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Abstract

In traditional multi-level security systems, trust andkn&lues are pre-computed. Any change in these values esgmanual
intervention of an administrator. In many dynamic envir@ms, however, these values should be auto-adaptive, andumable
according to the usage history of the users. Moreover, aalsexceptions on resource needs, which are common inngdgna
environments like healthcare, should be allowed if the esttsj show a positive record of use towards resources theyradgn
the past. Conversely, access of authorized users, who legeive record, should be restricted. These requiremeatsad taken
into consideration in existing risk-based access conyrstesns. In order to overcome these shortcomings and to niféeredt
sensitivity requirements of various applications, we psmtwo dynamic risk-based decision methods for accessoteystems.
We provide theoretical and simulation-based analysis @aldiation of both schemes. Also, we analytically prove thatproposed
methods, not only allow exceptions under certain contdoienditions, but uniquely restrict legitimate accesbad authorized
users.
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1. Introduction

Commonly used access control systems, e.g., Role-basessé\¢tontrol (RBAC) [1] systems, and multi-level
security systems, e.g., Bell-LaPadula (BLP) [2] are rigid aequire establishing the clearance of a requester, which
is a manual and time consuming procedure [3-5]. In thesemgstsecurity policies are typically hard coded into
decision logic [6] and are the result of pre-computed trafi@nalysis between various organizational objectivés [7
Furthermore, these traditional systems do not considegrtaiaty and risk in access control decisions, and this make
them inflexible and difficult to adapt to changing circumsts Due to these limitations, these systems are not very
suitable for dynamic environments, like healthcare, emecy services and the military. This motivates us to work in
the area of dynamic risk-based decision methods for sganmi access control systems.

Consider a hospital environment, with various levels oad@ce for technicians and doctors and various levels
of sensitivity for resources (drugs, equipment, type oétimeent). A newly hired technician may be assigned to a
low clearance level. As she asks for access to resourcéiglljnaccess is allowed taking into consideration her
clearance level and the sensitivity classification of tteoueces, as well as possibly recommendations coming from
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previous experiences with her. After each resource acbesgerformance in using the resource is evaluated by a
supervisor. Her history of performance with respect to easburce is recorded: a technician may be very good in
dispensing drugs, less good in dispensing certain speethtreatment. In consideration of this history, her access
rights with respect to specific resources may be raised oeredy but remain bound to maximum and minimum
values determined by her initial clearance (e.g., a jumiohmhician can never be allowed to handle a resource reserved
to a senior technician or to a doctor). After some experievitteher, her clearance level may be adjusted, for example
she may be promoted to a senior role, but this will be done byiridtrators.

In more general terms, a flexible risk-based access contiméibn system should keep track of the outcomes of
allowing access of users to resources, and determine fatwess decisions on the basis of these outcomes. For each
user and resource, access of the user to the resource sleodsdectively relaxed or restricted if the user has shown
a positive or negative record of use towards the resourceeriRly proposed risk-based access control methods such
as [4-6,8,9] do not take into consideration such variagbilihe objective of this work is to incorporate such varigpil
in the access control decision systems.

In our proposed method, we consider two values, for a givelnj€st, resource) pair, one that represents how much
can we trust the subject towards the resource, and anotkdhatrepresents the risk of assigning the resource to the
subject. A positive record of use of the subject for the reseat the same time increases the trust and decreases the
risk of the subject towards the resource; a negative redardehas the opposite effect. We show in Section 3 that the
'record of use’ can be implemented by maintaining a hist@nyable which records reward and penalty points for each
(subject, resource) pair. Each time a subject requestsatza resource, the history variable is used to deternshke ri
and trust values associated with the request, and thesmiarteiused to determine whether access should be granted.
If access is granted, an obligation service is executed ¢@davhether the outcome of the action of the subject on
the object was positive or negative, resulting in the assigmt of new reward or penalty points. These points are used
to update the history variable, and the process continuedefined here, the method is conceived to be implemented
in a Multi-Level Security system (MLS)[2].

In a dynamic, highly responsive environment, it may be @ektio change access rights quickly in response to recent
changes in evaluations; in more conservative environmgmsay be desired that these changes be more gradual. To
this effect, in a refinement of this technique we propose a BBA(Exponentially Weighted Moving Average)-based
dynamic risk-based decision method for access contraégys(See Sec. 4). In this method, we show that it is possible
to give more or less importance to recent history with resfgeclder history.

The rest of the paper is organized as follows. Section 2 pteselated work and we briefly highlights the methodol-
ogy, pros and cons of existing approaches. Section 3 psesanfirst proposed dynamic risk-based decision method.
This section presents the process flow, the mathematicaluletion of trust and risk concepts, and decision mech-
anism. Section 4 presents the EWMA-based dynamic riskebdseision method. In this section, we have not only
provided the mathematical formulation of trust and risk eagpts but also provided a comparison of the two ap-
proaches. Section 5 presents a theoretical and simulatisad analysis and evaluation of the two proposed methods.
This section also includes the security resiliency analgs$iboth risk-based decision methods against threats of al-
lowing illegitimate accesses and restricting legitimateesses. Finally, Section 6 concludes the paper.

2. Related Work

Incorporating consideration of risk in access controlexyst has recently gained the attention of researchers [4—
6,8-10]. A brief overview of some of the existing work is giMeelow.

McGraw [6] has proposed a Risk-Adaptable Access Controld/®R2) mechanism. Firstly, the system determines
a security risk associated with granting access. Secotiysystem compares the measured risk with the access
control policy that identifies the acceptable level of riskthe object being accessed. Thirdly, the system verifes th
operational need. If all the requirements for operatioeald) as specified in the policy, are met then access is granted
RAdAC provides a high-level infrastructure for the gragtof exceptions, but it does not itself contain a risk model.
The author does not provide details about how to quantégtimeasure risk and operational need.

Zhanget al.[4] have proposed a Benefit and Risk-based Access ContrdREE2) model. In this model, transac-
tions are associated with risk and benefit vectors. Baset@ndnfiguration, an allowed transactions (AT) graph is
constructed. Transactions are allowed if the total systenefit outweighs the total system risk and certain propertie
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of the graph are satisfied. The state is largely static andtinqgla state leads to intractable problems [9].

