
Noname manuscript No.
(will be inserted by the editor)

A Data Classification Method for Inconsistency and
Incompleteness Detection in Access Control Policy Sets

Riaz Ahmed Shaikh · Kamel Adi · Luigi Logrippo

Received: date / Accepted: date

Abstract Access control policies may contain anoma-
lies such as incompleteness and inconsistency, which can

result in security vulnerabilities. Detecting such anoma-

lies in large sets of complex policies automatically is

a difficult and challenging problem. In this paper, we

propose a novel method for detecting inconsistency and
incompleteness in access control policies with the help

of data classification tools well known in data mining.

Our proposed method consists of three phases: firstly,

we perform parsing on the policy data set; this includes
ordering of attributes and normalization of Boolean ex-

pressions. Secondly, we generate decision trees with the

help of our proposed algorithm, which is a modification

of the well-known C4.5 algorithm. Thirdly, we execute

our proposed anomaly detection algorithm on the re-
sulting decision trees. The results of the anomaly detec-

tion algorithm are presented to the policy administra-

tor who will take remediation measures. In contrast to

other known policy validation methods, the proposed
method provides means for handling incompleteness,

continuous values and complex Boolean expressions. In

order to demonstrate the efficiency of our method in dis-

covering inconsistencies, incompleteness and redundan-

cies in access control policies, we also provide a proof-
of-concept implementation.

Riaz Ahmed Shaikh
Computer Science Department, Faculty of Computing & In-
formation Technology, King Abdulaziz University, Jeddah,
Saudi Arabia.
E-mail: rashaikh@kau.edu.sa

Kamel Adi · Luigi Logrippo
Computer Science & Engineering Department, Université du
Québec en Outaouais, Gatineau, Québec, Canada.
E-mail: kamel.adi@uqo.ca, E-mail: luigi.logrippo@uqo.ca

Keywords Access Control, Data classification,
Inconsistency, Incompleteness, Policy Validation

1 Introduction

In enterprise environments, permission to access data

for various purposes is regulated by complex policies.
These policies can be expressed in different forms, for

example: natural language, XML-based formats (such

as XACML [32]), or firewall code. Because of their com-

plexity, distribution and size, these policies can contain
anomalies or errors, which can result in security vul-

nerabilities. We will use the term anomalies to refer to

potential errors in the policies, for which inconsistency

and incompleteness are common examples. Inconsisten-

cies are situations where for a specific situation, differ-
ent incompatible policies can apply [9,35]. For exam-

ple, a policy administrator may formulate the following

policy: “Only doctors are allowed to read and write on

patient files”. Then later, as an afterthought, she may
add: “Nurses can also read it”. Probably the more re-

cent policy is meant to be an exception to the first,

however the policy administrator or auditor should be

made aware that an exception has been created. In-

completeness is the existence of situations for which no
policy applies [9,34]. In this case, not all possible com-

binations of attribute values have been considered in

the policies. For example, if a policy considers the days

of the week to decide an outcome, are all days in the
week considered? If the time of the day is used, are

all hours in the day considered? Some of these anoma-

lies can be exploited by attackers, including the author

of the policy, to obtain unintended access or to com-

promise integrity. The existence of anomalies may also
be a symptom of poorly maintained policy sets. While

owner
Text Box
 International Journal of Information Security, Springer, 2016
 DOI: 10.1007/s10207-016-0317-1

owner
Sticky Note
Accepted set by owner

2 Riaz Ahmed Shaikh et al.

anomalies exist frequently in sets of access control rules,

and can be normal, as in the case of exceptions, the

policy administrators and auditors should be aware of

them. The detection of anomalies will be also called

policy validation.
Before going further, we will introduce some ter-

minology that will be used in the rest of the paper.

The term Access control policy is used in two mean-

ing. One (the one used so far) is to denote informally
stated principles that can be used in organizations to

regulate access control to data. Another meaning is to

denote sets of related access control rules. Rules are

precise statements that convey specific information on

what decision should be taken if certain subjects re-
quest to perform certain operations on certain data. In

many access control systems, rules can be either pos-

itive (to allow access) or negative (to deny it). It is

in these systems that inconsistency and incompleteness
can occur [9]. Notable examples of such systems are

ABAC [20,32] and OrBAC [18], as well as some in-

dustrial tools. The terms policy sets and rule sets are

synonyms in this paper.

Rephrasing the previous definitions in this termi-
nology, a set of rules, or a policy set, is inconsistent if

it is possible to find in it rules that lead to opposite

decisions, such as both denial and allowance of access

requests in certain cases; it is incomplete if for some
access requests no applicable rule can be found. Both

inconsistency and incompleteness have been known for

some time [9], but most detection methods deal only

with inconsistency.

Inconsistency and incompleteness checks can be per-
formed by policy administrators or by auditors. Large

organizations are known to require hundreds and thou-

sands of rules, and so automated tools are necessary.

Such tools have been developed for inconsistency only
[4,37,11,5,28,7,1]. Several researchers have tried to solve

the problem of detecting inconsistencies using methods

based on formal logic. However, this approach is diffi-

cult to implement and inefficient for large policy sets.

Also, existing methods are inefficient in handling con-
tinuous values (for example time), which are common

in access control policies.

Incompleteness is addressed in many systems by im-

plicit meta-rules such as: all behaviors that are not ex-
plicitly allowed are forbidden. Inconsistency is also usu-

ally addressed by meta-rules. A commonly used meta-

rule is based on ordering rules by priority and applying

only the rule of higher priority in case several rules be-

come applicable. In XACML, conflict resolution meta-
rules (override) can be provided by the user. Examples

are deny overrides, permit overrides, first-applicable,

etc. In firewalls the first-applicable meta-rule is used:

rules are executed top-down and only the first-applicable

rule is executed [13], later rules that may contradict it

are ignored. However, the result of the application of

these blanket meta-rules may not always reflect the in-

tention of the security administrator or of the author
of the policies. Therefore, an automated mechanism or

tool is highly needed through which policy administra-

tors can easily detect anomalies and validate policy sets.

In this work, we describe a novel method for detect-
ing anomalies, both inconsistency and incompleteness,

in policy sets. For this purpose we propose the use of

data mining techniques, in particular an adaptation of

the data classification algorithm C4.5. Our method of-

fers:

– Simultaneous detection of inconsistency and incom-

pleteness.

– Ability to detect redundant rules in the policy set.
– Ability to handle numeric / continuous values in an

efficient manner.

– Ability to handle Boolean expressions.

– Ease of implementation.

– Visualization support that can help to identify re-
lations and patterns in unstructured policy sets.

To the best of our knowledge, we are the first authors

to propose the use of data classification algorithms to
detect anomalies in access control policies. A charac-

teristic of our method is to handle continuous values

and Boolean expressions efficiently, and it is particu-

larly useful that in our method inconsistency and in-

completeness are detected simultaneously. The method
we will describe is generic, i.e. independent of any un-

derlying policy specification language.

Our proposed anomaly detection method consists of

three phases:

1. Normalizing and formatting input data: Rules in

policy sets are not usually in uniformly structured

form. Some rules are simple but others may contain

complex Boolean expressions of variable lengths. In
order to use data classification algorithms, we need

to order attributes and transform Boolean expres-

sions into normalized forms.

2. Constructing decision trees : For decision trees we

propose two algorithms. The first algorithm is the
Discrete Decision Tree Generator (D-DTG) algo-

rithm, which is used for sets of rules which only

contain discrete attributes. The second algorithm

is the Decision Tree Generator (DTG) algorithm,
which is used for sets of rules which contain both

discrete and numeric attributes.

3. Executing the anomaly detection algorithm: Once

the decision tree is created we apply the proposed

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 3

anomaly detection algorithm to detect any inconsis-

tency or incompleteness in access control policies.

Anomaly resolution is not the subject of this pa-

per, we will briefly mention methods that can be used
to address anomalies. Once detected, inconsistency can

be manually addressed by removing rules or narrowing

their range of applicability. For example, a rule may

have an unintended wide scope that covers cases that
should be handled by other rules. Incompleteness can

be addressed by adding rules or enlarging the range of

applicability of existing rules.

The rest of the paper is organized as follows. Sec-

tion 2 introduces concepts and definitions. Section 3
provides brief overview of data classification algorithms.

Section 4 contains a description of our proposed anomaly

detection method. Section 5 presents the subject of the

normalization of input data. Section 6 contains theo-
retical and implementation analysis and evaluation of

the proposed method. Section 7 presents related work

and comparison of the proposed method with existing

methods. Finally, Section 8 concludes the paper.

2 Concepts and Definitions

2.1 Structure of rules

In our method, consistent with both data classification

algorithms and access control systems such as ABAC,

access control rules are described as ordered collections

of attributes. These attributes are classified into two
types: 1) Non-category attributes and 2) Category at-

tributes. Non-category attributes are decision-making

attributes, such as role, subject, location, time, etc.

Each non-category attribute contains a qualitative or
quantitative value. On the other hand, category at-

tributes express the decision of the rule. Each rule con-

tains only one category attribute that represents the

class of rules to which the rule belongs. For these at-

tributes we consider here only the values {Allowed, De-

nied}. In some access control policy languages [32], the

category attributes can also take values such as ‘Inde-

terminate’, ‘Not Applicable’, etc. We will not consider

these additional values for simplicity, but our technique
can be extended to support them.

Further, we assume that all rules in a policy set

contain the same ordered set of attributes. Rules that

are missing some attributes can be completed by us-

ing default values, and this is one of the goals of the
formatting phase.

Let policy set ℜ be a non-empty set of rules (ℜ =

{R1, R2, . . . , Rn}). Each rule R ∈ ℜ consists of a non-

empty, finite number of elements Ai, each of the form

N = V , where N is the name of the attribute and V is a

set of values. One of these attributes, which we will al-

ways write at the end, is the category attribute Permis-

sion. This one will have exactly one value in each rule,

either Allowed or Denied. The others are non-category
attributes. Rules Ri ∈ ℜ will be written as follows:

Ri : A1 ∧ A2 ∧ . . . ∧ An → Permission.

