Social Requirements Models for Services*

John Mylopoulos', Daniel Amyot', Luigi Logrippo®2, Alireza Parvizimosaed!,
and Sepehr Sharifi!

1 School of EECS, University of Ottawa, Ottawa, Canada
{jmylopou, damyot, logrippo, aparv007, sshar190}Quottawa.ca
2 Université du Québec en Outaouais, Gatineau, Canada

Abstract. Social dependance relationships were used in the i* require-
ments modelling language to represent dependencies among social ac-
tors. We study the evolution of the notion of social dependency into that
of commitment in the Azzurra specification language for business pro-
cesses, and then into the notions of obligation and power in the Symboleo
specification language for legal contracts. Our account focuses on the dif-
ference in the semantics of these relationships, the language used to talk
about them, and how appropriate they are for capturing requirements
for services.

Keywords: Requirements Model, Social Dependency, Service, Business
Process, Legal Contract

1 Introduction

Services are social activities involving a server and a client, where the client
depends on the server to deliver the service, be it the sale of an item, the delivery
of food, or transportation from home to work. As such, services can be modeled
as social dependencies in i* [5], a requirements modeling language founded on
the notions of actor (agent/role) and social dependency.

It turns out that social dependency is a very powerful concept that consti-
tutes the foundation for social modelling and has spawned interesting offspring
dependencies that serve as primitives for business process and legal contract
modelling. The purpose of this chapter is to discuss the ontological nature and
contrast three types of social dependence relationships: social dependencies (i*),
commitments (Azzurra) [4], as well as obligations and powers (Symboleo) [8}10].
These relationships have been studied for over three decades and have involved
many collaborators beyond the authors.

2 Social Dependencies (i*)

As shown in the top model of Fig. |1} in a social dependency the client wants
something and the server is able and willing to deliver. However, the force of the

* This chapter shares much of the narrative with [7], but focuses on modeling require-
ments for services and has been written for a very different audience.



2 J. Mylopoulos et al.

dependence can vary from weak to strong on either side of the service. Consider
a car owner’s dependence on a body shop to repair her car: it is usually weak
on the car owner’s side because there are other body shops that can do the job,
and strong on the body shop’s side because that’s the mission of body shops.

Contrast this with one’s dependence on a renowned surgeon for a rare medical
operation. This one is strong on the client’s side, because there are no substitute
servers. The force of the dependence on the server’s side is more important, as
she is responsible for delivering the service. That force is defined along two di-
mensions: ability to deliver the service, and degree of commitment to deliver. The
dependence on that surgeon is strong on ability and medium on commitment,
as surgeons will postpone scheduled operations in case of emergencies.

Car be repaired
Oo, BodyShop |-© ©

Beggar Passerby

Fig.1: Examples of social dependence relationships in i* (adapted from Eric
Yu’s lectures on i*)

Now, consider a beggar who depends on passersby to get some some money
(the service) as Fig. [1] (bottom) shows. This is a social dependency too, and it is
weak on both sides: The beggar can switch to another kind of dependency to get
money, e.g, work, while the passersby have not even agreed explicitly with the
beggar to deliver the service, they are just willing to do it, occasionally. Here, the
dependency is established statistically: some passersby give money, and sooner
or later this establishes a dependency for the beggar. Note that this dependence
does not qualify as a service in the sense that there is no commitment on the
part of the server to deliver the service.

1* does recognize the importance of the force of a dependence by allowing
three possible levels of force: critical, committed and open [1]. But, as discussed
in the sequel, it turns out that in several areas of research, people have opted for
defining specializations of social dependence relationships where the strength of
dependence is built into their semantics. Commitments, obligations and powers
are three such relationships.

The use of i* to build requirement models for services goes back to Diana
Lau’s Masters thesis at the University of Toronto, presented in [6], but also [1]
and [9]. All three proposals use the Tropos methodology (3| for deriving agent-
oriented implementations from stakeholder requirements.



Social Requirements Models for Services 3

Figure [2] shows a social dependency model for an online retail service. The
service involves several actors (circles), including the retailer, the customer, and
the retailer’s bank. They each have goals, represented as rounded-corner rect-
angles, and softgoals (fuzzy goals), represented as clouds: the retailer wants to
maximize profits, the customer wants to own products and the bank wants to
deliver secure transaction services, among others. There are also dependencies:
the retailer depends on a direct supply vendor to ship products to retailer’s
customers, on the bank to deliver deposit/withdrawal/transfer services, etc.

