
Risk Analysis in Access Control Systems

J. Ma†, K. Adi†, M. Mejri‡, L. Logrippo†

† Department of Computer Science and Engineering
Universit́e du Qúebec en Outaouais

Québec, Canada.
‡ Computer Science and Software Engineering Department,

Laval University, Qúebec, Canada
Email: {ji.ma,kamel.adi,luigi}@uqo.ca, mejri@ift.ulaval.ca

Abstract—Commonly known access control systems
respond to users’ requests to perform actions on pro-
tected objects by giving binary answers such aspermit

or deny. The decisions are taken on the basis of access
control policies, where the risk of allowing access is
not necessarily taken into explicit consideration. In this
paper, we introduce RBACR model (Role Based Access
Control Model with Risk), in which each access control
decision is taken after consideration of risk assessment.
The proposed risk assessment method considers partial
orderings on objects and actions to capture the notions
of importance of objects and criticality of actions, and
determines the risk of assigning a specific role to a spe-
cific user. The case of role delegation is also considered.

Keywords: Access control, risk analysis, RBAC, RBACR,
model.

I. I NTRODUCTION

Computer based access controls prescribe not only
which users are allowed to access a specific object,
but also which types of access are permitted. Within a
role based access control system, access decisions, i.e.,
granting or denying permissions are taken in consider-
ation of the roles of individual users. For example, a
user with role “doctor” normally has different access
rights than a user with role “nurse”.

In this paper, we investigate an extension of the basic
role based access control (RBAC) model [2], [4], [5],
[6], called RBACR model (Role Based Access Control
Model with Risk) that includes concepts useful for
risk evaluation. Risk analysis in access control systems
involves many factors. In role based access control
systems, users hold certain roles, and may or may not
be allowed to access the objects requested and take

actions on these objects. For any access request, apart
from identifying the user and its role, the access control
system must know: which object is requested and what
action may be applied by the user on the object.

We add a risk parameter in RBAC rules in order to
be able to evaluate risk values associated with access
requests. Access permission is defined as a pair of
an action and an object; a role is then defined as a
set of permissions. We introduce an ordering relation
on sets of objects and actions to capture the notions
of importance of objects and criticality of actions.
From these posets, we automatically build an ordering
relation on permission sets (corresponding to roles).
The risks for assigning users to roles, which is a critical
issue in RBAC [10], [1], [11], is then evaluated. We
also investigate the risk for delegation.

Most research on risk analysis in access control sys-
tems is based on binary values (meaning: risk present
or absent, access allowed or denied) or manually-
defined values. One of the earliest proposals for access
control was made by Bell and LaPadula [3] in 1976.
The Bell-LaPadula model (BLM) is a binary model, it
specifies controls for reading files that are necessary
to preserve various degrees of data confidentiality, and
also controls for writing to ensure that data is not
copied in a container where appropriate confidentiality
is not guaranteed. Decision making in this model
does not depend on risk analysis. For a subject with
unclassified clearance, access to secret or top secret
files is equally forbidden, whereas a risk model might
consider the second access more risky than the first.

Aziz et al. [2] discuss reconfiguring role based
access control policies using risk semantics. Dimmock
et al. [4] discuss trust and risk analysis in role-

based access control policies. Kondoet al. [5] discuss
extending the RBAC model for large enterprises and
quantitative risk evaluation. Nissanke and Khayat [6]
discuss risk based security analysis of permissions in
RBAC systems.

In this paper, we propose a computable model of
RBAC with the notion of risk, in which a formal risk
related semantics is defined. Our method automatically
computes risks associated with access requests. It deals
with direct as well as delegated permissions. We show
that the risk of granting permission can be evaluated
at the moment of the decision, using risk parameters
and risk levels known at the moment.

The rest of this paper is organized as follows.
Section 2 introduces role based access control systems.
Section 3 introduces the RBACR model (role based ac-
cess control model with Risk) for risk analysis. Section
4 discusses how to reason about access control systems
with risk assessment. Section 5 is a brief discussion
about implementation issues. Section 6 concludes this
paper and discusses further works.

II. ROLE BASED ACCESSCONTROL SYSTEMS

Definition 1 (Role Based Access Control System). A
role based access control (RBAC) system, denoted by
Mrbac, is a 6-tuple,

Mrbac = 〈U ,R,O,A,P,AR〉,
where

- U : a set of subjects,
- R: a set of roles,
- O: a set of objects,
- A: a set of actions,
- P: a set of permissions,P ⊆ A×O, and
- AR: a set of assignment relations.