For example, consider the following rule:

R: Role={Doctor} ∧ Resource={Medical record} ∧
Operation={Write} → Permission={Allowed}.

In this example, role, resource and operation are the

non-category attributes of the rule and Permission is

the category attribute of the rule. Doctor, Medical record,

etc. are the values of the attributes.
Note that only the AND (∧) operator has been used

in the definition of rule structure. If a rule contains

Boolean expressions which contain different operators

(e.g. OR, NOT), then it is split in several rules, as we

shall see in Section 5.2.
Hereafter, we formally define inconsistencies and in-

completeness from the perspective of data classification.

2.2 Inconsistencies

We have a direct inconsistency when two rules present

in a policy set lead to direct contradictory conclusions:
suppose that one rule states that user x is allowed ac-

cess to resource r and another rule states that user x

is denied access to the same resource with the same

attribute values. The formal definition of direct incon-

sistency is given below.

Definition 1: Let υ(Ri.Aj) denote the set of values

assigned to an attribute Aj in rule Ri. Rules Ri, Rj ∈ ℜ
are mutually inconsistent if and only if

1. ∀Ak ∈ A, υ(Ri.Ak) ∩ υ(Rj .Ak) 6= ∅ and
2. υ(Ri.P ermission) 6= υ(Rj .P ermission).

Informally, condition one in the above definition states

that each element of the set of non-category attribute-

values of Ri has non-empty intersection with each cor-

responding element of the set of attribute-values of rule

Rj and condition two states that the category attribute-

value of rule Ri is different from the category attribute-

value of rule Rj . The non-empty intersection condition

will be deemed to be satisfied when default values are

used on either rule.
Example 1. Let us assume that the policy set ℜ con-

sists of the following two rules.

4 Riaz Ahmed Shaikh et al.

R1: Subject={Alice,Bob} ∧ Object={O1} ∧ Oper-

ation={Write} ∧ Day={Tue,Wed,Thu,Fri} → Permis-

sion={Allowed}
R2: Subject={Alice} ∧ Object={O1,O2} ∧ Opera-

tion={Read,Write} ∧ Day={Fri,Sat,Sun,Mon} → Per-
mission={Denied} .

The set of values assigned to the attributes in these

two rules are overlapping and their permissions are dif-

ferent. Then, according to Definition 1, rule R1 and R2

conflict with each other.

There is an indirect inconsistency if an inconsis-

tency is created by performing the union of the sets

of rules in consideration. We can also have dynamic in-

consistencies, which can occur when new rules are gen-
erated as the result of events such as delegation. Again,

the newly created rules are inconsistent with the old

rules if an inconsistency is created by performing the

union of the old and the new rules.
Example 2. Assume that a system contains two sets

of rules. The first set (ℜ) contains static rules like,

R1: Subject={Alice} ∧ Operation={Create} ∧ Ob-

ject={Account} → Permission={Allowed}
R2: Subject={Bob} ∧ Operation={Create, Write}

∧Object={Account, Ledger}→ Permission={Denied}.

The second set (ℜ′) may contain rules which are
created in the system at runtime. For example, if Alice

delegates her rights to Bob then the following rule is

generated into ℜ′.

R3: Subject={Bob} ∧ Operation={Create} ∧ Ob-
ject={Account} → Permission={Allowed}

Then, according to Definition 1, R2 and R3 are mutu-

ally inconsistent.

2.3 Incompleteness

As mentioned, incompleteness is the existence of situa-

tions for which no rule is defined. The formal definition

of incompleteness is presented below.

Definition 2: Let Υ (Aj) denote the set of all pos-

sible values that can be assigned to an attribute Aj .

Let υ(Ri.Aj) denote the set of values assigned to an
attribute Aj in rule Ri. The policy set ℜ is incomplete

if and only if

⋃

i=1..m

n∏

j=1

υ(Ri.Aj) ⊂
n∏

j=1

Υ (Aj).

Here ⊂ denotes a proper subset,
∏

denotes Cartesian

product, m denotes the number of rules (m = |R|) and
n denotes the number of non-category attributes (n =

|A|).
Example 3. Let us assume that a policy set ℜ con-

tains three rules and each rule contains two non-category

attributes: Trusted and Weekend. For simplicity, we as-

sume that both are binary attributes. Assume that the

policy set ℜ contains the following three rules.

R1: Trusted={No} ∧ Weekend={No} → Permis-

sion={Denied}
R2: Trusted={No} ∧ Weekend={Yes} → Permis-

sion={Denied}
R3: Trusted={Yes} ∧ Weekend={No} → Permis-

sion={Allowed}

According to Definition 3, this rule set ℜ is incom-

plete because there is no rule for case ([Trusted={Yes}
∧ Weekend={Yes }]).

3 Overview of Data Classification Algorithms

The primary objective of data classification algorithms
is to organize and categorize data in distinct classes.

Many data classification algorithms e.g., ID3 / C4.5

use information gain to construct decision trees. It is

an indicator for deciding the relevance of an attribute.
In general, the attribute that provides the highest in-

formation gain will appear first in the decision tree.

The process of decision tree creation starts with a

single node representing all data [41]. If all cases in

a data set belong to the same category then the node
becomes a leaf labeled with a category label. Otherwise,

an algorithm will select an attribute according to the

following criteria [21]:

1. For each attribute a, find the normalized informa-
tion gain from splitting on a.

2. Let abest be the attribute with the highest normal-

ized information gain.

3. Create a decision node that splits on abest.
4. Recur on the sublists obtained by splitting on abest,

and add the newly created nodes as children of the

current node.

Let us assume that a data set S contains two classes
P and N . Then, the information gain for an attribute

A is calculated as follow [41]:

gain(A) = I(SP , SN)− E(A) (1)

Here, I(SP , SN) represents the amount of information

needed to decide if an arbitrary example in S belongs

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 5

Table 1: Sample Policy Set

Subject Action Object Location Permission
Alice Read File 1 Building 1 Denied
Alice Read File 1 Building 2 Denied
Bob Read File 1 Building 1 Allowed
Carol Write File 1 Building 1 Allowed
Carol Delete File 2 Building 1 Allowed
Carol Delete File 2 Building 2 Denied
Bob Delete File 2 Building 2 Allowed
Alice Write File 1 Building 1 Denied
Alice Delete File 2 Building 1 Allowed
Carol Write File 2 Building 1 Allowed
Alice Write File 2 Building 2 Allowed
Bob Write File 1 Building 2 Allowed
Bob Read File 2 Building 1 Allowed
Carol Write File 1 Building 2 Denied

to P or N and E(A) represents the information needed
to classify objects in all subtrees. I(SP , SN) is defined

as [41]:

I(SP , SN) = −
x

x+ y
log2

x

x+ y
−

y

x+ y
log2

y

x+ y
(2)

where x is the number of elements in class P and y is

the number of elements in class N . Let us assume that
using attribute A as the root in the tree partitions S in

sets {S1, S2, ...Sv}. If Si contains xi examples of P and

yi examples ofN , then E(a) is calculated as follows [41]:

E(a) =

v∑

i=1

xi + yi
x+ y

I(SP , SN) (3)

A sample data set is given in Table 1. This data set

consist of four non-category attributes and class (cate-

gory) attribute. Information gain for each attribute is
given below.

– gain(Subject) = 0.246

– gain(Action) = 0.029

– gain(Object) = 0.151
– gain(Location) = 0.048

In this example, Subject attribute has the highest at-

tribute. Therefore, it appears first in the decision tree
as shown in the Figure 1. In this figure, the root node

shows that out of 14 rules, 9 (9/14 ≈ 64%) belong to

class Allowed and 5 (5/14 ≈ 35%) belong to class De-

nied.

4 Anomaly Detection Method

Intuitively, the decision trees that are generated by our

method show the values of the category attributes for

each combination of values of non-category attributes.

Fig. 1: Decision tree for the sample policy set

Each branch in the tree represents a set of values of a

non-category attribute. Each path from root to leaf in
a decision tree shows a possible combination of values

for all attributes. Each node shows the probability of

each category attribute being selected after the com-

bination of attributes given in the path leading to it.

Therefore, the root node, where no attribute values are
known, will show Allowed and Denied each with 50%

probability each. The leaf nodes, where all attribute

values are known, should show only one of them with

100% probability, the other with 0% probability. How-
ever, if a leaf shows two category attributes with more

than 0% probability, then the path leading to it iden-

tifies a combination of attribute values that leads to

an inconsistency: two different decisions are possible in

this case. If a leaf node shows that both category at-
tributes have 0% probability, then the path leading to

it identifies a case of incompleteness: no decision exists

for this case. It can be easily seen that these definitions

correspond to Definitions 1 and 2 above. The concept
of probability is not needed for this application of the

classification algorithm, although it could be useful in

the case of access control methods with probabilistic

outcomes.

Therefore, Definitions 1 and 2 can be implemented
by generating decision trees as described above, and

then checking the leaf nodes.

Our proposed anomaly detection method detects in-

consistencies and incompleteness according to a given
reference model and a policy set. The reference model

is comprised of three things: the set of all possible non-

category attributes that can be used to define rules,

all possible values of each non-category attribute, and

the set of category attributes. This information can be
found by parsing the policy set or can be provided di-

rectly by the policy administrator. In the first case, we

speak of a local reference model, and in the second case

we speak of a global reference model. Clearly, for a given
organization, any local reference model should be in-

cluded in the relevant global reference model.

