem 4 | PE4

Global interconnection

network
Mem i, —( |F, Mem 5 IFy Mem 5 IF g Mem 41 IF,
Mem 13 ] Mem 23 Mem 3P Mem42
Mem 14 — Mem o4 Mem 34 |+ Mem 43 |
Bl
B2 o o I\ I\
B3 —@ L L L 4
B4 - - @ L *—
Local interconnection network
CU

Fig. 7. Architecture of the PF with distributed RPA with four PEs. The CU is implemented to support

pipelining between the particle routing and sampling steps.

The particles that are replicated as a result of the resampling for PE) are stored into local
memories Memyy, for N¥) < N. When there is a surplus of particles, these particles are stored in
CU memories Memy; for i = 1,...K and k # i. For example, the memory Mem;s is used to store
the surplus of particles from PFE; that should be routed to PFE,. If there is a shortage of particles in
PE}, then PE}, reads particles from the interface I F}, which is connected to the memories Mem;.

Routing is performed through three steps. First, particles from the PEs with the particle surplus
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are sent to the CU through the global interconnection network. Then, routing is performed through
the IF block inside the CU using the buses B; for ¢ = 1,...,4. Each IF is connected to the
corresponding memories with a bus and it acts as a master on the bus. Finally, particles are
transferred to the destination PEs through the global interconnection network. The size of the
memories is determined for the worst case (when one PE acquires all the N particles from another
PE) and it is N words, where each word consists of the particles and their replication factors. So,
the overall memory requirements are 16 N = 4M words which is 4 times more than in the sequential
case.

The timing diagram for the PE with particle shortage together with its communication with CU

is presented in Figure 8. Resampling is performed using the following steps:

1. CU performs inter-resampling and sends the output number of particles N*¥) to PE}, for k =
1,..., K. The CU also calculates the amount of data that should be transferred among the PEs.

2. The PEs perform intra-resampling so that the first N®*) < N particles are stored into the local
memory Memy; and when N®) > N the surplus is sent to the CU.

3. The particles are allocated to the corresponding memories Memy;. The PEs have no information
how the particles are further routed in the CU.

4. During the sampling step, the PE reads the particles first from the local memories. The PEs with

the shortage of particles, acquire the rest of particles from the IF as shown in Figure 8.

This architecture has an execution time very close to the minimum execution time at the expense
of increased resources. There are four parallel buses from the PEs to the CU and four parallel buses
inside the CU. The area is also increased because particles are additionally stored inside the CU.
The clock speed is limited by the memory access and by the complexity of the CU. The design

methodology and implementation results for the distributed RPA in ASIC are given in [12].
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Start of instant i Start of instant i+1
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cu |:| inter-resampling Routing
K cy des M/K cycles

Fig. 8. Timing diagrams for the PF with distributed RPA. Communication through the interconnection

network is shown for the PE}, with shortage of particles.

B. Distributed RNA architectures

In Figure 9(a), a PF architecture that can be used for all RNA algorithms with four PEs is
presented. Since the connections are not local, it is especially suitable for RNA with adaptive
regrouping. Two lines in the figure represent buses used for particle routing. The algorithm
running on the CU configures switches so that only two PEs access one bus at any given time. In
the case of RNA with fixed regrouping, the switches are configured in fixed order. For example,
if D = 2, the switches can be configured so that the following sequence is repeated: 12 and 34,
13 and 24. In RNA with adaptive regrouping, the switches are configured so that they connect
the PEs with largest and smallest weights. The RNA with local exchange can also be run on the
same architecture. We must stress here that the buses consist of a significant number of lines. For
example, for the aforementioned bearings-only tracking problem, there are at least four 24-bit lines
for transferring particles.

A simpler architecture is shown in Figure 9 (b). The network topology that is chosen is a 2 x 2

mesh. The network is static and based only on local interconnections. The CU is simple and its
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functions are collecting partial sums of weights and outputs, returning the final sum of weights to
the PEs and the overall control. The CU is connected to the PEs through a single bus. However, the

RNA with adaptive regrouping cannot be applied because not all the PEs are physically connected.

PE1

~—0 PE 1 PE 2
1 @ O—
PE4 PE2
B[l ()
o
LT
PE3 PE 4 PE3

(a) (b)

Fig. 9. Architectures for PFs with K = 4 PEs that support (a) all RNA algorithms and (b) does not
support RNA with adaptive regrouping. The number of lines for each bus is four 24-bit lines for the

four-dimensional bearings-only tracking problem.

The architectures become more complex for a higher level of parallelism. A scalable architecture
that can support both methods of RNA with regrouping (adaptive and fixed) for K < 4 and their

ASIC implementation is presented in [12].