The set of assignment relations,AR, includes the
following relations:

- RA: role assignment relation,RA ⊆ U ×R, and
- PA: permission assignment relation,PA ⊆ R×
P.

A user may hold zero or more roles, and a role may
possess one or more permissions.

Generally, for security considerations the system
may not trust anyone, but it trusts:

• those facts that come from system configuration
(role assignment, permission assignment, etc), and

• access control policies, which are precisely spec-
ified and verified.

Therefore, if we formalize these facts and polices to
establish a theory (axioms and inductive rules) for a
given RBAC system, then the system can reason with
this theory for decision making. In this paper, we focus
on the risk analysis and reasoning techniques that can
be used in RBAC systems.

III. RBACR MODEL

In this section, we introduce RBACR model (Role
Based Access Control Model with Risk), where risk
assessment is considered and applied to evaluate risk
values associated with access requests in a given RBAC
system.

In RBAC systems, there may be a number of risk
analysis functions, which are used to calculate risk
values related to recognized threats. Risk analysis
functions should play an important role in reasoning
and decision making in such systems. Adding the risk
assessment parameter to RBAC systems, we get the
RBACR model.

Definition 2 (RBACR model). Let Mrbac =
〈U ,R,O,A,P,AR〉 be a role based access control
system. Then:

Mrbacr = 〈U ,R,O,A,P,AR,RF〉

is called the Role-Based Access Control model with
Risk corresponding toMrbac, whereRF is a set of
risk analysis functions.

In the RBACR model, decision making depends
on risk assessment. The risk functions set,RF , is
a major component in the RBACR model and makes
this model different from the classical RBAC model.
To define the set of risk analysis functions, we need
to identify those situations or treats that may lead to
risk, and then find appropriate functions for calculating
the risk values related to the recognized treats. In the
following, we discuss how to define appropriate risk
analysis functions for two main ingredients in RBAC:
role assignment and delegation.

Role assignment is a major component of an RBAC
system and risk analysis is a main consideration of role
assignment. In an RBAC system, users hold certain
roles. Whether a user is allowed to conduct an action
on a required resource depends on the role that the user
holds. Therefore, in an RBAC system, it is important
to determine the risk of assigning a role to a user.

The basic idea regarding risk assessment for role
assignment is as follows:

• For each user u, we assign a
level of confidence, denoted byCNF (u).

• For each role R, we calculate the
minimum level of confidence required
for the role assignment, denoted byMLC(R).

• Then therisk value 0 ≤ rv(u, R) ≤ 1 for role
assignment, can be calculated by the following
formula:

rv(u, R) =

{

0 , if CNF (u) ≥ MLC (R)

1 − CNF (u)
MLC (R) , otherwise

Note that, in the risk computation formula above,
we have assumed that the levels of confidence for
users and the minimum levels of confidence required
for roles should range over the same domain, such
as the domain [0..3] (assuming, for example, that the
domain used for expressing security levels in a system
is, unclassified = 0, restricted = 1, secret = 2, top secret
= 3). Therefore, we always have0 ≤ CNF (u) ≤ 3
and 0 ≤ MLC(R) ≤ 3. Generally, there is domain
D = {0, . . . , k}, such that, for anyu ∈ U and
any R ∈ R, we have 0 ≤ CNF (u) ≤ k and
0 ≤ MLC(R) ≤ k.

Consider an example. Suppose that, in a file man-
agement system, reading files is considered to have
security level 2 and writing files is considered to
have security level 3. Administrators should have both
permissions “read files” and “write files”. Then
the system may assignMLC(admin) = 3. Thus, if
CNF (lisa) = 2, then rv(lisa, admin) is 0.33; if
CNF (lisa) = 3, then rv(lisa, admin) is 0, which
means there is no risk in assigning Lisa the role of
administrator.

Thus, based on the above formula, in order to
obtain the risk valuerv(u, R), the key is to calculate
MLC(R) for each roleR. That is, we have to define
a method for calculating theMLC of each role. We
will use the poset-based modeling technique discussed
below.

In many access control models, such as those in [7],
[8], [9], a common method adopted is: subjects and
objects are assigned certain security levels or given
appropriate classifications; any subject can access an
object only if the subject is at the same security level
as the object or higher. Security levels or classification

systems can be represented as partial ordering relations
(posets).

As mentioned, in our method, permission is defined
as a pair consisting of an action and an object, and a
role is a set of such permissions. We consider both the
set of actions and the set of objects as partially ordered.
This ordering captures the criticality of the actions
and the importance of objects. Further we compute a
partial ordering on roles, i.e. a poset on set of pairs
(action, object). Then, from the latter, we can obtain
the minimum level of confidence (MLC) required for
the role.