6 Riaz Ahmed Shaikh et al.

Table 2: Sample policy set

Subject Resource Action Permission
Alice File 1 Read Allowed
Alice File 1 Write Denied
Alice File 2 Read Allowed
Alice File 2 Write Allowed
Alice File 2 Write Denied
Bob File 2 Read Denied
Bob File 1 Read Denied
Bob File 1 Write Allowed
Bob File 2 Read Denied

Fig. 2: Decision tree generated by the C4.5 algorithm

4.1 Constructing Decision Trees

As stated earlier, the attribute that provides the high-

est information gain will appear first in the decision

tree. The attributes which provide low information gain
may not necessarily appear in the decision tree. How-

ever for our analysis ignoring any attribute means loss

of context and without complete context it is difficult

to detect and diagnose inconsistencies and incomplete-
ness. For example, if we apply the C4.5 algorithm on

the policy data set given in the Table 2, we get the op-

timized decision tree1 shown in Figure 2. Note that, in

this figure, attribute “Resource” is not present. Due to

this, it is not clear that Alice and Bob are both Allowed

and Denied to perform Read and Write operations on

which objects. In order to generate complete decision

tree, a modification is needed in the decision tree con-

struction process of the C4.5 algorithm
Algorithm 1 shows our proposed Discrete Decision

Tree Generator (D-DTG) algorithm, that is used to

generate complete decision trees when all non-category

attributes are discrete / non-numeric. This algorithm

is a simplified version of the standard ID3/C4.5 algo-
rithm, in which we have changed the selection criteria of

the attributes. Note that in this algorithm, we consider

1 For this purpose, we have used the Sipina data mining
software package developed by Ricco Rakotomalala in the
ERIC Research laboratory [30].

each attribute (Line 4) and all its possible values (Line

5) in the construction of a decision tree, whereas, in

the ID3/C4.5 algorithm, attributes are selected based

on the value of the information gain.

Algorithm 1 Discrete Decision Tree Generator (D-

DTG) Algorithm

function D-DTG

Input: Ad: a set of non-category discrete attributes, P : the
category attribute, ℜ: a rule set
Output: a decision tree;

1: If ℜ is empty, return a single node with value Failure;
2: If ℜ consists of rules all with the same value for the cat-

egory attribute P , return a single leaf node with that
value;

3: If Ad is empty, then
Return a single node with the value of the most frequent
of the values of the category attribute that are found in
records of ℜ;

4: Let a be the first discrete attribute that is selected among
attributes in Ad;

5: Let {aj |j = 1, 2, ..,m} be the values of attribute a;
6: Let {Rj |j = 1, 2, ..,m} be the subsets of ℜ consisting re-

spectively of records with value aj for Ad;
7: Return a tree with root labeled a and arcs la-

beled a1, a2, .., am going respectively to the trees
(D-DTG(Ad/{a}, P,R1), D-DTG(Ad/{a}, P,R2), ... ,
D-DTG(Ad/{a}, P,Rm));

8: Recursively apply D-DTG to subsets Rj |j = 1, 2, ..,m un-
til they are empty;

The D-DTG algorithm takes three inputs: 1) a set

of non-category discrete attributes Ad, 2) category at-

tribute P , and 3) a policy set ℜ. This algorithm first

checks whether policy set ℜ contains some rules or not.

If ℜ is empty, then a single node will be generated with
error (Line 1). If it is not empty, then it will be checked

whether all rules in ℜ belongs to the same category

attribute-value (either Allowed or Denied). If all rules

belong to the same category, then a leaf node will be
created with that value (Line 2). After that the algo-

rithm will check the non-category discrete attribute set

Ad. If this is empty, then the algorithm will generate

a single node with the value of the most frequent of

the values of the category attribute that are found in
records of ℜ (Line 3). If Ad is not empty, then the al-

gorithm will select first the non-category attribute a

(Lines 4) and all its possible values (Line 5) say {aj|j =
1, 2, ..,m}. After that all the rules in ℜ, which contains
records with value aj are selected {Rj |j = 1, 2, ..,m} ⊂
ℜ (Line 6). The D-DTG algorithm will return a tree

with root labeled a and arcs labeled a1, a2, .., am go-

ing respectively to the trees (D-DTG(AD/{a}, P,R1),

D-DTG(AD/{a}, P,R2), . . . , D-DTG(Ad/{a}, P,Rm))
(Line 7). This algorithm will be applied recursively to

subsets Rj |j = 1, 2, ..,m until they are empty (Line 8).

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 7

Table 3: Sample password registration policy

User Action

Contain
alpha-
numeric
characters

Password
length

Permission

* Register

No ≤ 8 Reject
No ≥ 9 and ≤ 12 Accept
Yes ≤ 4 Reject
Yes ≥ 5 and ≤ 8 Undefined
Yes ≥ 9 and ≤ 12 Accept

When we apply our D-DTG algorithm on the pol-

icy set given in the Table 2, we get the complete tree
shown in Figure 3. One can clearly see the difference

between the trees generated by the standard C4.5 al-

gorithm (Figure 2) and by the D-DTG algorithm (Fig-

ure 3). Note that all the attributes and their possible
values, which are given as a reference model to the D-

DTG algorithm, are present in the decision tree of Fig-

ure 3.

Algorithm 2 shows our proposed generic decision

tree generator (DTG) algorithm, which is used to gener-
ate complete decision trees when there are both discrete

and numeric non-category attributes. In order to han-

dle numeric attributes, we have adopted a mechanism

which is widely used in data classification algorithms.
Essentially, the DTG algorithm reduces the continuous

case to the discrete case by using threshold values and

the fact that in a finite set of policies there will be only

one finite set of such values. The numeric / continuous

values are handled in the following manner.
Let us assume that the policy set ℜ contains a nu-

meric attribute a. The possible values of the attribute

a are first sorted into ascending order (Line 15), then

the adjacent values that differ in their target classifica-
tion are identified (Line 17). Commonly, in data classi-

fication algorithms, the midpoint (aj + aj+1)/2 of each

interval will act as a representative threshold value. We

used the midpoint mechanism (Line 18). Sometimes,

the smaller value ai for each interval {(ai, ai+1)} could
also be used as the threshold, rather than the mid

point. Either of them can be used to compute the in-

formation gain to determine the optimal split [41,23]

(Lines 18-26). The procedure for calculating the infor-
mation gain is given in [41]. Note that data is parti-

tioned into two sets based on the criteria v(Rj .a) < θk
and v(Rj .a) ≥ θk (Lines 21-25), for every numeric at-

tribute a and every split point θk. So, the information

gain is used here to generate the best split point, which
will lead to the best optimal tree.

Let us assume that when a user registers her pass-

word, then a system will accept or reject that password

Algorithm 2 Decision Tree Generator (DTG) Algo-

rithm
function DTG

Input: A: a set of non-category attributes, P : the category
attribute, ℜ: a rule set
Output: a decision tree;

1: If ℜ is empty, return a single node with value Failure;
2: If ℜ consists of rules all with the same value for the cat-

egory attribute P , return a single leaf node with that
value;

3: If A is empty, then
Return a single node with the value of the most frequent
of the values of the category attribute that are found in
records of ℜ;

4: Let Ad be the subset of A consisting all discrete at-
tributes.

5: Let Ac be the subset of A consisting all nu-
meric/continuous attributes.

6: if Ad is non-empty then

7: Let a be the first discrete attribute that is selected
among attributes in Ad;

8: Let {aj |j = 1, 2, ..,m} be the values of attribute a;
9: Let {Rj |j = 1, 2, ..,m} be the subsets of ℜ consisting

respectively of records with value aj for Ad;
10: Return a tree with root labeled a and arcs la-

beled a1, a2, .., am going respectively to the
trees (DTG(A/{a}, P,R1), DTG(A/{a}, P,R2),...,
DTG(A/{a}, P,Rm));

11: Recursively apply DTG to subsets Rj |j = 1, 2, ..,m un-
til they are empty;

12: end if

13: if Ac is non-empty then

14: Let a be the first continuous attribute that is selected
among attributes in Ac;

15: Let {aj |j = 1, 2, ..,m} be the sorted values of attribute
a;

16: Let {Rj |j = 1, 2, ..,m} be the subset of ℜ consisting
respectively of rules with value aj for Ac; The rules in
Rj are sorted on their values of attribute a.

17: Let I = {(ai, ai+1), (aj , aj+1), ..., (am, am+1)} be the
set of intervals, where each interval represents the ad-
jacent values that differ in classification.

18: Let Z = {θj |j = 1, 2, ..,m} be the set of threshold val-
ues, where each threshold value represent the mid point
of each interval present in I.

19: Let θk is the threshold value in Z with highest infor-
mation gain.

20: for j = 1 to m do

21: if v(Rj .a) < θk then

22: Return a tree with root labeled a and arc labeled
< θk going to the tree DTG(Ac, P,Rj);

23: else

24: Return a tree with root labeled a and arc labeled
≥ θk going to the tree DTG(Ac, P,Rj);

25: end if

26: end for

27: end if

8 Riaz Ahmed Shaikh et al.

Fig. 3: Decision tree generated by the D-DTG algorithm

Fig. 4: Decision tree for sample password registration

policy

according to the rules defined in Table 3. In this ta-

ble, we have one numeric attribute, which represents

the length of a password. When we apply our pro-
posed DTG algorithm, we get the complete decision

tree shown in Figure 4. In this figure, one can see that

the mid points of all adjacent values, which differ in

classification, are selected as threshold values.

Definition 3: A decision tree is said to be complete
iff

Tnodes =

|Ad|∑

i=0

|Υ (Ai)|+

|Ac|∑

i=0

|Zi|

where |Ad| represents the total number of non-category
discrete attributes, |Ac| represents the total number of

non-category numeric attributes, Tnodes represents the

total number of the leaf nodes, and |Zi| represents the

total number of threshold values, where each thresh-

old value represent the mid point of each interval as

described in Line 18 of the Algorithm 2.

4.2 Executing the Anomaly Detection Algorithm

In a decision tree, each branch bi (from the root to a

leaf node) represents the complete context of one rule.