Chenget al.[8] have proposed a Fuzzy MLS access control model. It gfiesthe risk associated with an access.
The system will dynamically control risky information flowased on its current operational needs, risk tolerance and
environment. They calculate risk based on a value of inftionand probability of unauthorized disclosure. Simyarl
Qun Ni et al. [5] have proposed risk-based access control systems basiedzy inferences. They show that fuzzy
inference is a good approach for estimating access risksy Ftiroduce fuzzy membership functions for subjects
and objects. In order to implement risk-based BLP systensatisfy simple security properties, they introduce pre-
defined “if antecedent then consequent” rules. For exanifplee subject security label isot unclassifiecand the
object security label islassified then the access risk is low. In both these works, the pasivi@hof users is not
considered to measure risk.

Wang and Jin [10] have proposed a quantified risk-adaptivessocontrol method to protect patient privacy in health
information systems. In their model, accessing infornraiorespective of whether it is public or highly confidefitia
that is not required for one’s job leads to a high risk scot@|enaccessing relevant information results in a low one.
In their model, relevance between medical record and a perfgodetermined with a relevance-relation function
The authors have mentioned in their paper that the conaatedf the functiord is never known, which makes their
approach less generic.

As compared to the state-of-the-art work, including [4+8],80our proposed methods have the following three
unique features:

(i) Inour methods, trust and risk values are auto-tunaldemlting to the past behavior of the users (Section 3).

(i) The proposed EWMA-based method is suitable for bothseovative and highly responsive environments as

compared to the methods that we have cited, that only workmservative environments (Section 4).
(iif) Our methods, not only allow exceptions under certaimtrolled conditions, but uniquely restrict legitimate
access of bad authorized users (Section 5) .
We provide theoretical and simulation-based analyses ealdation of both methods (See Sec. 5). These analyses
show that indeed our methods have the characteristics wedescribed.

3. Risk-based Decision Method

Traditionally, whenever a Policy Decision Point (PDP) iiees an access request from a requester, it first requests
additional information from the Policy Access Point (PARdaPolicy Information Point (PIP) and then makes a
decision. In our proposed method, the PDP requests infawmabout the trust and risk values associated with the
particular subject and object and then takes the decisiompfocess flow of the proposed risk-based decision method
is shown in Figure 1. This framework is a modification of thenstard eXtensible Access Control Markup Language
(XACML) framework [11]. All the new components that we hawtdad are highlighted with dotted lines. When the
Policy Enforcement Point (PEP) receives an access requestiie subject (Step 1), it forwards it to the PDP for an
evaluation (Step 2). The PDP first checks the organizatipolady (Step 3), e.g., for the current request, should the
system make a decision based on the trust and risk valuesfPtdit the PDP fetches attributes relevant to the access
request from the PIP (Steps 4 to 6). Once all required inftionas received, the PDP sends a query to the policy
risk and trust evaluator point (PRTP) (Step 7). The PRTPuatast the trust and risk values based on the past behavior
of the user (Step 8). The past behavior is evaluated basdukedmgtory of reward and penalty points. If the system
does not have an adequate history then the PRTP evaluategaboés based on recommendations. The current trust
and risk values associated with the particular subjectailgair are returned to the PDP (Step 9). Based on the trust
and risk values, the PDP makes the decision. This decisifonisarded to the PEP, which enforces it (Step 10). If
the access is granted, the PEP informs (Step 11) the olligsdirvice that will decide whether to assign reward or
penalty points to the user (Step 12).

Details about assignment of reward and penalty pointsutaion of trust and risk values, and how trust and risk
values are used in decision making are given below.
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3.1. Step 1: Awarding Reward and Penalty Points

After access is given, an obligation service is executelearsystem that will decide (based on the evaluation of the
context) whether to assign reward or penalty points to Eeshown in Figure 2. If the result of an evaluation is good
then the system will assign reward points, and if the redidncevaluation is bad then the system will assign penalty
points. In practice, the obligation service is applicati@pendent. Therefore we will not attempt to describe generi
mechanisms through which a system can decide whether gnassvard or penalty points to users.
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Fig. 2. Data flow for assignment of reward / penalty points
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Let us take an example of an e-purse scenario [12,13], whemes pay e-cash for using some service such as a
subway. Assume that a person wants to use the subway folitigpeieom one station to another. In this case, the
subway registers users when they board, and charges th& egairse when they disembark. In this scenario, the
validation of the e-cash process can be the obligation gerli e-cash is successfully redeemed, then the system
will assign reward point(s) to the subject with respect ® slervice. If e-cash is not successfully redeemed due to
insufficient funds or any other reason, then the system adign penalty point(s).

3.2. Step 2: Trust Calculation

Our method of dynamically calculating trust values has liEigned to satisfy the following intuitively described

requirements:

— Property 1: If neither penalties nor rewards are available then th&t tralue is set to a default value.

Property 2: Reward points increase the trust value.

Property 3: Penalty points decrease the trust value.

Property 4: In the presence of both rewards and penalties, the trugevalalways bound between minimum and

maximum values.

Property 5: If only penalties are available then the trust value is@et minimum value.

— Property 6: If only reward points are available then the trust valueéases more quickly with the increase in
reward points but never exceeds a maximum value.

These properties of trust are inspired by the observatiosadfvorld examples such as the following one, presenting
a scenario of trust relationship evolution between a ckemnt a credit card company.

(i) Ifclientis new then credit card company sets defaultidrémit for the client. From this observation we derived

property 1.

(i) If client pays bills on time, then his credit limit may liecreased. From this observation we derived property 2.

(ii) If client misses some payment deadlines, then hisittedit may decrease. From this observation we derived
property 3.

(iv) Based on the type of credit card (e.g., gold, silver)xmaum and minimum credit limits are set. Based on the
bill payment history, the credit limit is set, but always bdubetween minimum and maximum credit limits.
From this observation we derived property 4.

(v) If client always pays bills late then his credit limit istgo the minimum value according to the type of the credit
card. From this observation we derived property 5.

(vi) If client A has been paying bills on time for the last 12 months and cBdrds been paying bills on time for the
last 24 months, then the credit limit of clieBtshould be higher than the credit limit of the cliehtFrom this
observation we derived property 6.

Note that these properties are generic and are not limitddg@xample.

Mayeret. al.[14] have defined trust as a function of trustee’s behavibar includes its ability, benevolence and
integrity and of the trustor’s propensity to trust. In theper, we determined trustee’s behaviour with the help of a
reward point history * (s, o), and trustor’s propensity to trust with a subject cleardegel /. Based on these two
factors, we calculate the trust valilie for the subject-object pais, o) in the following manner.