C. Area and speed of distributed PF with RNA with local exchange

The area and speed of the distributed PF with RNA with local exchange are estimated for the
bearings-only tracking problem. The same parameters and model are used as in [11]. The range
of interest is restricted to the region [—32,32] x [-32,32]. As a benchmark, the chosen hardware
platform is Xilinx Virtex-II Pro [23]. The resources are analyzed as a combination of the number

of logic slices, multiplier blocks and memory bits.
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The finite precision approximation of variables is performed in the SystemC language [20]. The
particles are represented using 24 bits with one sign bit, five bits to the left and 18 bits to the
right of the decimal point, while the weights are represented with 16 bits with one bit in decimal
and 15 bits in the fractional part. The final memory requirements are: four 24 x M memories
for storing hidden states, one 16 x M memory for storing weights, and two 16 x M memory for
storing replication factors and indexes for resampling. So, the overall storage space is 144 x M bits.
The complex mathematical functions are implemented using CORDIC, and the Gaussian random
number generator is implemented using the Box-Muller method. The implementation is parallel in
order to achieve maximum speed.

In Figure 10 we present the execution times as functions of K. The latency and the clock period
that are used are L = 100 and T, = 10ns. The area of the graph bounded by the bold line
represents the design space area for the Virtex II Pro family. For smaller M, the design space is
determined by the logic blocks which increases with the level of parallelism, and for large M by
the memory size.

It is interesting to compare the number of memory slices, number of multiplers and the number
of bits with the corresponding values from the Virtex Il Pro family, which are shown in Table
I. In the table, the number of particles is M = 10000. The number of slices for components in
the dataflow is calculated and is multiplied by the factor of 1.5 in order to take into account the
controllers and unused slices. The approximate number of block RAM modules is calculated as
[BM/(KS)]KS, where B is the number of bits and S is the size of block RAM memory which is
18Kbit. The symbol ‘*’ represents the parameter of the memory, number of slices or multipliers
blocks that determines the choice of the Xilinx chip. In the same table, the corresponding Xilinx

chip is shown as well. For a lower level of parallelism (K < 4), the design is memory dominated,
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Number of

Virtex Il Pro design space particles M
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"K=14 '
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Fig. 10. (a) Execution time as a function of the number of PEs for RNA with local exchange for M =500,
1000, 5000, 10000 and 50000 particles.

while for a higher level of parallelism (K > 4), it is logic dominated. The design with K > 14 PEs

cannot fit into commercial Virtex II Pro FPGAs.

VI. CONCLUSIONS

In this paper, two methods for distributing the resampling step suitable for distributed real-time
FPGA implementation are proposed. The practical guidelines for choosing the resampling method
depend primarily on the desired performance, communication pattern and complexity of the CU.

PF performance of centralized resampling and the RPA algorithm are the same as the sequentially
implemented PF. However, there are no advantages in using centralized resampling since the RPA
algorithm is faster and has a simpler CU. On the other hand, the RNA algorithm trades PF
performance for speed improvement. So, RPA algorithm is a good choice when it is necessary to
preserve performance, but with significant increase in complexity.

Communication pattern in the RPA algorithm is non-deterministic. As such, it requires point-

to-point network to achieve the minimum execution time. The RNA algorithm can also achieve
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Area/level of parallelism 1 2 4 8 16 32
Memory bits for M=10000 (Mbits) 1.53* 1.62* 1.94 2.3 2.59 5.1
Multiplier blocks 10 20 40 80 160 320
Number of slices (Kslices) 4 8 16* 32% 64% | 128*
Xilinx chip that fits the design XC2VP20 | XC2VP30 | XC2VP40 | XC2VP70 - -
TABLE I

THE NUMBER OF MEMORY BITS, SLICES AND BLOCK MULTIPLIERS FOR THE DISTRIBUTED PF
IMPLEMENTATION WITH RNA WITH LOCAL EXCHANGE. THE VIRTEX II PRO CHIPS THAT CAN BE
FITTED BY THE PF PARAMETERS ARE LISTED. THE STAR SHOWS WHICH PARAMETER DETERMINED IN

CHOOSING THE CHIP.

minimum execution time, but its architecture consists only of local connections. The communication
pattern of the RNA algorithm with regrouping is somewhere in between the RNA algorithm with
local exchange and the RPA algorithm. If the size of the group is larger than two, the RNA
algorithm with regrouping also suffers from a non-deterministic communication pattern. However,
the amount of particles that have to be exchanged inside groups is smaller than for the RPA
algorithm.

The complezity of the CU of the RPA algorithm is very high since it has to implement a com-
plex routing protocol through point-to-point network. The CU of the RNA algorithm with local
exchange is simple and is not responsible for particle routing after resampling. The RNA algorithm
with regrouping has to have control units in every group when groups contain more than two PEs.
So, when speed is important and when it is required that design time is low (low complexity of the

CU and of the scheduling and protocol in interconnection networks) the RNA algorithm with local

exchange is the preferred solution.
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