In order to detect anomalies such as inconsistency and

incompleteness, we apply Algorithm 3. First we check
the leaf node of each branch. We have the following

three main cases:

Case 1: Inconsistency. If any leaf node tnode contains

more than one category (C) attribute value (Line: 5),
this means that some rules in the policy set have the

same non-category attributes-values, but different

category attribute-values. Then according to Def-

inition 1, this is a case of inconsistency. In order to

determine which particular rules in the policy are mu-
tually inconsistent, first we fetch all the attributes of

the particular branch (Line: 6). The algorithm will then

start searching the attribute-values in the actual policy

set (Lines: 7-11). All the rules in the policy set that
contain those attribute-valueswill be highlighted as

inconsistent (Lines: 8-10).

Case 2: Incompleteness. If a leaf node tnode does not

contain any category (C) attribute value (Line: 14), this

means that no explicit rule is defined for the specific
non-category attribute-values (Line:17). Then accord-

ing to Definition 2, the given policy set is incomplete

with respect to those attribute-values. The information

about the complete context will be fetched from the
complete branch (root to leaf node) (Line: 15).

Case 3: No anomaly. If each leaf node contains ex-

actly one category attribute-value, then the policy set

is complete and consistent (Lines: 21-26) according to

the given reference model.

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 9

The algorithm can be generalized to the case where

more than two category attributes exist in the refer-

ence model. In this case, we consider classes of equiv-

alent category attributes, instead of a single category

attribute.

Algorithm 3 Anomaly Detection Algorithm
Input: Decision tree
Output: Context of inconsistency and incomplete-
ness

1: Let A(bi) be the set of all attributes present in one branch.
2: Bool consistent = true;
3: Bool complete = true;
4: for each branch bi in Decision tree do

5: if more than 1 category attribute-value is assigned to
leaf node bi.tnode then

6: A(bi) = fetch all attributes of branch(bi);
7: for each actual rule Ra in the policy set do

8: if υ(A(Ra)) = υ(A(bi)) then

9: Highlight: Ra : A1 ∧ . . . ∧ An → C;
10: end if

11: end for

12: consistent = false;
13: end if

14: if no category attribute is assigned to leaf node bi.tnode

then

15: A(bi) = fetch all attributes of branch(bi);
16: Policy set is incomplete w.r.to label(bi.tnode);
17: Complete context: A(bi);
18: complete = false;
19: end if

20: end for

21: if consistent = true then

22: No inconsistency found;
23: end if

24: if complete = true then

25: No incompleteness found;
26: end if

Let us take the decision tree shown in Figure 3. Note

that the right-most leaf node contains no category at-
tribute value. So, according to the Algorithm 3 and

Definition 2, this is a case of incompleteness. By pars-

ing the whole branch, we get the complete context of

incompleteness, which gives the information that Bob
is neither Allowed nor Denied to perform Write op-

eration on File 2. Also, two category attribute-values

(Allowed and Denied) exist at the 2nd leaf node from

the right. So, according to Algorithm 3 and Definition

1, this is a case of inconsistency, which states that Al-
ice is simultaneously Allowed and Denied to perform

Write operation on File 2.

Decision trees are also useful in detecting redun-

dancy in access control policy sets. Note that each path
from the root of a decision tree to one of its leaves can

be transformed into a rule simply by the conjunction

of the attributes that exists in that path [40,33]. So,

in order to detect redundancy we only need to check

whether a leaf node contains more than one rule with

the same category value-attribute. If yes, this means

that there exist redundant rules in the policy set. For

example, if we examine the leaf nodes of the decision

tree of Figure 3, we can find that the third leaf node
from the right contains two rules with the same cate-

gory attribute value (denied). This shows that the deci-

sion tree created from the policy set of Table 2 contains

two rules one of which can be removed as redundant.

4.3 Anomaly Resolution

Our method does not provide assistance for anomaly

resolution. For this, we refer to proposals published in

the literature [4,16,6,27,10]. However, after the rule set
is updated for resolution, our method can be applied

again if anomalies were introduced.

Once detected, inconsistency can be manually ad-

dressed by removing rules or narrowing their range of
applicability. For example, a rule may have an unin-

tended wide scope that covers cases that should be han-

dled by other rules. Incompleteness can be addressed by

adding rules or enlarging the range of applicability of

existing rules.
Automatic or even semi-automatic resolution of in-

completeness is not easy. Our algorithm 3 will highlight

the incompleteness instances. Those will be presented

to the policy administrator. She will manually add rules
for the highlighted instances based on the overall orga-

nizations policy.

In general terms, we note that our method provides

clear identification of the existing anomalies, and thus

will facilitate the resolution effort.

5 Normalization of input data

Normalizing and formatting input data is the first phase

of our method. In order to generate valid decision trees,

we may need to perform the following three manipula-
tions on the policy data set.

1. Ordering of attributes,

2. Normalization of Boolean expressions, and
3. Interval manipulation.

They will be described in the following three sub-

sections.

5.1 Ordering

As mentioned, rules are ordered collections of attribute

values. For our method, in all rules, all attribute values

10 Riaz Ahmed Shaikh et al.

Table 4: Output of the transformation of the XML file

of Figure 5

Role Resource Action Permission
Doctor Patient File Read Allowed
Doctor Patient File Write Allowed
Nurse Patient File Read Allowed
Nurse Patient File Write Denied

must be ordered according to the same ordering of at-

tributes. It does not matter what actually the order is.
In our example, all rules define role firstly, object sec-

ondly, action thirdly, and permission lastly. This may

not be the case if the policy set is imported from a

policy database in another form, such as XML. In this

second case, a parser is required to fetch the attribute
values from the XML file and place them in uniformly

ordered form.

Note that the objective of this step is to convert

policies into tabular form. Any order of attributes can
be used in a table since the entropy heuristics of the al-

gorithm C4.5 will reorder them attempting to minimize

the size of the resulting trees.

Let us assume that the XML file contains rules shown

in Figure 52. This XML file is given as an input to the
parser. Then the parser will generate the output shown

in Table 4. This tabular structure of the policy data

set is a valid input for a data classification algorithm to

generate a decision tree.
From this table we obtain the information about

which attributes are present in the rule set and what

are their values. For example, from Table 4, we obtain

the following information:

A = {Role, Resource, Action}
Permission={Allowed, Denied}
Υ (Role) = {Doctor, Nurse}
Υ (Object)={Patient File}
Υ (Action)={Read, Write}
Based on the above-mentioned information, we cre-

ate a local reference model which is used to see whether

all cases are covered in the decision tree. Note that it

is also possible that some valid attribute-value pairs

are not present in the given rule set. For example, Ad-
min may be an additional user, or Payment File may

be an additional object. The policy administrator can

provide such additional attribute-value pairs, to yield a

global reference model. As mentioned, the local refer-
ence model should be included in the global reference

2 XAMCL, a standard policy specification language, was
defined for this purpose. However, for ease of understanding
and simplicity we have specified rules in simple XML lan-
guage.

model. Based on the given reference model, whether

local or global, a decision tree is created.

5.2 Normalization of Boolean Expressions

Policy Administrators sometimes specify contextual con-

ditions such as location and time on subjects, objects

and actions. For example, subject can access object dur-

ing working hours only; Objects can only be accessed
from office; Action write can only be performed dur-

ing specified time intervals. Permission is granted when

all such contextual conditions are satisfied. In access

control rules, these contextual conditions are defined
in the form of Boolean expression. Arbitrary Boolean

expressions can be handled by our method, after a pro-

cess of expression transformation and rule splitting. We

note that a decision tree which is generated by a data

classification algorithm naturally encodes a Disjunctive
Normal Form (DNF) Boolean formula [38]. Therefore,

first, the Boolean expression is transformed into its dis-

junctive normal form (B1∨B2∨ . . .∨Bk), and then the

rule Ri is split into k rules.

Ri.1 : A1 ∧ A2 ∧ · · · ∧ An ∧B1 → Permission
...

Ri.k : A1 ∧ A2 ∧ · · · ∧An ∧Bk → Permission

Let us assume that we have a rule which states that
the subject Alice is permitted to perform action Read

on object Database if the following Boolean expression

is satisfied.

R1: IF Subject={Alice} AND Action={Read} AND

Object={Database} AND [((Project={P1} OR

Project={P2}) AND Experience={> 2 yr}) OR

Role={Admin}] THEN Permission={Allowed}

Transformation of this Boolean expression into DNF

leads to three alternative rules, shown in Table 5. These

three rules can be represented in tabular form as shown

in Table 6. Data classification algorithms can then be
applied on the contents of this table.

It is also possible that a rule may contain negation.

In that case, the NOT operator should be resolved first.

This can be done in many ways. It is up to the imple-

menter to select the best approach. In this work, we
have adopted the following simple approach. If an at-

tribute contains k unique values then k − 1 rules will

be generated to delete the negation operator. Let us

assume that Subject = {Alice, Bob, Eve} and the rule
says: If Subject is not Alice then Deny. In order to delete

the NOT operator from this rule, two rules will be gen-

erated: 1) If the subject is Bob then Deny, 2) If the

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 11

Fig. 5: Samples rules written in XML form

Table 5: Transformation of Boolean expression

R1.1:
IF Subject={Alice} AND Action={Read} AND Object={Database} AND Role={Admin} THEN
Permission={Allowed}

R1.2:
IF Subject={Alice} AND Action={Read} AND Object={Database} AND Project={P1} AND
Experience={>2 yr} THEN Permission={Allowed}

R1.3:
IF Subject={Alice} AND Action={Read} AND Object={Database} AND Project={P2} AND
Experience={>2 yr} THEN Permission={Allowed}

Table 6: Rules in Tabular form

Subject Action Object Project Experience Role Permission
Alice Read Database - - Admin Allowed
Alice Read Database P1 > 2 yr - Allowed
Alice Read Database P2 > 2 yr - Allowed

subject is Eve then Deny. In this approach, the number

of rules depends on the size of the domain. In section
6.2, we have presented the effects of the normalization

and negation elimination approach at computation time

as well as the resulting growth in the number of rules.