Secure Maximize

transactio profit

Support deposit,
withdraw &
transfer

Owner products

Retain
customer

Good customer
service

Maximize
profit

Ship product Product
to customer offering

Credit
Authority

Product at
owest price

Deliver Maximize
fi
pro It

Direct
Supply Validate
Transport Ship goods Vendor / Maximize customers’
Center to customer profit ability to pay

Fig. 2: Social dependency model for an online retail service (adapted from @])

i* has had many offshoots, including Tropos [3], a methodology for design-
ing agent-oriented software systems, as well as the Goal-oriented Requirement
Language (GRL), part of the User Requirements Notation (URN) standard [2].

3 Commitments (Azzurra)

Originating in the area of Multi-Agent Systems , commitments capture a
social dependence where there is an explicit speech act executed “I want X — I
commit to fulfill X”. This kind of social dependence on a service has substantially
more force than the beggar’s dependence on passersby. It means that the server
intends to deliver, provided that some conditions hold. So, commitments are
social dependencies that always arise from intentions, rather than mere practice,
and are established through speech acts. More formally, commitments are 4-
tuples C(debtor, creditor, antecedent, consequent), where creditor is the
client, i.e., the beneficiary of the service, while debtor is the server. Moreover,
the commitment is fulfilled when the consequent becomes true, provided that the
antecedent is true. Moreover, commitments go through states, such as created,



4 J. Mylopoulos et al.

active, suspended, success and failure. Allowable state transitions can be defined
by state diagrams, as shown in Fig. 3] Note that commitments constitute a
specialization of social dependencies, with better fleshed out semantics, proposed
for use in multi-agent systems. They also come with a precise level of force for
the debtors/servers who intend to fulfill what they are committed to, while the
creditors/clients have the right to expect that the commitments will be fulfilled.
The passersby mentioned earlier have no commitment towards the beggars and,
in turn, they have no right to expect anything from them.

Antecedent=true Consequent=true

Fig. 3: The lifecycle of a commitmentﬂ

Azzurra is a conceptual modelling language for business processes. Its main
thesis is that business processes being social artifacts, need to be defined in
social terms, rather than system-oriented ones (e.g., Petri nets, BPMN and the
like). Accordingly, business processes (aka protocols) are defined in terms of roles
and commitments, with constraints attached. Azzurra models can be seen as
requirements specifications for services, defined in terms of the business processes
through which they will be delivered. Moreover, as specifications they describe
what a business process is supposed to achieve without getting into the details
of how to achieve it.

Table[1]presents an Azzurra protocol for fracture treatment (adopted from [4]).
The protocol includes as parameters a hospital number that serves as key for
treatment instances, a patient, a specialist; it also includes role parameters, such
as a radiologist and a surgeon, as shown.

There are nine commitments for this protocol, each using a <trigger> —
<commitment> format. The first, Cy, is triggered when the protocol is instanti-
ated, has as roles the specialist (server) and patient (client), it is unconditional
(antecedent= true) and is fulfilled when the patient is examined, then diagnosed
and then de-hospitalized. The second commitment, Co, is triggered if there is
no need for X-rays and fulfilled when a sling is made for the patient. Protocol
refinements constrain the agents that participate in a protocol instance. For ex-
ample, agents may be constrained on how many concurrent commitments they

3 Figure [3|is actually a simplification of a commitment’s lifecycle in Azzurra.



Social Requirements Models for Services 5

Table 1: An Azzurra protocol for fracture treatment

protocol Treatment(key hospnr, pt : Patient, sp : Specialist){
ag-variables: rc : RehabCenter, ra : Radiologist, or : Orthopedist, su : Surgeon,
nu : Nurse;

commitments:
init = Ci : C(sp, pt, T, Examined . Diagnosed . Dehospd) final
NoXRayNeeded — Cs : C(or, sp, T, SlingMade)
XRayRequested — Cs : C(ra, sp, T, XRayPerformed)
XRayRequested — Cy4 : C*(sp, ra, XRayPerformed, FractAssessed)
FractAssessed — Cs : C(or, sp, T, ((Fixated®Plastered) V fulfill(Cg) V Sling-

Made))
FractAssessed —<an Cg : C*(su, or, SurgeryRequested, Operated)
Operated|[—fused] — C7 : C(nu, pt, T, RcChosen(rc))
RcChosen(rc) — Cs : C(rc, pt, T, fulfil-p(RehabGiven, key=hospnr, pat-
id=pt, ref-sp=sp))

MedPrescribed(m) — Cyg : C(nu, sp, T, MedApplied(m))
can-deleg-no-resp(Cs)
deadline(Cs, 2h)

protocol refinements:
role-confl(Radiologist, Orthopedist)

kb:
implies(XRayRequested, Diagnosed)
implies(NoXRayNeeded, Diagnosed)
implies(MedPrescribed(m), Diagnosed)
mutExcl(XRayRequested, NoXRayNeeded) }

have for a given role, such as a surgeon for treatment protocol instances (max-
per-role). Finally, the knowledge base (KB) defines some domain axioms, which
can be used to reason about propositions serving as triggers, antecedents or
consequents of commitments.