Ty(s,0) =1s x [1+ H"(s,0)] 1)

In this equation we multiply the subject clearance ldydly the factorl + H™* (s, 0). We have added 1 i/ ™ (s, 0)
because whenever the system does not have the record ofirpaiats H ™ (s, 0), then it sets the trust value to the
default value which ig,.

Let us first discuss the derivation of parameters used in al®ulation of trust value, and then we will discuss
whether the required properties are retained in this egati

Our method of calculating the reward points histéfy (s, o) attempts to mimic the way trust builds up in real life:
we use a measurement based on rewards and penalties, whaztl wee Local Reward History (LRH), and possibly
a measurement based on positive and negative recommeam]atioich we call the External Reward History (ERH).
The LRH for a pair(s, o) is calculated in the following manner:
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LRH(s,0) = (pr

whereR and P represent the total number of reward and penalty pointsetisely for the pair(s, o), which the
system stores locally. The expressigﬁﬁ simply represents the percentage of reward points amongtilepoints.
This expression is enough when we have both reward and pguaiitts. To make the LRH value grow gradually in
the absence of penalty points, we have multipliedﬁﬁ% expression withw!/(F+1)  wherea represents the rate at
which the trust value increases with the increase in rewaitg

The External Reward History (ERH) is obtained via recomnagiod of trusted peers. Getting recommendations is
an optional step. These can be considered only when thexsgstes not have an adequate local history. The ERH for
a pair(s, o) is calculated in exactly same manner as the [LRH), the only difference is that the values Bfand P
are obtained from the recommenders:

ERH@Jﬂk::(

)aﬁﬂo<a<L )

B
Ry + Py
where R, and P, represent the total number of reward and penalty pointeatsely for the pair(s, o), which are

sent by the recommendeér
In general, thed * (s, o) is calculated in the following manner:

)aRk1+1;0<a<1. 3)

woLRH(s, 0) + Z wrERH(s, o), if history is available

H*(s,0) = =t 4)

0 otherwise

wherem represents the total number of the recommenders. Each meender may have different weightvalues.
m
However, the sum of all weight values{ + > wy) is 1. When recommendations are not needed or not available,
k=1
then the value ofu, is set to 1. In the absence of local and external reward hésttine value ofd (s, 0) is set to
zero.
Based on the clearance, subjects can be classified in nusneeys. For example, many organizations employ a
hierarchical range of classifications, and one of the falhgwelearance levels can be assigned to a subject.

Security levels= {Top Secret, Secret, Confidential, Unclassified

Other security labels may also be used. Whatever labelssa; we first sort them according to their sensitivity level
and we map them on in ordered sequence of numbers. For examgptan assign numbers to the above mentioned
security labels in the following manner.

Security levels= {Top Secret=4, Secret=3, Confidential=2, Unclassifigd=1

Let Ls : S — L be the maximum clearance level each subject can have.$epresents a set of subjects and
represents a set of security levels. Let S — L be the current clearance level of a subjeatvhich must bé, < Lg
(i.e. Ls must dominaté,).

The graph shown in Figure 3 is obtained by equation 1. Thistilhtes that the required properties are retained in
equation 1. For example, the index (0,0) of Figure 3 showsitrebsence of both reward and penalty points, the trust
value is set to the default value, which in this example ishis Batisfies property 1. The right most side of Figure 3
shows that with the increase in reward points the trust valse increases. This satisfies property 2. The left most
side of Figure 3 shows that with the increase in penalty gdhm trust value decreases. This satisfies property 3. The
values between the index (1,1) to (100,100) of Figure 3 sthatwwhen both rewards and penalty points are available,
the trust value is bound between minimum and maximum vaiueigh in this example are 4 and 8 respectively. This
satisfies property 4. The right side of Figure 3 shows thaténpgresence of only penalty points, the trust value is set
to a minimum value, which in this example is 4. This satisfiegpprty 5. The left side of Figure 3 shows that in the
presence of only reward points, the trust value increases ouickly with the increase in rewards points but never
exceeds the maximum value, which in this example is 8. Thisf&s property 6.

Proposition 1: The range of trust value is always betwgkn2 x I].
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Proof: SeeAppendixA.1.

Proposition 2: The default trust valug?¢/ (s, o) is Is.
Proof: SeeAppendixA.2.
[
Note that in our approach, the minimum and default trusteshre the same. We keep them the same for simplicity.
However, different values could also be used with minorgnin equation 1. Tuning can be performed in many ways
but the following condition must be kept:

T (s,0) < T (s,0) < T (s, 0).
3.3. Step 3: Risk Calculation

Our method of dynamically calculating risk values has bessighed to satisfy the following requirements:

Property 7: If neither reward nor penalty points are available therriflevalue is set to a default value.

— Property 8: Penalty points increase the risk value.

Property 9: Reward points decrease the risk value.

Property 10: In the presence of both rewards and penalties, the rislevalalways bound between minimum and

maximum values.

Property 11: If only reward points are available then the risk value ists@ minimum value.

— Property 12: If only penalty points are available then the risk valuer@ases more quickly with the increase in
penalty points but never exceeds a maximum value.

The USA National Institute of Standards and Technology (NIR5] has defined risk as a function of threat
likelihood and impact. At a high-level, we adopt the samenifédin. We determine the threat likelihood based on
the penalty point history and the impact based on the obgditivity level. If the sensitivity level of the object is
high then the impact will be high also. For example, impaatistlosure of top secret information can range from
jeopardizing national security to disclosure of privacydata [15].

Based on the penalty point histofy (s, 0), and sensitivity level of the objeé, we calculate the risk valug,
for the subject-object pais, o) in the following manner:
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Ry(s,0) =1, x [1+H (s,0)]. (5)

Let us first discuss the derivation of the parameters usetkeircalculation of risk value, and then we will discuss
whether the required properties are retained in Equatiam®

As in case of the reward point history, the penalty pointsonsH ~ (s, o) factor is also composed of two sub-
factors: 1) Local Penalty History (LPH) and 2) External Hgnidistory (EPH). The LPH for a paifs, o) is calculated
in the following manner:
P

LPH(s, 0) = <m> P00 < a< 1. (6)

Note that we have used the express@p that represents the percentage of penalty points amongtdigobints,

whereas in LRH we used the expressiig%ﬁ which represents the percentage of reward points amongttgbints.
The EPH is obtained via recommendation of trusted peerssacal¢ulated in the following manner:

Py

EPH(S, O)k = (m

)al/(Pk+1>;0<a<1. 7
In general, thed ~ (s, 0) is calculated in the following manner:

woLPH(s, 0) + > wiEPH(s, o) if history is available

H™(s,0) = = ®)

0 otherwise

Based on the sensitivity, objects can also be classified menous ways. It is the responsibility of the owner
of an object to assign an appropriate level to it. Note thafestts and objects should be labeled according to the
same classification method. For example, if subjects assifiled into four categories: 1) Top secret, 2) Secret, 3)
Confidential, and 4) Unclassified, then objects should atsd#ssified into the same four categories.