5.3 Interval finding method

Policy administrators sometimes specify attribute val-

ues as intervals. If all defined intervals are non-overlapping

then each interval can be treated as a unique value.

However, if the intervals are overlapping then we need
to explore all possible unique intervals. This is neces-

sary to detect any potential inconsistencies, which may

exist at the overlapping intervals.

For example, policy 1 allows user x to access re-

source y if time is between 9 and 12, and policy 2 denies
the same user access to the resource if time is between

11 and 13. Note that in the two policies, time intervals

are overlapping. Before detecting any potential incon-

sistencies, first we need to create non-overlapping in-

tervals. This can be done in many ways. One possible

solution is described in Algorithm 4.

Algorithm 4 Non-overlapping Interval finding Algo-

rithm
function IntervalFinder

Input: Boundary values
Output: List of Intervals;

1: Let b = {b1, b2, b3, ...bk} is set containing boundary values
in ascending order;

2: Let I represent a set of non-overlapping intervals;
3: for i=1 to k − 1 do

4: Ii = [bi, bi+1) = {x | bi ≤ x < bi+1}
5: end for

6: return I;

In this algorithm, first we take all boundary values
(Line 1), which in this example are: 9, 12, 11, and 13.

After that we sort these values in ascending order: 9,

11, 12, and 13. Now we create non-overlapping intervals

(Lines 3-5) in the following manner:

1. I1: [9, 11)

2. I2: [11, 12)

12 Riaz Ahmed Shaikh et al.

3. I3: [12, 13)

After that the policies can be rewritten as follows:

– Policy 1 allows user x to access resource y in time

interval I1.

– Policy 1 allows user x to access resource y in time
interval I2.

– Policy 2 denies user x to access resource y in time

interval I2.

– Policy 2 denies user x to access resource y in time
interval I3.

This algorithm works well only for bounded (mini-

mum and maximum) continuous values. For unbounded

continuous attributes, this algorithm will not be able to
identify intervals.

6 Analysis And Evaluation

6.1 Complexity Analysis

In the proposed method, complexity is mainly depen-

dent on three factors: 1) Ordering of attributes 2) Trans-

formation of Boolean expression into DNF and 3) Cre-
ation of decision trees.

1. Ordering of attributes can be done with the help of

any efficient sorting algorithm algorithms, such as

Timsort, Mergesort, and Heapsort. The computa-

tional complexity of these algorithms isO(x×log x).
Here x represents the number of items. Let us as-

sume that a rule contains m attributes. In order to

sort these attributes in a given order, the complex-

ity will be O(m × log m) which is linearithmic. If
we have n rules, then the total complexity will be

O(n ×m× log m). Note that, in practice, n > m.

2. Any Boolean expression can be transformed into

DNF by using logical transformation techniques, such

as the double negation elimination, De Morgan’s
laws, and the distributive law. In some cases conver-

sion to DNF requires exponential time O(2k), where

k is the length of the Boolean expression. Let us as-

sume that the policy set contains n rules and rule
i contains a Boolean expression of length ki then

the total complexity will be
∑n

i=0 O(2ki). However,

in practice, the length of Boolean expressions in an

access control rule is usually small (e.g. k=4).

3. The ordered complexity of the C4.5 algorithm is
O(mn log n)+O(n (log n)2) [39]. Here,O(mn log n)

represent the complexity for building complete de-

cision tree and O(n (log n)2) is required for sub-

tree raising (pruning). In our method, we primar-
ily focus on building the complete decision tree.

Therefore, the complexity for creating decision tree

is O(mn log n).

The total complexity of the proposed method is:

for ordering
︷ ︸︸ ︷

O(n×m× log m)+

for normalization
︷ ︸︸ ︷
n∑

i=0

O(2ki) +

for tree generation
︷ ︸︸ ︷

O(m× n× log n)

(4)

6.2 Implementation and Evaluation

In order to evaluate the efficiency and effectiveness of

the proposed solution, first we need large policy data
sets. Unfortunately, no benchmarks have been published

in this area and real industrial data are impossible to

obtain because of confidentiality constraints. For this

purpose, we have developed a simple Random Policy

Generator Tool in Java. A typical screenshot of the tool
is shown in Figure 6.

With the help of this tool, a user can generate the

rules in Boolean expression format. In our conditional

expressions, whole Boolean subexpressions can be negated.
A sample Boolean formula that is generated by the tool

is shown below.

Subject = Sub-7 ∧ Object = Obj-2 ∧ Action = Act-

4 ∧ !(Location = Loc-1 ∧ Day = Mon ∧ Trust ≥ 4) →
Permission = Allowed

In this tool, a user can specify any Boolean oper-

ators (AND, OR, NOT) and relational operators (>

,<,≤,≥). Also, a user can define the domain size for

the attributes like Subject, Object, Action, Day, Time,
Location, Trust, and Permission. By using this tool, a

user can transform rules into DNF and tabular form.

Note that the size of the rules generated by the effect

of the transformation depends on the size of the do-

main. This tool will also display the computation time
for each processing stage. With the help of this tool,

we have generated 10 data sets. The details about each

data set are shown in Table 7.

In order to generate decision trees and detect anoma-
lies in these data sets, we have also implemented a pol-

icy validation tool called PVTool in Java. It takes poli-

cies written in the tabular format. Based on the pro-

posed solution, it first generates decision trees and then

highlights the three types of anomalies (inconsistencies,
incompleteness and redundancies) that are present in

the given policy sets. A sample screenshot of the PV-

Tool is shown in Figure 7.

We have evaluated the efficiency and effectiveness
of the PVTool for policy analysis on policies that are

generated by the RPG tool. Our experiments were per-

formed on a Intel Core i5-2400 CPU 3.10 GHz with 4

GB RAM running on Windows 7 SP1. Table 8 shows

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 13

Fig. 6: Random Policy Generator Tool’s Screenshot

Fig. 7: A screenshot of the PVTool

the memory consumption and computation time. Re-

sults show that the memory that is required to store

the decision trees is not much. For example, 51 MB are

needed for the largest policy set which contains 18471
DNF rules. Furthermore, the computation time trend

also verifies the effectiveness of the proposed solution.

For scalability, it is also important to note that cre-

ating a single decision tree for a large policy data set is

an inefficient approach. It is better to divide the policies

according to the objects they refer to, since policies that
refer to different objects cannot be in conflict. For ex-

ample, if the policy set contains reference to 10 objects

then 10 rule subsets are created, and, for each subset

14 Riaz Ahmed Shaikh et al.

Table 7: Information about data sets

D
a
ta

S
et

|B
o
o
le
a
n
fo
rm

u
la
s|

|R
u
le
s
in

D
N
F
|

|S
u
b
je
ct
|

|A
ct
io
n
|

|O
b
je
ct
|

|T
ru

st
|

|L
o
ca
ti
o
n
|

|D
ay

s|

|P
er
m
is
si
o
n
|

1 200 1655 10 4 5 5 3 5 2
2 400 3354 10 4 10 5 3 5 2
3 600 5658 15 4 10 5 3 5 2
4 800 6932 20 4 10 5 3 5 2
5 1000 8934 20 5 10 5 3 5 2
6 1200 11145 20 5 12 5 3 5 2
7 1400 12502 20 5 14 5 3 5 2
8 1600 14772 20 5 16 5 3 5 2
9 1800 15815 20 5 18 5 3 5 2
10 2000 18471 20 5 20 5 3 5 2

Table 8: Time and Memory Consumption Analysis

Computation Time (ms)

D
a
ta

S
et

n
o
.

R
u
le
s→

D
N
F

D
N
F
→

T
a
b
u
la
r

V
a
li
d
a
ti
o
n

T
o
ta
l

Memory (MB)
1 57 41 49 147 7
2 119 62 97 278 12
3 198 81 123 402 17
4 266 94 150 510 21
5 345 120 228 693 26
6 299 200 268 767 31
7 305 192 291 788 36
8 362 243 372 977 41
9 371 236 406 1013 46
10 458 302 475 1235 51

a decision tree is created. In this way, smaller decision
trees can be generated, that are easy to process and

store.

6.3 Case Study

In this section, we demonstrate the use of our method
for sets of policies in a policy language allowing positive

and negative permissions, roles and conditional expres-

sions. Several access control models using policy lan-

guages of this type have been proposed in the literature.

The main inspiration for our case study has been the
Organizational-basedAccess Control (OrBAC) model [18].

However the same method can be extended to other

models, such as RB-RBAC [2] and ABAC-XACML [22].

We refer to [2] for a discussion of policy conflicts in the

presence of roles and role hierarchies. Assume that an

organization contains five users, four roles, and four ob-

jects as defined below.

Users = {u1, u2, u3, u4, u5}
Roles = {R1, R2, R3, R4}
Resources = {obj1, obj2, obj3, obj4}

Users are assigned to roles and permissions (Allowed
/ Denied) are assigned to roles in various contextual

or non-contextual situations. Contextual conditions are

defined in the form of Boolean expressions. Contextual

attributes contain qualitative or quantitative (numeric)
values. Assume that the policy administrator has de-

fined three contextual attributes: 1) Geo-spatial (e.g.

Location), 2) Temporal (e.g. Time) and 3) Customized

(e.g Risk value). The Location attribute contains two

possible values: L1 and L2 while the Time attribute
contains two possible intervals: T1 and T2. The time in-

tervals are non-overlapping in this case study, therefore

the time attribute will be considered here as a discrete

attribute. The third customized contextual attribute is
Risk whose range is 1 to 7. With this configuration, the

policy administrator has defined the following policies.

1. Users belonging to role R1 are Denied to perform

Read and Write operations on the resource obj 2.

2. Users belonging to role R1 are Denied to perform

Write operations on the resource obj 3.
3. Users belonging to role R2 are Allowed to perform

Read and Write operations on the resource obj 2.

4. Users belonging to role R2 are Denied to perform

Write operations on the resource obj 3.

5. Users belonging to role R3 are Allowed to perform
Read and Write operations on the resource obj3.

6. Users belonging to role R4 are Allowed to perform

Read operations on the resource obj 2.