Azzurra supports two types of reasoning for protocols. ENACTPROTOCOL de-
termines how an event updates the state of a protocol instance and of the com-
mitment instances therein. CHECKCOMPLIANCE checks whether an occurred event
violates the specification of a protocol instance. This corresponds to identifying
commitments that are not created/fulfilled, unexpected commitment operations
and protocol constraint violations.

In summary, commitments specialize and improve the formalization of social
dependence relationships. They also come with a language richer than i* for
modeling business processes in an outcome-oriented approach. Finally, and most
importantly, Azzurra is a more appropriate language than i* for describing re-
quirements for services, as it commits the server to deliver, and gives the client
the right to expect the service.



6 J. Mylopoulos et al.

4 Obligations and Powers (Symboleo)

Obligations are commitments with legal force. The legal force is defined through
powers that a creditor has towards the debtor of an obligation to cancel or
suspend an obligation or another power, or initiate new obligations or powers.
The concept of obligation is a specialization of the concept of commitment in
that obligations can be created, cancelled, etc. by someone who has the power
to do so. In turn, powers constitute a specialization of obligations in that they
can include in their antecedent the creation, cancellation, etc. of other powers
or obligations.

Obligations and powers constitute the basic elements of legal contracts. Legal
contracts form the foundation of all commerce world-wide and have been used
since time unmemorable. Legal contracts can be thought as process specifications
that describe the space of allowable executions that comply with legal terms
and conditions. The presence of powers in legal contracts makes them a much
more malleable concept than that of business processes in that they can be
reshaped with the introduction/cancellation of obligations while contracts are
being executed (“performed” in Law).

Symboleo is a formal specification language for legal contracts, intended to
serve in formalizing requirements for smart contracts. The latter are software sys-
tems, possibly running on blockchain platforms, that partially automate, monitor
and control the execution of legal contracts. Symboleo is founded on an ontology
that is centered around the notions of obligation and power, and includes role
and party (the actors playing roles in a contract), asset, situation and event.
Situations occur over time, e.g., the situation of commuting to work. Events, on
the other hand, happen instantaneously, e.g., arrived At Work.

Symboleo adopts many elements from Azzurra. Obligations and powers use
the same format as commitments. Their antecedents, consequents, and triggers
are expressed in terms of events happening in a certain order and satisfying con-
straints. For example, for a sale contract the consequent of a delivery obligation
may be “Sale item delivered to delivery address by delivery date”.

Table [2| presents a Symboleo specification for a contract (adapted from [10]).
As shown, a Symboleo specification begins with the description of concepts in
the domain. These are defined as classes that specialize concepts in the Symboleo
ontology. For example, Goods specializes Asset and has an additional attribute
goodsID. Instances of this class include sale items involved in sale transactions.
The domain model for a contract is followed by declarations of variables that
take as values instances of domain classes. Pre/post-conditions have the same
semantics as in program specifications. The core of contract specifications con-
sists of obligations and powers. In our example there are two obligations: the
seller must deliver the sale item to the delivery address by the delivery date
(O1), while the buyer must pay on time the sale amount (Oz). The contract also
includes one power: if the buyer violates the payment obligation, the seller has
the power to terminate the contract (P1). Note that the creditor of a power may
choose to not exercise it.



Social Requirements Models for Services 7

Table 2: Abbreviated Symboleo specification for a goods sale contract

Domain salesD

Goods isA Asset with goodsID: Integer;

Delivered isA Event with delAddress: String, delDueDate: Date;

endDomain
Contract salesC(seller: Seller, buyer: Buyer, ID: Integer, amnt: Integer, curr:
Currency, delAdd, delDd: String)

Declarations
/* Values of parameters are passed on to the variables defined in the domain
model. */
goods : Goods with goodsID := ID;

delivered : Delivered with delAddress := delAdd, delDueDate := delDd;
Preconditions
isOwner(seller, goods) AND NOT isOwner(buyer, goods);
Postconditions
isOwner (buyer, goods) AND NOT isOwner(seller, goods);
Obligations
O1 : O(Seller, Buyer, true, happensBefore(delivered, delivered.delDueD));
Oz : O(Buyer, Seller, true, happensBefore(paid, paid.payDueD));