Let Lo : O — L be the maximum sensitivity level an object can have. Hereepresents a set of objects and
L represents a set of security levels. Lgt O — L be the current sensitivity level of an objegtwhich must be
l, < Lo (i.e. Lo must dominaté,).

The graph shown in Figure 4 is obtained by equation 5. Thistilates that the required characteristics are retained
in equation 5. For example, the index (0,0) in Figure 4 shdwasin absence of both rewards and penalty points, the
trust value is set to the default value, which in this exanigpke This satisfies property 7. The right side of Figure 4
shows that with the increase in penalty points the risk valge increases. This satisfies property 8. The right most
side of Figure 4 shows that with the increase in reward pdh@sisk value decreases. This satisfies property 9. The
values between the index (1,1) to (100,100) of Figure 4 sthatwwhen both rewards and penalty points are available,
the risk value is bound between minimum and maximum valubgwin this example are 4 and 8 respectively. This
satisfies property 10. The left side of Figure 4 shows thdiérpresence of only rewards points, the risk value is set to
a minimum value. This satisfies property 11. The left most sitFigure 4 shows that in the presence of only penalty
points, the risk value increases more quickly with the iasesin penalty points but never exceeds the maximum value,
which in this example is 8. This satisfies property 12.

Proposition 3: The range of risk value is always betwdén 2 x 1,].

Proof: SeeAppendixA.3.

Proposition 4: The default risk value®de/ (s, o) is L,.
Proof: SeeAppendixA.4.
|
As in the case of trust, the minimum and default risk valuesthe same. In order to use different values the
following condition must be kept:

Ry¥™"(s,0) < Ry (s,0) < R%(s,0).
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3.4. Step 4: Decision Mechanism

Conceptually, trust and risk zones are created for eaclestibpject pail(s, o) as shown in Figure 5. Both trust
and risk values always fall inside their respective zonesedhe trust and risk values are calculated, the system will
make a decision based on the equation below.

Permit if T,,(s,0) > R,(s,0)
D(TU(S,O),RU(S,O)) = 9
Deny otherwise

If the current trust valud’,(s, o) is greater or equal to the current risk valg(s, o) then the system will permit
access, otherwise the access request will be denied.

Let us assume that the system will assign rewards and pep@hys to users according to the policies specified in
Table 1: if the user accesses an object from a secure pulliorie then the system will assign one reward point, and
so on. Assume that Joe with clearance level 3 has accesseel & labject in the following sequence:

— from secure public network,

— from insecure public network,

— from secure private network, and

— from insecure private network.

In total Joe receives 2.5, and 3 reward and penalty poinpeotisely. Assume that = 0.2. When the system receives

a new read access request from Joe, it computes the trusisinglues, which are 3.86 and 3.95 respectively. The
current trust value is less than the risk value, so the systédiheny read access. Note that in a traditional MLS
security system, Joe would always get read access to thetdigieause his clearance level is equal to the sensitivity
level of the object.

4. Second Proposed Method

So far, our proposed method of calculating reward and pghaltories has been based on the assumption that the
recent and old history have equal weight. The consequenttesoAssumption is that the method may be unable to
detect small changes in recent behavior of a subject in dytimanner. One of the approaches to solve this problem is

9



Trust Index Risk Index

n

n-1

T(5,0) =2 x I, RM(s,0) =2 x Iy n-1

n-2 < n-2
Trust .~ Risk
Zone i Zone

~ Current risk
~._value pointer

X
 SxVS
e _—Cr
Cua\ue pointe
N

T’""”(S,D) = "s R”""'{S,O) = fo

-
[

Fig. 5. Trust and Risk zones

Table 1
Sample reward and penalty assignment policy

Secure netwoAlknsecure network

Public network 1 reward 2 penalties

Private network 1.5 reward 1 penalty

to assign different weight values to the recent and past@hdhis can be done in many ways. One of the common
methods used in statistics Exponentially Weighted Moving Avera@WMA) [16]. In the EWMA approach, the
weighting for older data points decreases exponentialtynbver reaches zero. The EWMA is calculated as follows:

Zt - )\Xt + (1 - A)Zt,1 (10)

where Z; represents the EWMA at timg X, represents the most recent data paifit,; represents the immediate
preceding point, and is a weighting factor O to 1 (exclusive). Setting= 0 means that we are completely ignoring
the most-recent transaction, and setting= 1 means that we are not considering old transactions at aditefbre,
the value ofA should be between 0 and 1. If the valueXo high (close to 1), then we are giving more importance
to recent transactions as compared to the old ones. If theea&l) is low (close to 0), then we are giving more
importance to old transactions as compared to the moshreoes.

We can apply the EWMA in our method for calculating rewardmpbistory H (s, o) in the following manner:

A(X¢) + (1= A) [wolRH(s,0) + > wiERH(s, o) | if t > 2
k=1
+ _ m
H; (s,0) = woLRH(s, 0) + ZwkERH(S, 0)k ift=1 (11)
k=1
0 otherwise

whereH," (s, 0) represents the rewards point history at tinfer the subject-object pair (o), and X, represents the
result of the most recent transaction. Note that we can usefiproach only when we have more than one historical
instance available. In other cases, the reward point lyistdl be calculated in exactly same manner as discussed in
the previous section. In order to calculate a trust valueymg need to replacé (s, o) with H,' (s, 0) in equation 1,

as shown below.
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Ty(s,0) =15 x [1 + H;r(s,o)] (12)
Similarly, the concept of EWMA can easily be integrated im panalty historyH ~ (s, o) method in the following
manner.