Also, the policy administrator has added the fol-

lowing three policies containing Boolean expressions for

accessing resource obj4.

7. Users belonging to role R4 are Allowed to perform

Read and Write operations on the resource obj 4 if
[(L1 AND T1) OR (L2 AND T2)].

8. Users belonging to role R3 are Denied to perform

Write operations on resource obj 4 if [(L2 AND (T1

OR T2)) OR (L1 AND T1)].

For access to resource obj1, the policy administrator

has added one condition of risk assessment as follows.

9. Users belonging to role R1 are Allowed to perform

Read and Write operations on the resource obj 1 if

the risk value (R(v)) is between 1 and 4.

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 15

Fig. 8: Sample Scenario

10. Users belonging to role R2 are Denied to perform
Read and Write operations on the resource obj 1 if

the risk value (R(v)) is between 4 and 7.

11. Users belonging to role R3 are Denied to perform

Write operations on the resource obj 1 if the risk

value (R(v)) is between 4 and 7.

In some situations, users can be assigned to two

or more roles. Because of this, users may be simulta-

neously permitted and prohibited to access given re-

sources, leading to conflicts. Detecting conflicts in such
situations becomes more challenging when the concept

of role hierarchy is introduced in the access control

model. Assume that the policy administrator has de-

fined a role hierarchy / ordering in the following fash-
ion:

R1 > R3 > R4

R2 > R3 > R4

This ordering shows that R1 and R2 inherit all the per-

missions that are assigned to role R3 and role R3 in-

herits all the permissions that are assigned to role R4.

Figure 8 shows the user assignment to role, role hier-
archy and permission inheritance. Because of hierarchy,

each user will get additional positive or negative autho-

rizations as shown in Table 9.

In order to detect anomalies, we first organize access

control rules in tabular form. After this we separate
the access control rules (See Tables 10, 11, 12, 13)

according to the resources they refer to, since the rules

that refer to different resources cannot be in conflict. In

this example, rules are divided into four rule sets. Note
that rule set number four (Table 13) is generated after

transformation of Boolean expressions in DNF form.

Also, during analysis of rule set one (Table 10) we set

the interval value 1 for the Risk attribute.

Our objective here is to find the anomalies in these
rule sets that are caused by the role hierarchy. There-

Fig. 9: Analysis of OrBAC case study

Table 10: Rule set for obj1

User Role Action Risk Permission
u3 R3 Write [4,7] Denied
u1 R1 Read [1,4] Allowed
u1 R1 Write [1,4] Allowed
u1 R3 Write [4,7] Denied
u2 R2 Read [4,7] Denied
u2 R2 Write [4,7] Denied
u2 R3 Write [4,7] Denied

Table 11: Rule set for obj2

User Role Action Permission
u5 R4 Read Allowed
u4 R4 Read Allowed
u3 R4 Read Allowed
u1 R1 Read Denied
u1 R1 Write Denied
u1 R3 Read Allowed
u2 R2 Read Allowed
u2 R2 Write Allowed
u2 R3 Read Allowed

fore, we will not include the Role attribute in the de-

cision tree. We analysed all four rule sets using our
PVTool and the results are shown in Figure 9. This

figure shows that the role hierarchy introduce incon-

sistencies, incompleteness and redundancies in the pol-

icy sets. Note that, dividing the rules in four sets re-
duces memory and processing time requirements. Deci-

sion trees for all four rule sets are given in the Appendix

where precise information about the anomalies can be

found.

7 Related Work and Comparison

The problem of possible inconsistency in access con-

trol policies was clearly stated in a paper by Lupu and

Sloman in 1999 [25]. Completeness was mentioned in
2005 in [9]. Since then, considerable work has been

16 Riaz Ahmed Shaikh et al.

Table 9: Example: User Assignment and Authorization

Users Role Authorized Assigned Privileges Authorized Privileges
Assignment roles

u1 R1 R1, R3, R4

[r,w(obj1)]+ifR(v) = [1, 4],
[r,w(obj2)]−,
[w(obj3)]−

[r,w(obj1)]+ifR(v) = [1, 4],
[r,w(obj2)]−,
[w(obj3)]−,
[r,w(obj3)]+,
[w(obj1)]−ifR(v) = [4, 7],
[w(obj4)]−if [(L2&(T1|T2))|(L1&T1)],
[r,w(obj4)]+if [(L1&T1)|(L2&T2)],
[r(obj2)]+

u2 R2 R2, R3, R4

[r,w(obj1)]−ifR(v) = [4, 7],
[w(obj3)]−,
[r,w(obj2)]+

[r,w(obj1)]−ifR(v) = [4, 7],
[w(obj3)]−,
[r,w(obj2)]+,
[r,w(obj3)]+,
[w(obj1)]−ifR(v) = [4, 7],
[w(obj4)]−if [(L2&(T1|T2))|(L1&T1)],
[r,w(obj4)]+if [(L1&T1)|(L2&T2)],
[r(obj2)]+

u3 R3 R3, R4

[r,w(obj3)]+,
[w(obj1)]−ifR(v) = [4, 7],
[w(obj4)]−if [(L2&(T1|T2))|(L1&T1)]

[r,w(obj3)]+,
[w(obj1)]−ifR(v) = [4, 7],
[w(obj4)]−if [(L2&(T1|T2))|(L1&T1)],
[r,w(obj4)]+if [(L1&T1)|(L2&T2)],
[r(obj2)]+

u4 & u5 R4 R4
[r,w(obj4)]+if [(L1&T1)|(L2&T2)],
[r(obj2)]+

[r,w(obj4)]+if [(L1&T1)|(L2&T2)],
[r(obj2)]+

Here & and | symbols represent AND and OR logical operators respectively.

Table 12: Rule set for obj3

User Role Action Permission
u3 R3 Read Allowed
u3 R3 Write Allowed
u1 R1 Write Denied
u1 R3 Read Allowed
u1 R3 Write Allowed
u2 R2 Write Denied
u2 R3 Read Allowed
u2 R3 Write Allowed

done, with different aims and results, which are often

not comparable to ours. Some authors have dealt with
the issue of synthesizing or constructing valid policy

sets; others have dealt with the issue of composing pol-

icy sets, for example in the context of transactions and

collaborative systems; others yet have dealt with the is-
sue of adding policies to existing policy sets, for exam-

ple in the context of administrative systems. All these

problems are different with the problem discussed in

this paper, which deals with checking policy sets that

already exist and may have accumulated defects over
time. As mentioned, one of the practical applications

of our technique is in security auditing.

Researchers have used various approaches such as

Boolean satisfaction (SAT) algorithms, modeling (e.g.
UML), and decision trees (e.g. MTBDDs) for policy

Table 13: Rule set for obj4

User Role Action Location Time Permission
u5 R4 Read L1 T1 Allowed
u5 R4 Read L2 T2 Allowed
u5 R4 Write L1 T1 Allowed
u5 R4 Write L2 T2 Allowed
u4 R4 Read L1 T1 Allowed
u4 R4 Read L2 T2 Allowed
u4 R4 Write L1 T1 Allowed
u4 R4 Write L2 T2 Allowed
u3 R3 Write L1 T1 Denied
u3 R3 Write L2 T1 Denied
u3 R3 Write L2 T2 Denied
u3 R4 Read L1 T1 Allowed
u3 R4 Read L2 T2 Allowed
u3 R4 Write L1 T1 Allowed
u3 R4 Write L2 T2 Allowed
u1 R3 Write L1 T1 Denied
u1 R3 Write L2 T1 Denied
u1 R3 Write L2 T2 Denied
u1 R4 Read L1 T1 Allowed
u1 R4 Read L2 T2 Allowed
u1 R4 Write L1 T1 Allowed
u1 R4 Write L2 T2 Allowed
u2 R3 Write L1 T1 Denied
u2 R3 Write L2 T1 Denied
u2 R3 Write L2 T2 Denied
u2 R4 Read L1 T1 Allowed
u2 R4 Read L2 T2 Allowed
u2 R4 Write L1 T1 Allowed
u2 R4 Write L2 T2 Allowed

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 17

validation. Each approach has its own advantages and

disadvantages that are highlighted below.

Some researchers [14,26] have proposed techniques

based on satisfaction algorithms or the Alloy toolset [17]

for policy validation. For example, Hu et al. [14] have
proposed an approach for verifying formal specifications

of a role-based access control model and corresponding

policies with selected security properties by means of

satisfaction algorithms of the Alloy logic checker. Sim-
ilarly, Mankai et al. [26] have proposed a method that

translates sets of policies written in XACML to the first

order logic modeling language Alloy, to detect and vi-

sualize possible conflicts within sets of access control

policies. However, the use of Alloy presents some lim-
itations [12], of which the most important is the fact

that the Alloy logic checker requires that signatures be

bound to small values, and so the results may not be

true in general. For the same reason, Alloy has severe
limitations for expressing numeric values, which creates

problems in case of conditions involving hours of the

day or monetary amounts, among others.

Armando and Ranise [3] have developed a sophis-

ticated logical theory to support consistency checking
of policies with conditions on structured attribute do-

mains by using Satisfiability Modulo Theories (SMT)

logic solvers. The SMT logic solvers separate the Boolean

part of satisfiability checking from algorithms used to
check properties in specialized domains, such as the the-

ory of real numbers or time indications. The authors

provide performance statistics from test runs showing

that their method is practically feasible. However it is

not obvious that their method can be used by audi-
tors or administrators without specific training and so-

phisticated interfaces. Their method does not deal with

incompleteness.

Adi et al. [1] have proposed a type system to check
the specified access control rules for consistency. The

authors consider a fairly general model taking into ac-

count different access control specification properties

including abstract rules, and positive and negative au-

thorizations as well as context expressions. However,
this work is limited to consistency checking.