Let (A = {ai | i = 0, 1 . . . , n},⊑a) and (O =
{oi | i = 0, 1 . . . , m},⊑o) be partially ordered sets of
actions and objects, respectively. The relationa′ ⊑a a

means actiona′ is less criticalthan actiona. Similarly,
o′ ⊑o o means objecto′ is less importantthan object
o.

For example, leta1 = modify, a2 = write, a3 =
move, anda4 = read. We can consider a set of actions
to be ordered according to the perceived criticality
of the actions. For example the action “modify” is
considered to be more critical than actions “write” and
“move”, and the action “read” to be less critical than
actions “write” as well as the action “move”. However,
“write” and “move” have no such relation. These facts
are described by the following relationsa2 ⊑a a1,
a3 ⊑a a1, a4 ⊑a a2, anda4 ⊑a a3, but a2 anda3 are
not comparable. Figure 1 presents partial orderings for
a system containing the set of actions{a1, a2, a3, a4}
and the set of objects{o1, o2, o3, o4}.

(Objects)

a1

a2 a3

a4

o2 o3

(Actions)

o1

o4

Figure 1. Actions and objects

A × O is the set of all permissions, we call it the
global permission set. Based on the posets(A,⊑a)
and (O,⊑o), we deduce an ordering relation⊑ao as
follows:

(a′, o′) ⊑ao (a, o) ↔ a′ ⊑a a ∧ o′ ⊑o o

where (a′, o′) ⊑ao (a, o) means permission(a′, o′) is
less critical than permission(a, o).

According to Definition 1, a roleR is a subset ofA×
O, i.e., a subset of the global permission set. Therefore,
for any roleR, (R,⊑ao) is also a poset. In Figure 2,
we show the global permission set and two roles R1
and R2 of the system of Figure 1.

(R2)

(a1, o1)

(a2,o1)

(a1,o4)

(a4,o1)

(a4,o4)

(a1,o2)

(a2,o2) (a3,o2) (a3,o3)(a2,o3)

(a1,o3) (a3,o1)

(a4,o2) (a4,o3)

(a4,o2) (a4,o3)

(Permission set)

(a1,o1)

(a4,o1)

(a4,o2) (a4,o3)

(a4,o4)

(a1,o3)

(a2,o3) (a3,o3)

(a4,o3)

(R1)

Figure 2. The global set and examples of roles

In order to calculate the MLC of a role, we introduce
first the following definitions:

• A chain in a role R is a subsetC of R having
a total ordering, i.e. for all(a, o), (a′, o′) ∈ C,
(a, o) ⊑ao (a′, o′) or (a′, o′) ⊑ao (a, o). So, all
nodes in a chainC are comparable. Thus, a chain
in a role can be represented by a path with directed
edges between adjacent nodes.

• The length of a chain is the number of directed
edges connecting two nodes in the chain. Letl(C)
be the length of chainC, andn(C) be the number
of nodes of chainC, then l(C) = n(C) – 1.

For example, in Figure 2, (R1), (a4, o4) is a shortest
chain that contains only one node and its length is 0;
(a4,o4)–(a4,o2) is a chain that contains two nodes, its
length is 1; and (a4,o4)–(a4,o2)–(a4,o1) is a chain that
contains three nodes, and its length is 2.

Let CR be the set of all chains in a role(R,⊑ao).
We defineMLC(R) to be the length of the longest
chain inR, i.e.:

MLC(R) = max{l(C)|C ∈ CR}

For instance, for roles described in Figure 2, we have
MLC(R1) = 3 andMLC(R2) = 2.

This formula is based on the assumption that all
directed edges connecting two adjacent nodes have an
equal weight of1 however, in some applications it may
be necessary to assign different weights to different
edges based on importance considerations.

Delegation risk is also a main issue in risk analysis.
Consider the following scenario: in a company, Bob,
a group head, is required to attend a meeting today,
which is classified to be security level 3. Bob has no
time to attend, so he asks Lisa to attend the meeting for
him. However, Lisa holds only security level 2. Then
this delegation may be risky.

Any role based access control system may involve
such delegations, and should have appropriate formulas
for calculating the risk of delegation. Different appli-
cations may have different formulas for this purpose.
Here, we present a generic formula as follows: let
del rv(u1, u2) be the risk value of useru1 delegating
to user u2 one of his permissions. The risk of a
delegation depends on the level of confidence of the
delegator and the delegatee. More formally, we may
have:

del rv(u1, u2) =

{

0 , if CNF (u1) ≥ CNF (u2)

1 − CNF (u1)
CNF (u2) , otherwise

As shown in next section, we can see that the risk
analysis functions defined above can play an important
role in the decision making process for RBAC systems.