A(X1) + (1= A) [wolPH(s, 0) + > wiEPH(s, o)y | if £ > 2
k=1
Hy (s,0) = wolPH(s,0) + > wiEPH(s, )i ift=1 (13)
k=1
0 otherwise

Arrisk value is calculated by replacing— (s, o) with H; (s, o) in equation 5, as shown below.
Ry(s,0) =1, x [1+ H{ (s,0)] (14)

Note that when we calcula;" (s, o) in a situation where the penalty was assigned in the moshtdnsaction,
then the value ofX; could either be set to zero or a negative sign should be aditecthve number of penalties
received in the last transaction. This is required becaasalty points should not play a role in increasing the value
of the reward point historyZ," (s, o). The same procedure should be adopted for calculdfings, o).

In order to analyze the differences of simple and EWMA basggt@aches, let us take again the example of
Section 3.4. When the new access request comes, then aggtordne EWMA-based method = 0.2), the trust and
risk values are 3.24 and 4.22 respectively. In the simplebiased decision method, the trust and risk values were 3.86
and 3.95 respectively. Note that in the last transactioe,ghis a penalty. Due to this, the risk value increases more
quickly in the EWMA-based approach as compared to the sim@thod. These values indicate that the EWMA-
based approach responds more quickly to the recent chamgengared to the simple method.

For detailed analysis, we have performed numerical sinauiat The results of the simulation are shown in Figure 6.
In this figure, the history of reward and penalty points arewshwith bars. If the direction of the bar is positive, a
reward point is assigned. If the direction of the bar is negat penalty is assigned. One can see that the EWMA-
based approach reflects abrupt and recent changes in theidretmare quickly (depending on the value &f as
compared to the simple approach. For example, in Figure 6(dy penalty points are assigned during the period
between 16 and 19. In this period, the EWMA based approactedses the trust value more quickly as compared
to the simple approach. Similarly, in Figure 6(b), for thensaperiod, the EWMA based approach increases the risk
value much faster than the simple approach.

Proposition 5: In the EWMA approach, the range of trust value is always beivig (1 + A\(X})),

Is 2+ MX: — 1))
Proof: SeeAppendixA.5.

|
Proposition 6: In the EWMA approach, the range of risk value is always betweg1 + A\ (X3)),
lo (2 + MX; — 1))].
Proof: SeeAppendixA.6.
|

In the EWMA approach, the default values of trust and risk kgilnain same as in the simple approach.

5. Analysis and Evaluation
5.1. Security Resiliency Analysis

In this section, we analyze the resiliency of both risk-lolasecision methods against threats of allowing illegitienat
accesses and restricting legitimate accesses. Dependihg anderlying multi-level security systems (MLS), asces
means read only or write only. As we have mentioned earlier,proposed methods are loosely based on multi-
level security systems (MLS). If the underlying MLS systesrbased on the Bell-LaPadula (BLP) confidentiality
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model [2] then access means read only. If the underlying Mis$esn is based on the BiBa integrity model [17] then
access means write only. Note that if we are assuming the Bidel, then the terms clearance level of a subject
and sensitivity level of a object are replaced with the teimgrity level of a subject and integrity level of a object
respectively.

We begin with the definition aflegitimateaccesses.

Definition 1: Access is considered to be illegitimate if

@iy Is <y, and

(i) Subjects is permitted to access object
where,l, represents the clearance level of the subject/anepresents the sensitivity level of the object.

As we have mentioned earlier, the general objective of bisked access control systems is to achieve flexibility.
This is achieved by allowing exceptions in situations whegutar conditions are not satisfied, for example when a
subject with low clearance level is granted access to arcbbjehigh sensitivity level. Such exceptions should be
allowed under controlled conditions. In this section, w# igentify these conditions.

There are four possible scenarios:

(i) There are neither rewards nor penaltiés'((s, o) = 0 andH (s, 0) = 0).

(i) There are only penalties{*(s,0) = 0 andH ~ (s, 0) # 0).

12



(iii) There are only rewardsH{*(s,0) # 0 andH (s, 0) = 0).
(iv) There are both rewards and penaltié&'((s, 0) # 0 and H (s, 0) # 0).

Claim 1: The proposed risk-based decision method does not allogititeate accesses if no reward and penalty
histories are available.

Proof: SeeAppendixB.1.

In this scenario, the control condition for granting acdsds > [,. This satisfies the simple security property of
the BLP confidentiality model which states that a subjectgivan security level may not read an object at a higher
security level. Also, it satisfies théstar)-property of the Biba integrity model that stateg thaubject at a given level
of integrity must not write to any object at a higher level mtEigrity.

Claim 2: The proposed risk-based decision method does not allogitiigate access if only penalty history is
available.

Proof: SeeAppendixB.2.

In this scenario, the control condition for granting acdeds > 2 x [,. One can note that in the presence of only
penalty points, our proposed system will tighten the ségaontrol by increasing the control condition fram> [,
tols > 2 x l,. Like scenario 1, our proposed method satisfies the simpléritg property of the BLP confidentiality
model and the-property of the Biba integrity model.

Claim 3: If only the reward history is available then the proposeki-tiased decision method allows illegitimate
access only whehy > L.

Proof: SeeAppendixB.3.

In this scenario, the control condition for granting an ascisi, > %’ This shows that if the user’s behavior is
positive then system will grant access to the subject byimdgthe security control condition frofg > [, tol; > %’

Claim 4: If both reward and penalty histories are available then tlopgsed risk-based decision method allows

illegitimate accesses only when
Lsq (0
Ht(s,0)
Proof: SeeAppendixB.4.
In this scenario, the control condition for granting an &sdels > [, (g;gz; ) From this condition, we conclude

that if the number of penalties is higher than the rewards the system will tighten the security control as compared
to the default condition, whereas if the number of rewarasase than the penalties then the system will slightly relax
the security control condition.

Definition 2: Access is considered to be legitimate if

@ s >1, and

(i) Subjects is permitted to access object

Users having legitimate access can be broadly categonitedwo typesgoodusers andad users. Authorized
users are classified into these two categories based onstiogyhi

Definition 3: An authorized user is considered todmodif
H"(s,0) > H (s,0).
Definition 4: An authorized user is considered to e if
H™"(s,0) < H (s,0).
Claim 5: The proposed Risk-based decision method restricts |legfitimccesses of bad users and allows legitimate
access of good users.
Proof: Access is granted only when
Ty(s,0) > Ry(s,0).
From equation 1 and 5, we replace the valueg,0dndR,, in the following manner
Iy x [1+H*Y(s,0)] > 1, x [L+ H (s,0)] .