Das et al. [8] have proposed a distributed system

named Baaz for detecting misconfigurations in access

control systems. The Baaz uses two techniques: 1) Group
Mapping, and Object Clustering - for detecting mis-

configurations in access permissions. However, authors

have not considered continuous values, Boolean expres-

sions and context.

Other methods for conflict detection, such as the
one of [19] are based on theorem-proving principles that

may be difficult to implement automatically for the gen-

eral problem.

Fisler et al. [12] have developed a software suite

called MARGRAVE for analyzing role-based access con-

trol policies. This tool analyzes policies written in XACML

format and then translates them into multi-terminal

binary decision diagrams (MTBDD) to verify security
properties. This is a very efficient scheme, but its use

with continuous values is not clear.

Gouda et al. [13] have proposed a very efficient struc-

tured firewall design method to prevent inconsistency,
incompleteness, and compactness problems. The pol-

icy administrator needs to designs firewalls using fire-

wall decision diagrams (FDD) instead of simply gen-

erating rules in sequence as it is usually done. This

method eliminates the problem of inconsistency, which
does not arise if a firewall is designed in this way. Also,

incompleteness does not arise since the syntactic re-

quirements of FDDs force policy administrators to con-

sider all types of traffic. However, for large scale enter-
prises, it may be impossible for a policy administrator

to design policies in terms of decision diagrams man-

ually and to take care of all contexts to eliminate all

possible anomalies.

Hu et al. [15] have proposed a novel anomaly man-
agement framework that can detect and resolve anoma-

lies in firewall policies. In that framework, they adopted

a rule-based segmentation mechanism and grid-based

representation technique. The proposed framework pro-
vides two core functions: 1) conflict detection and reso-

lution, and 2) redundancy discovery and removal. Hu et

al. [16] have also proposed a policy-based segmentation

technique to detect policy anomalies in XACML-based

access control policies. The proposed technique adopts
a binary decision diagram-based data structure to per-

form set operations, for policy anomaly detection and

resolution. The proposed scheme is very efficient in de-

tecting inconsistencies, and redundancies. It also han-
dles Boolean expressions and continuous values. How-

ever, this method does not deal with incompleteness.

Lin et al. [24] present a comprehensive tool for ac-

cess control policy analysis, called EXAM. This tool

was designed to do analysis of relationships among poli-
cies, such as equivalence, refinement, redundancy, and

conflict. It can produce an analysis of similarities and

differences between policy sets. It handles continuous

values, such as time intervals, but, according to its pur-
pose, it does not do completeness analysis. Similar to

Fisler et al. [12], the tool uses a variant of Binary Deci-

sion Diagrams, called Multi-Terminal Binary Decision

Diagrams (MTBDD). The user of EXAM is provided

with a flexible query language, which makes it possible
to query sets of policies for many different properties.

The use of EXAM for consistency checking is illustrated

in Example 5 of the paper. Suppose that a patient, who

18 Riaz Ahmed Shaikh et al.

has specified in a policy its privacy requirements, wishes

to join a hospital, and suppose that the hospital has its

own privacy policy. Then the tool enables the patient

to query whether there are inconsistencies between her

own policy and the hospital’s policy. For example, a
type of query will allow her to determine whether there

are situations where her own policy would result in a

denial, but the hospital’s policy would result in a per-

mission. The semantics of EXAM’ query language is
fairly complex and needs to be learned. In contrast,

our tool is designed to efficiently find inconsistencies

and incompleteness in a set of rules, which could be

the union of several sets, without the need of specific

queries. Therefore, the aim and structure of EXAM are
quite different with the ones of our proposed method.

Some researchers [4,29] have used data mining tech-

niques to solve the issue for policy validation in access

control systems. For example, Bauer et al. [4] used asso-
ciation rule mining technique to predict potential mis-

configurations or situations where no rule is defined.

However, in that paper, authors have not considered

complex Boolean expressions or numeric attributes. Also,

Mukkamala et al. [29] have proposed a data mining
method for detecting and correcting misconfigurations

for RBAC systems. However, this work is limited to

identification and correction of over-privileged and under-

privileged roles.
Some researchers [31,36] have used the Unified Mod-

eling Language (UML) and the Object Constraint Lan-

guage (OCL) for the specification and validation of au-

thorization constraints for the RBAC model. In this ap-

proach, authors have specified reusable RBAC policies
using UML diagram templates. With these templates,

application specific RBAC policies are generated. Fur-

ther, RBAC Constraints can be specified by using OCL

that is based on first order logic. However, the major
limitation of this approach is that it can only specify

static structures and check current snap shots of RBAC

configurations.

Stepien et al. [37] have developed a method for de-

tecting inconsistency by using Constraint Logic Pro-
gramming with an encoding of rule sets in the Pro-

log programming language. This method is efficient but

does not deal with incompleteness.

7.1 Qualitative Comparison and Discussion

A high level qualitative comparison of the proposed

method with eight existing methods is presented in Ta-

ble 14. The following five parameters are used for the

comparison.

1. Inconsistency detection: It indicates whether a method

can detect inconsistencies in access control policies

or not.

2. Incompleteness detection: It indicates whether a method

can detect incompleteness in access control policies
or not.

3. Flexibility: It indicates whether a method can detect

anomalies either at the design time or at a runtime

(Note our ability to detect inconsistency after dele-
gation). If a method detects anomalies at the design

time only then we say that the method is inflexible.

4. Handling Boolean expressions: It indicates whether

a method provides a mechanism for evaluating Boolean

expressions that are commonly used for defining con-
textual conditions in access control policies.

5. Handling continuous values: It indicates whether a

method provides a mechanism to handle continuous

values (for example time), which are quite common
in access control policies.

Table 14 highlights our contributions as compared

to existing work. It shows that our work not only simul-

taneously detects inconsistencies and incompleteness in
access control policies but also has ability to handle

Boolean expressions and continuous values.

The purpose of our work is to provide a method that

will perform efficiently for policies that can be expressed
mostly as conjunctions of positive terms, or which can

be reduced to this form easily. In practice, such policy

sets are common. Complex Boolean expressions are not

necessary in many cases and may be beyond the capa-

bilities of the average security administrator. For policy
sets of this type, more complex methods will not be as

efficient as ours.

How to compare the efficiency of our method to the

efficiency of others? We believe that millisecond counts
are not very useful, since they are dependent on prac-

tical factors such as programming language used, OS

overhead, type of computer etc. It is nearly impossible

to reproduce the same environment for a meaningful

comparison. For this reason, we have provided analytic
estimates, and we note that other papers in the area

do not provide them, probably because the techniques

they propose are too complex to be evaluated analyt-

ically. We hope that our example will be followed by
other authors, and this will lead to greater clarity in

this research area.

8 Conclusions

Existing policy validation schemes have some shortcom-
ings, chiefly the inability to deal efficiently with contin-

uous values, Boolean expressions or detection of incom-

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 19

Table 14: Qualitative Comparison

Technique Inconsistency
detection

Incompleteness
detection

Flexibility
Handling
Boolean
expressions

Handling
continuous
values

Fisler et al. [12] Multi-terminal binary
decision diagrams

Yes No Yes Yes No

Lin et al. [24] Multi-terminal binary de-
cision diagrams

Yes No Yes Yes Yes

Mankai et al. [26] Satisfaction algorithms Yes No Yes Yes No
Hu et al. [14] Satisfaction algorithms Yes No Yes Yes No

Armando & Ranise [3] Satisfiability Modulo
Theories

Yes No No Yes Yes

Kamoda et al. [19] Free Variable Tableaux Yes No No Yes No

Hu et al. [16] policy-based segmenta-
tion technique

Yes No Yes Yes Yes

Gouda et al. [13] Decision diagrams Yes Yes No No No
Bauer et al. [4] Rule mining Yes Yes Yes No No

Das et al. [8]
Group mapping and
Object clustering
techniques

Yes Yes Yes No No

Stepien et al. [37] Constraint Logic Pro-
gramming

Yes No No Yes Yes

Our proposed method Data classification Yes Yes Yes Yes Yes

pleteness situations. In order to overcome these short-

comings, we have proposed a new anomaly detection

method that is based on data classification technique.
It consists of the three main phases: 1) normalization

and formatting of an input policy data; 2) decision tree

construction based on the proposed DTG and D-DTG

algorithms; and 3) Execution of the proposed anomaly
detection algorithm, which detect inconsistencies and

incompleteness in the access control policy sets. Af-

ter the execution of our algorithm, then anomalies can

be eliminated. To the best of our knowledge, we are

the first to propose the use of data classification tech-
nique to detect anomalies in access control policies. Our

proposal is generic, i.e. independent of any underlying

policy specification language. Our experimental results

prove the effectiveness of the proposed solution.
Security software is becoming increasingly complex.

Complexity leads to human errors and human error

may lead to breach of security, privacy and compli-

ance, involving unauthorized access to sensitive data.

Loss of assets and prestige are some of the possible
consequences. Our solution will help prevent, detect

and correct human errors and increases the capacity for

handling larger and more complex access control policy

sets. By adopting our solution, access management se-
curity products will become more robust and will gain

useful diagnostics characteristics.

ACKNOWLEDGMENT

The work reported in this article was partially sup-

ported by the Natural Sciences and Engineering Re-

search Council of Canada, PROMPT Quebec, and CA
Technologies. We would like to thank Serge Mankovski

of CA Technologies for having helped our effort. The

authors would also like to thank all members of the

Computer Security Research Lab (UQO,Canada), and

Bernard Stepien for providing useful comments and sug-
gestions.