Powers

P; : violates(O2, ) — P(Seller, Buyer, true, terminates(salesC));
SurvivingObl

/* Some obligations may remain active, e.g., confidentiality obligations. =/
Constraints

not(isEqual(buyer, seller));

endContract

Legal contracts can be very complex constructs with many features that go
well beyond those of business processes. For instance, some obligations may apply
after the successful termination of a contract (and are accordingly called surviv-
ing obligations). A confidentiality obligation for a sale transaction for 6 months
after a contract terminates is an example of such an obligation. A contract may
spawn subcontracts that may be established while the contract is executing. For
example, when a large project is undertaken in the construction industry, not all
the subcontractors with their respective subcontracts might have been identified
when the project starts. Symboleo specifications can be validated to ensure that
they are consistent with the expectations of the contracting parties by a tool
that enacts scenarios and determines the contract’s final state. For example, for
the scenario “Seller delivers on time, buyer does not pay on time, seller exercises
power to terminate”, the tool determines that the final state of the contract is
‘cancelled’. The scenarios for validation are provided by the contracting parties,



8 J. Mylopoulos et al.

along with their anticipated final state of the contract when each scenario is
enacted.

All commercial services are defined in terms of legal contracts and they do
include both obligations and powers for the contracting parties. But note that
not all services need to have associated explicit legal contracts, see for example
Government or volunteer services.

5 Conclusions

Social models consisting of actors and social dependencies are useful for captur-
ing requirements for social systems that include software, business processes and
services. We trace the evolution of the concept of social dependence to commit-
ments and then to obligations and powers, focusing on changes in semantics, the
languages where these relationships inhere, and the application domains, i.e.,
the types of artifacts we are defining requirements for.

Epilogue

This chapter has been written for the occasion of Mike Papazoglou’s retirement
celebration, to hopefully happen within 2021. I have known Mike for thirty years
as a colleague working on topics of mutual interest, collaborator on international
projects, co-author and friend.

Throughout, Mike has been an exemplary researcher not only for his research
contributions and their impact, but also for the leadership role he undertook
in conceptualizing, shaping and promoting research areas. During the 90s, his
passion was with Cooperative Information Systems, an area of research where
he founded a conference series and a journal that are still going strong. In the
following decade, his allegiance shifted to Web Services and Service-Oriented
Computing where he was a key player in framing the area and the research
venues that define and serve it.

It is a pleasure to contribute, along with my University of Ottawa colleagues
working on smart contracts, a chapter on Service Requirements that spans his
interests as well as mine.

John Mylopoulos
Toronto, June 8, 2020

References

1. Aiello, M., Giorgini, P.: Applying the Tropos methodology for analysing web ser-
vices requirements and reasoning about qualities of services. Tech. Rep. DIT-04-
034, University of Trento (2004)

3 Nothing is certain in the days of the pandemic.



10.

11.

Social Requirements Models for Services 9

. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the

next ten years. JSW 6(5), 747-768 (2011)

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203-236 (2004)

Dalpiaz, F., Cardoso, E., Canobbio, G., Giorgini, P., Mylopoulos, J.: Social speci-
fications of business processes with Azzurra. In: 9th RCIS. pp. 7-18. IEEE (2015)
Eric, S., Giorgini, P., Maiden, N., Mylopoulos, J.: Social modeling for requirements
engineering. MIT Press (2011)

Lau, D., Mylopoulos, J.: Designing web services with Tropos. In: Proceedings. IEEE
International Conference on Web Services, 2004. pp. 306-313. IEEE CS (2004)
Mylopoulos, J., Amyot, D., Logrippo, L., Parvizimosaed, A., Sharifi, S.: Social
dependence relationships in requirements engineering. In: 13th International iStar
Workshop, CEUR-WS 2642. pp. 55-60 (2020)

Parvizimosaed, A., Sharifi, S., Amyot, D., Logrippo, L., Mylopoulos, J.: Subcon-
tracting, assignment, and substitution for legal contracts in Symboleo. In: 39th
International Conference on Conceptual Modeling (ER’20). Springer (2020)
Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder needs to service
requirements. In: 2006 Service-Oriented Computing: Consequences for Engineering
Requirements (SOCCER’06-RE’06 Workshop). IEEE CS (2006)

Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo:
A specification language for smart contracts. In: 28th IEEE International Require-
ments Engineering Conference (RE’20). pp. 384-389. IEEE CS (2020)

Singh, M.P.: An ontology for commitments in multiagent systems. Artificial intel-
ligence and law 7(1), 97-113 (1999)



	Social Requirements Models for Services