According to definition 2, a user is authorized f> [,. Therefore, in order to get to the lower limit, we can replace
ls with [, or vice versa. We get the following result.

=1l x [1+H*(s,0)] > 1ls x [1+H (s,0)]
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=[1+H"(s,0)] > [1+ H (s,0)]
=H"(s,0) > H (s,0).

According to definition 4, for a bad authorized usHr' (s, 0) should be less thai ~ (s, 0). But this is not possible
in this case. This shows that, in order to get accEsS(s, o) must be at least equal ¥~ (s, o). This proves that the
legitimate access of the bad user is always restricted. Bheearesult also confirms that the legitimate access of the
good user (Definition 3) is always allowed.
[

Note: All the above mentioned five claims that are presented fostimplerisk-based decision method also hold
for the EWMA-based method. We only need to replace the foasiof H* (s, 0) and H~ (s, 0) with H," (s, 0) and
H," (s, 0) respectively. We prove here scenario 2 and we leave the stlearios as an exercise for the reader.

Claim 6: The proposed EWMA-based decision method does not allogitiieate access if only the penalty history
is available.

Proof: Access is granted if

Ty(s,0) > Ry(s,0).

This can be written as:
ls X [1+ H{ (s,0)] > 1o x [L+ H; (s,0)] .

Since no reward history is availablH," (s, 0) = 0, and we get:
ls>1,x [1+H; (s,0)].

With the help of equation 13, the above equation is transéorinto the following:

(Ri )O‘P+1+Zw’“<R +Pk) ﬁ”]

Since the reward history is not available, the valu&dfecome 0. So we get:

Iy > 1, x

1+{/\(Xt) + (1= |w

P 1 - Py 1
s >1, X 1-— — P F1
>, X +{/\( t)-l-( /\) wo (O+P)QP+1 +;wk (O—I—Pk)a & ]}]
Is > 1y X 1+A(Xt)+(1—A)<woaP%1+Zwkaﬁ>].
k=1

As we know that hm (P—H) = 0. S0,a° = 1. Therefore, we get:

g

m
Since as we mentioned earlier, the sum of all weight valugs > wy is 1, we get:
k=1

Is 2 1o x [T+ {A(Xe) + (1 = )}

lg > 1, x

+ {/\(Xt) (1-

le > 1o x 24+ A(X, — 1)].

Here, X; represents the most recent penalty point. Let us assumththaingle penalty point is represented with 1,
then we get:
ls >2x1,.

Again, we get, > 2 x l,. Hence in the absence of reward points, illegitimate acisasst possible.
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5.2. Simulation

In this section, we will see how trust and risk values inceeasdecrease with the change in user past behavior.
After that, we will see how such changes in trust and risk eshuill affect the access rights of the users.

For this purpose, we have performed a numerical simulatidviicrosoft Excel for a single usemwho periodically
tries to access the same objecifter the completion of every transaction, we randomlyigisseward and penalty
points. Based on the total number of reward and penalty poirsers may be categorized ggpod (Definition 3) or
bad (Definition 4) user. This setup is executed in the following three sdesdor both proposed approaches:

(i) Scenario 1: The subject clearance levg) {s equal to the object sensitivity levél} ).

(i) Scenario 2: The subject clearance levg) (s less than the object sensitivity levél)

(iii) Scenario 3: The subject clearance levig) (s greater than the object sensitivity levgl)(

In Figure 7 the history of reward and penalty points is shovith Wwars. If the direction of the bar is positive, a
reward point is assigned. If the direction of the bar is niggat penalty is assigned. Figure 7 shows that in each
scenario, trust and risk values gradually increase or dserwith respect to the number of reward and penalty points.
Figure 7(a), Figure 7(b) and Figure 7(f) show that accessefaihaving proper clearance level may be restricted if
the behavior of the user wasdin the past. Figure 7(c) and Figure 7(d) show that a user lgdwimer clearance level
may get access to an object of high sensitivity level if histieehavior wagjood Note that the behavior of the two
curves is complementary, when one moves up, the other mowes. However, the rate of change at both ends is
mainly dependent on the valuesigfandl,.

The results of numerical simulation prove that our propostdbased access control decision methods are adaptive
and moderately increase or decrease all users’ access tigtasources based on their past behavior.

6. Conclusion and Future Work

In traditional access control systems, policies are tylyidaard coded and are the result of pre-computed trust
and risk values associated with subjects and objects riagglgcSuch approach is rigid and inflexible for dynamic
environments. In order to overcome this limitation, reskars have started developing dynamic risk-based access
control systems. However, recently proposed risk-baseeinses have two major limitations: they do not consider the
past behavior of users in dynamic decision making, whiclecessary to differentiate good and bad authorized users,
and they are not very suitable for highly responsive envirents.

The goal of this work was to overcome both limitations. Outimels are based on the history of reward and penalty
points, which are assigned to users after the completiorangactions. First, we have presented a simple risk-based
decision method, which overcomes the first limitation (#&c8). To address the second limitation, we have proposed
a method based on an Exponentially Weighted Moving Aver&getion 4). In both methods, trust and risk values are
dynamically calculated for each subject-object pair, aflict the past behavior of users.

We have provided a security resiliency analysis of our pseplanethods. Results show that they may allow occa-
sional exceptions under certain controlled conditionscivlasire described below.

(i) When no history is available then our proposed methodatgaccess only if the subject’s clearance level dom-

inates the object’s sensitivity level (Appendix B.1). Thandition is consistent with similar conditions defined
in Multi-Level Security systems such as the simple secymipperty of the BLP model.

(i) When only the penalty history is available then our ppepd methods will tighten the default security control
condition. In order to get access, a subject’s clearancaldhze at least twice the object’s sensitivity level
(Appendix B.2). This condition helps restrict illegitineediccesses, and also provides some degree of protection
against bad authorized users.

(i) When only the reward history is available then our ppspd methods will grant access to subjects by relaxing
the default security control condition up to a certain degr&ppendix B.3). This condition will help achieve
flexibility in the access decisions.

(iv) When both reward and penalty histories are availabés thur proposed methods will grant access only if the
ratio of rewards and penalties is greater than the ratiombtiject’s sensitivity level and the subject’s clearance
level (Appendix B.4). This condition provides all the beteelisted in the above mentioned scenarios.