References

1. Adi, K., Bouzida, Y., Hattak, I., Logrippo, L.,
Mankovskii, S.: Typing for conflict detection in access
control policies. In: G. Babin, P. Kropf, M. Weiss (eds.)
E-Technologies: Innovation in an Open World, Lecture

Notes in Business Information Processing, vol. 26, pp. 212–
226. Springer Berlin Heidelberg (2009)

2. Al-Kahtani, M.A., Sandhu, R.: Rule-based RBAC with
negative authorization. In: 20th Annual Computer Secu-
rity Applications Conference, pp. 405–415. IEEE (2004)

3. Armando, A., Ranise, S.: Automated and efficient anal-
ysis of role-based access control with attributes. In:
N. Cuppens-Boulahia, F. Cuppens, J. Garcia-Alfaro
(eds.) Data and Applications Security and Privacy XXVI,
Lecture Notes in Computer Science, vol. 7371, pp. 25–40.
Springer Berlin Heidelberg (2012)

4. Bauer, L., Garriss, S., Reiter, M.K.: Detecting and resolv-
ing policy misconfigurations in access-control systems. In:
SACMAT ’08: Proc. of the 13th ACM symposium on Ac-
cess control models and technologies, pp. 185–194. ACM,
New York, NY, USA (2008)

20 Riaz Ahmed Shaikh et al.

5. Benferhat, S., El Baida, R., Cuppens, F.: A stratification-
based approach for handling conflicts in access control.
In: SACMAT’03: Proc. of the eighth ACM symposium
on Access control models and technologies, pp. 189–195.
ACM, New York, NY, USA (2003)

6. Chinaei, A., Chinaei, H., Tompa, F.: A unified conflict
resolution algorithm. In: W. Jonker, M. Petkovi (eds.)
Secure Data Management, Lecture Notes in Computer Sci-

ence, vol. 4721, pp. 1–17. Springer Berlin Heidelberg
(2007)

7. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High
level conflict management strategies in advanced access
control models. Electronic Notes in Theoretical Com-
puter Science 186, 3–26 (2007)

8. Das, T., Bhagwan, R., Naldurg, P.: Baaz: A system for
detecting access control misconfigurations. In: Proc. of
the 19th USENIX Security Symposium (USENIX) (2010)

9. De Capitani di Vimercati, S., Samarati, P., Jajodia, S.:
Policies, models, and languages for access control. In:
S. Bhalla (ed.) Databases in Networked Information Sys-
tems, Lecture Notes in Computer Science, vol. 3433, pp.
225–237. Springer Berlin Heidelberg (2005)

10. Dong, C., Russello, G., Dulay, N.: Flexible resolution
of authorisation conflicts in distributed systems. In:
F. De Turck, W. Kellerer, G. Kormentzas (eds.) Man-
aging Large-Scale Service Deployment, Lecture Notes in

Computer Science, vol. 5273, pp. 95–108. Springer Berlin
Heidelberg (2008)

11. Dunlop, N., Indulska, J., Raymond, K.: Dynamic con-
flict detection in policy-based management systems. In:
Proc. of the Sixth international Enterprisestributed ob-
ject Computing Conference (EDOC’02), p. 15. IEEE
Computer Society, Los Alamitos, CA, USA (2002)

12. Fisler, K., Krishnamurthi, S., Meyerovich, L.A.,
Tschantz, M.C.: Verification and change-impact analysis
of access-control policies. In: ICSE ’05: Proc. of the 27th
international conference on Software engineering, pp.
196–205. ACM, New York, NY, USA (2005)

13. Gouda, M.G., Liu, A.X.: Structured firewall design. Com-
puter Networks 51(4), 1106–1120 (2007)

14. Hu, H., Ahn, G.: Enabling verification and conformance
testing for access control model. In: SACMAT’08: Proc.
of the 13th ACM symposium on Access control mod-
els and technologies, pp. 195–204. ACM, New York, NY,
USA (2008)

15. Hu, H., Ahn, G.J., Kulkarni, K.: Detecting and resolv-
ing firewall policy anomalies. Dependable and Secure
Computing, IEEE Transactions on 9(3), 318–331 (2012).
DOI 10.1109/TDSC.2012.20

16. Hu, H., Ahn, G.J., Kulkarni, K.: Discovery and resolu-
tion of anomalies in web access control policies. Depend-
able and Secure Computing, IEEE Transactions on 10(6),
341–354 (2013). DOI 10.1109/TDSC.2013.18

17. Jackson, D.: Automating first-order relational logic.
ACM SIGSOFT Software Engineering Notes 25(6), 130–
139 (2000)

18. Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat,
S., Cuppens, F., Deswarte, Y., Miége, A., Saurel, C.,
Trouessin, G.: Organization based access control. In:
Proc. of the IEEE 4th International Workshop on Policies
for Distributed Systems and Networks (POLICY 2003),
pp. 120–131. IEEE Computer Society, Los Alamitos, CA,
USA (2003)

19. Kamoda, H., Yamaoka, M., Matsuda, S., Broda, K., Slo-
man, M.: Access Control Policy Analysis Using Free Vari-
able Tableaux. Information and Media Technologies 1(2),
1155–1169 (2006)

20. Karp, A.H., Haury, H., Davis, M.H.: From ABAC to
ZBAC: The Evolution of Access Control Models. Tech.
report HPL-2009-30, HP Labs, http://www.hpl.hp.com/

techreports/2009/HPL-2009-30.pdf (2009)
21. Kotsiantis, S.: Supervised machine learning: A review of

classification techniques. Informatica 31, 249–268 (2007)
22. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R.,

Freeman, T.: A flexible attribute based access control
method for grid computing. Journal of Grid Comput-
ing 7(2), 169–180 (2009)

23. Leung, K.M.: Decision trees and decision rules. http:

//cis.poly.edu/~mleung/FRE7851/f07/decisionTrees.pdf

(2007). Accessed: 2014-01-07
24. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, J.: EXAM:

a comprehensive environment for the analysis of access
control policies. International Journal of Information Se-
curity 9(4), 253–273 (2010)

25. Lupu, E.C., Sloman, M.: Conflicts in policy-based dis-
tributed systems management. IEEE Transactions on
Software Engineering 25(6), 852–869 (1999)

26. Mankai, M., Logrippo, L.: Access control policies: Mod-
eling and validation. In: Proceedings of NOTERE 2005,
pp. 85–91 (2005)

27. Masoumzadeh, A., Amini, M., Jalili, R.: Conflict de-
tection and resolution in context-aware authorization.
In: Advanced Information Networking and Applications
Workshops, 2007, AINAW’07. 21st International Confer-
ence on, vol. 1, pp. 505–511. IEEE (2007)

28. Moon, C.J., Paik, W., Kim, Y.G., Kwon, J.H.: The con-
flict detection between permission assignment constraints
in role-based access control. In: D. Feng, D. Lin, M. Yung
(eds.) Information Security and Cryptology, Lecture Notes

in Computer Science, vol. 3822, pp. 265–278. Springer
Berlin Heidelberg (2005)

29. Mukkamala, R., Kamisetty, V., Yedugani, P.: Detecting
and resolving misconfigurations in role-based access con-
trol (short paper). In: A. Prakash, I. Sen Gupta (eds.)
Information Systems Security, Lecture Notes in Computer

Science, vol. 5905, pp. 318–325. Springer Berlin / Heidel-
berg (2009)

30. Rakotomalala, R.: Sipina data mining software. http:

//eric.univ-lyon2.fr/~ricco/sipina.html (2010)
31. Ray, I., Li, N., France, R., Kim, D.K.: Using UML to

visualize role-based access control constraints. In: SAC-
MAT ’04: Proc. of the 9th ACM symposium on Access
control models and technologies, pp. 115–124. ACM, New
York, NY, USA (2004)

32. Rissanen, E.: eXtensible Access Control Markup
Language (XACML) Version 3.0 OASIS Standard.
http://docs.oasis-open.org/xacml/3.0/xacml-3.

0-core-spec-os-en.pdf (2013). Accessed: 2014-01-
07

33. Rokach, L., Maimon, O.: Decision trees. In: O. Maimon,
L. Rokach (eds.) Data Mining and Knowledge Discovery
Handbook, pp. 165–192. Springer US (2005)

34. Shaikh, R.A., Adi, K., Logrippo, L., Mankovski, S.: De-
tecting incompleteness in access control policies using
data classification schemes. In: Proc. of the 5th Inter-
national Conference on Digital Information Management
(ICDIM 2010), pp. 417–422. IEEE (2010)

35. Shaikh, R.A., Adi, K., Logrippo, L., Mankovski, S.: In-
consistency detection method for access control policies.
In: Proc. of the 6th International Conference on Infor-
mation Assurance and Security (IAS 2010), pp. 204–209.
IEEE (2010)

36. Sohr, K., Ahn, G.J., Gogolla, M., Migge, L.: Specifi-
cation and validation of authorisation constraints using

A Data Classification Method for Inconsistency and Incompleteness Detection in Access Control Policy Sets 21

UML and OCL. In: Computer Security (ESORICS 2005),
LNCS 3679, pp. 64–79. Springer, New York, NY, USA
(2005)

37. Stepien, B., Matwin, S., Felty, A.P.: Strategies for reduc-
ing risks of inconsistencies in access control policies. In:
Proc. of the Fifth International Conference on Availabil-
ity, Reliability and Security (AReS 2010), pp. 140–147
(2010)

38. Szörényi, B.: Disjoint DNF Tautologies with Conflict
Bound Two. Journal on Satisfiability, Boolean Model-
ing and Computation 4, 1–14 (2007)

39. Witten, I.H., Frank, E.: Data mining: Practical machine
learning tools and techniques with java implementations.
Morgan Kaufmann Publishers, USA (1999)

40. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees.
Fuzzy Sets and systems 69(2), 125–139 (1995)

41. Zaiane, O.: Chapter 7: Data classification.
http://webdocs.cs.ualberta.ca/~zaiane/courses/

cmput690/slides/Chapter7/index.htm (1999). Accessed:
2014-01-07

Appendix

Decision trees for the rule set 1, 2, 3 and 4 are given in

Figure 10, 11, 12, and 13 respectively.

Fig. 10: Decision tree for rule set 1

22 Riaz Ahmed Shaikh et al.

Fig. 11: Decision tree for rule set 2

Fig. 12: Decision tree for rule set 3

Fig. 13: Decision tree for rule set 4