Our methods can be modified and adapted to different needshdysing appropriate parameters or changing
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the formulas in various ways. However such changes shoulthbefully introduced and in each case the desired
properties should be checked. In the current formulatioa,nhethods can be used to control upward accesses such
asno read up(simple property of the BLP model) aro write up(x-property of the Biba model). For controlling
downward direction accesses like write down(x-property of the BLP model) ono read dowr(simple property

of the Biba model) modifications are required in the decisimthanism (Section 3.4). This will be left to future
research.
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Appendix A. Proof of Propositions
A.1l. Proposition 1: The range of trust value is always betwégn2 x [].

Proof: From equation 1, we have:

Ty(s,0) =15 [1 4+ H(s,0)]

Is |1+ woLRH(s,0) + > wiERH(s, 0)
k=1

R g & Ry, 1
:ls 1 e . et | Al
+ wo (R+P)04R+l+;wk (7Rk+Pk>a k (A1)

In the worst case, when a subjectioes not have any reward points, thewill get minimum trust value. Since
there are no reward points, the valuedbénd R, become 0 in equation A.1. Therefore, we get:

0 1 i 0 1
=1, |1 ) ot o1
+w0(0+P)a +Zwk(0+Pk)a

k=1
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So, the minimum trust valug™" (s, o) a subject can get is:
T (s,0) = lg [1 + 0] = L. (A.2)

In the best case, when the subjeatoes not have penalty points then the subject will get a mamirtrust value.
In this case, the values @t and P, become 0 in equation A.1. Therefore, we get:

R IR Ry a1
1+ wo <—>QR+1 +Zwk< )aRk+l
R+0 P Ry +0

m
1 1
1+ woa®+1 + E wkaRk“] .
k=1

:ls

_

:ls

Since we know thatlim (L) =0, thena® = 1. Therefore, we get:

R—oo \it+1
m
1+wo+Zwk] .
k=1

+

:ls

m

Since as we mentioned earlier, the sum of all weight valugsf >_ wy) is 1, the maximum trust valuE™* (s, o)
k=1

a subjects can get is:

TMe% (s, 0) = Iy x [1+1] = 2 x L. (A.3)
m

A.2. Proposition 2: The default trust valug& ¢/ (s, o) is [.

Proof: In order to obtain default trust vald&e/ (s, o) (when the subject has neither reward nor penalty points)
we need to replace the value Hf" (s, o) with zero in equation 1. Therefore, we get:

T4 (s,0) = 1y x [140] = L.

[
A.3. Proposition 3: The range of risk value is always betwdén 2 x ,].
Proof: From equation 5, we have:
Ry(s,0) =1, x [1+H (s,0)].
This can also be written as:
=1, |1+ woLPH(s,0) + > wiEPH(s, 0);
k=1
P 1 " Py 1
=1, |1 - ——— | aB . A4
+wo<R+P)aP+1+;wk(Rk+Pk>ak ] (A.4)

In the best case, when a subjealoes not have any penalty point for an objecthen the minimum risk value will
be associated with. Since there are no penalty points, the valué’aind P, become 0 in equation A.4. Therefore,
we get:

=1, X

0 1 - 0 1
1+w0(—>am+zwk( )am].
R+0 — R +0
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So, the minimum risk valu&™" (s, o) for an objecb will be:
R™"(s,0) =1, x [140] = L,. (A.5)

In the worst case, when a subjectloes not have any reward points for an objetiien the maximum risk value
will be associated with an objeat Since there are no reward points, the valu&@nd R, become 0 in equation A.4.
Therefore, we get:

=1, X

P 1 w Py 1
e (O+P) o +,;wk (O+Pk> QPW]

m
1 1
=1, X 1—|—woo¢P+1—|—§ wkapk“].
k=1

Since we know thatlim (PLH) =0, thena® = 1. Therefore, we get:
P—

1+wo+2wk1-

k=1

=1, X

m

Since as we mentioned earlier, the sum of all weight valugst{ > wy) is 1, the maximum risk valug** (s, o)
k=1

that can be associated with an objeds:

R (s,0) =1lp x [+ 1] =2 X I,. (A.6)
]

A.4. Proposition 4: The default risk valugr?®/ (s, 0) is I,,.

Proof: In order to obtain the default risk valug’*/ (s, o) (when the subject has neither reward nor penalty points)
we need to replace the value Bf (s, o) with zero in equation 5. Therefore, we get:

Rl (s5,0) =1, x [1 + 0] = ,.

A.5. Proposition 5: In the EWMA approach, the range of trust values is always betl; (1 + A(X})),
Is 2+ MNX, —1))].

Proof: From equation 12, we have:
Ty(s,0) =15 [1+ H; (s,0)]

:ls

1+{/\(Xt) F(1-N) (wOLRH(s, 0) + iwkERH(s, o)k> H

k=1

1+{/\(Xt) + (1= <w0 (pr) QT 4 éwk (%) oﬂ?k—+> }1 (A7)

In the worst case, when the subjeaioes not have any reward points, thewill get minimum trust value. Since
there are no reward points, the valuedbénd R, become 0 in equation A.7. Therefore, we get:

1+{/\(Xt) +(1-2) (wo (OJFLP> aTT + éw’“ <0+0Pk> O‘T) }]
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So, in the EWMA method, the minimum trust vallig*i" (s, o) a subject can get is:
T (s,0) = 15 [1 + A(Xy)] (A.8)

In this case X, represents the most-recent penalty point(s). As we mesdiam Section 4, when we calculate a
trust value in a situation where penalties were assigneleimtost-recent transaction, a negative sign will be added
to the number of penalties received in this transaction.

In the best case, when the subjeaoes not have penalty points then the subject will get a mamxirtrust value.

In this case, the values éf and P, become 0 in equation A.7. Therefore, we get:

1+ {A(Xt) +(1—- /\)(wo (RL;O) QT 4 éwk (Rﬁo) aW)H
1+ {)\(Xt) +(1-2) (woa# +iwkaﬁ>} .

k=1

T,(s,0) =14

:ls

Since we know thatlim (RLH) = 0, thena® = 1. Therefore, we get:
R

L+AMX)+(1=X) <w0 +iwk>] .
k=1

m
Since as we mentioned earlier, the sum of all weight valugsf > wy) is 1, the maximum trust valug™** (s, o)
k=1

T,(s,0) =4

a subjects can get is:

T, " (s,0) = Ls [L + A(Xy) + (1 = A)]
T (s,0) = 1s X [2+ XX —1)].

A.6. Proposition 6: In the EWMA approach, the range of risk values is always betfig (1 + (X)),
lo(2+ MX¢ —1))].

Proof: From equation 14, we have:

Ry(s,0) =1, [1+ H; (s,0)]

:lo

1+{A(Xt) F(1-N) (wOLPH(s, 0) + zm: wpEPH(s, O)k) }]

k=1

1+{)\(Xt)+(1—)\) (wo (%) a ™ +kziwk (%) aﬁ)}] (A.9)

In the best case, when a subjecbnly received rewards for an objeet then the minimum risk value will be
associated witl. Since there are no penalty points, the value® @nd P, become 0 in equation A.9. Therefore, we

get:
1+{/\(Xt) +(1-N) (wo (RLJFO) QT 4 éwk (Rk0+ 0) aﬁ) }1

So, in the EWMA method, the minimum risk vald&""" (s, o) that an object can get is:
Ry (s,0) = o [1 4 A(Xy)] (A.10)

In this case X; represents the most-recent rewards point(s). As we mattionSection 4, when we calculate a risk
value in a situation where rewards were assigned in the negsft transaction, then a negative sign is added with the

R,(s,0) =1,

R,(s,0) =1,
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number of rewards received in this transaction. In this wiag,risk value will decrease with the increase in reward

points.
In the worst case, when a subjecbnly received penalties for an objecthen the maximum risk value will be
associated witla. Since there are no reward points, the valu&aind R, become 0 in equation A.9. Therefore, we

get:
14 {,\(Xt)+ (1 —/\)(wo ((H—%) QT +éwk (()fkpk) aﬁ)}]

1y {A(X» Fa- <woaf++l + iwa—>} .

k=1

R,(s,0) =1,

:lo

H : 1 _ _ .
Since we know thalgh_r)mOo (P—H) =0, thena® = 1. Therefore, we get:
L+ AX)+(1=X) (wo + Zwk>] .
k=1

m
Since as we mentioned earlier, the sum of all weight valugst " wy) is 1, the maximum trust valuB!*** (s, o)
k=1

R,(s,0) =1,

that can be associated with an obje¢s:

R (s,0) =l [14+ AM(Xt) + (1 = N)]
R (s,0) = 1o X 24+ MX: — 1)].
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Appendix B. Proofs of Claims

B.1. Claim 1: The proposed risk-based decision method does not allogititieate accesses if no reward and
penalty histories are available.

Proof: Access is granted if:
T,(s,0) > R,(s,0).
From equation 1 and 5, we replace the valueg,odnd R, in the following manner;
lsx [1+H*(s,0)] > 1o x [L+H (s,0)] .

According to the equations 4 and 8, if reward and penaltyhist are not available thei™ (s, 0) andH (s, 0) are
zero. Therefore, we get:

s x12>1l,x1& 1, >1,.
Here, note that the subject clearance level should be grtbate equal to the object sensitivity level. Thereforehia t

absence of reward and penalty points, illegitimate acaesstipossible.
[

B.2. Claim 2: The proposed risk-based decision method does not allogititieate access if only penalty history is
available.

Proof: Access is granted if:
T,(s,0) > Ry(s,0).
This can be written as:
Iy x [1+H*Y(s,0)] > 1, x [L+ H (s,0)] .
Since no reward history is availablg,* (s, 0) = 0, and we get:
ls > 1, % [1 —i—H*(s,o)] .
With the help of equation 8, the above equation is transfdrim the following:

ls > 1o x |14 woLPH(s,0) + Y w,EPH(s, 0)

k=1

P 1 - Py 1
1 P+1 R — Py +1
+wo(R+P)a +;wk(Rk+Pk)ak ]
Since the reward history is not available, the valu&aind R, become 0. So we get:
P I Py 1
1 - P+1 Pp+1
+w°(0+P)O‘ +;wk(0+m)ak

m
1 1
1+ woaPFT + E wkoﬁ’k“] .
k=1

lg > 1, x

Iy > 1, x

_

lg > 1, x

Since we know thatlim (PLH) =0, thena® = 1. Therefore, we get:

P—oo
1+ wo+ Z wk] .
k=0

lg > 1, X

m
Since as we mentioned earlier, the sum of all weight valugs > wy is 1, we get:
k=1

Iy > 1o x [L+1]
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lg >2x1,.

Again, we get, > 2 x [,. Hence in the absence of reward points, illegitimate acisasst possible.
[

B.3. Claim 3: If only reward history is available then the proposed risksbd decision method allows illegitimate
access only whefly > L.

Proof: Access is granted if:
T,(s,0) > Ry(s,0).
This can be written as:
lsx [1+HY(s,0)] > 1o x [L+H (s,0)] .
Since no penalty history is available, 80 (s, 0) = 0 and we get:
ls X [1 + H+(s,0)] >1,.

With the help of equation 4, the above equation is transfdrimi the following:

ls X

1+ woLRH(s,0) + Y wyERH(s, o)] > 1,
k=1

lg X

R IR Ry 1
1 ——— | aF — | aFF | >,.
+wo<R+P>a +kz_:1wk<Rk+Pk)ak ]_
Since the penalty history is not available and P, are 0. So, we get:
R 1 - Ry 1
1 — ) aF AT | >1,
+ wo <R+O)a +1 +;wk <Rk+0)a k 1 2

m

1 1

1+ woa BT + E wkaRk“] >l,.
k=1

lg X

=1y x

Since we know tha}t%irn ( ) =0, thena® = 1. Therefore, we get:
— 00

1
R+1

Iy X

1+w0+2wk] > 1,
k=1

m
Since as we mentioned earlier, the sum of all weight valugsy > wy) is 1, we get:
k=1

=l x[1+1]>1,

o~

b
5"
This implies that, in the presence of only reward historg,gfistem will allow access to the resourcg it %

=l >

B.4. Claim 4: If both reward and penalty histories are available then thepgmsed risk-based decision method
allows illegitimate accesses only when
Lsq (50
H+(s,0)
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Proof: This proofis straightforward. According to definition I élegitimate access is only possible whign< [,
ands is permitted to access objegtIn our proposed method, this is only possible wig(s, o) > R, (s,0). This

can also be written as:
Iy X [1 + HJF(S,O)} >1,

X
1+ H"(s,0)
1+ H (s,0)

S,0
Jr —
QMZE_ZSZZO(M)_
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