IV. REASONING ABOUT RBAC SYSTEMS

Logical inference rules will be used to build a theory
for reasoning and decision making in RBAC systems.
We write ε ⊢ c, whereε is an environment, andc is
a logical formula containing variables and constants in
ε, to mean that contextc is satisfied withinε.

The environmentε contains system’s access control
rules and other attributes for policy evaluation such
as time, location, etc. A context is a logical formula
defined by the following grammar:

c ::= p | ¬c | c ∧ c

wherep is an atomic proposition.

A. Reasoning without risk assessment

We first define the following predicates:

• permit(r, a, o, c): Role r has the permission to
conduct actiona on objecto within contextc.

• holds(u, r): Useru holds roler.

• delegate(u1, u2, a, o, c): User u1 delegates user
u2 to conduct actiona on objecto within context
c.

• user permit(u, a, o): User u is permitted to
conduct actiona on objecto.

Now we present two rules that define an RBAC
Policy Decision Point (PDP). The first rule captures
direct permission and the second captures delegation.
We will use the following two new relations: a relation
between actions and a relation between objects, both
notated6. We write a 6 a′ to mean thata is a
subaction ofa′, e.g.modify 6 write. We writeo 6 o′

to mean that objecto is included in objecto′.
(1) Permission rule:According to the definition

of the RBAC model,PA ⊆ R× P, andP ⊆ A×O.
Therefore, the elements ofPA are of the form of
(r, (a, o)) or simply, (r, a, o), wherer ∈ R, a ∈ A,
ando ∈ O. Thus,(r, a, o) is a permission assigned to
role r. Further, we extend the permission element with
c, a context. The permission rule is then formalized
as follows:

permit(r, a′, o′, c) ∈ P (ε), ε ⊢ c,

holds(u, r), a 6 a′, o 6 o′

user permit(u, a, o)

where ε is an environment, andP (ε) is the set of
permissions in the environmentε. The permission
rule states that if permissionpermit(r, a′, o′, c) is in
P (ε), c is satisfied inε, useru holds roler then for
any subactiona of a′ (a 6 a′) and subobjecto of o′

(o 6 o′), useru is permitted to conduct actiona on
objecto.

Example 1.
If we have the following assumptions:
(1) permit(trainee, modify, records, guidance) ∈

P (ε),
(2) ε ⊢ guidance,
(3) holds(alice, trainee),
(4) write 6 modify,
(5) notes 6 records.

Herepermit(trainee, modify, records, guidance)
means that trainees have the permission to modify
records under guidance, andε ⊢ guidance means
that in the environmentε, guidance is satisfied (i.e.,
guidance is available). The meaning of the other as-
sumptions is obvious. Then, based on the permission

rule, we can obtain the following conclusion:
(6) user permit(alice, write, notes).
That is, Alice is permitted to write notes.

2

(2) Delegation rule: Delegation is written in the
form delegate(u1, u2, a, o, c), The delegation rule is
formalised as follows:

delegate(u1, u2, a
′, o′, c) ∈ D(ε), ε ⊢ c,

user permit(u1, a
′, o′), a 6 a′, o 6 o′

user permit(u2, a, o)

whereD(ε) is the set of delegations in the environment
ε and u1, u2 ∈ U , u1 is the delegator,u2 is the
delegatee, andc is the context. The delegation rule
states that:

• If a delegation delegate(u1, u2, a
′, o′, c) is in

D(ε), and in the environmentε, c is satisifed,
user u1 has the permission(a′, o′) then for any
sub-actiona of a′ and sub-objecto of o′, useru1

can delegate to useru2 to conduct actiona on
objecto.

The permission rule and the delegation rule define a
Policy Decision Point (PDP) for RBAC systems. Then
with these rules, we can reason about permissions
assignments in RBAC systems.

B. Reasoning in RBACR model with risk assessment

Risk is not explicitly included in the usual RBAC
model, so in the permission and delegation rules
presented above we did not consider the effects of
risk. In the RBACR model, we add a risk parameter
in the rules. In the sequel, we use the predicate
permit with risk(u, a, o, rv) to express the fact
that user u is permitted to conduct actiona on
object o with a risk valuerv. Furthermore, we use
risk threshold(ε, a, o) to specify a threshold value
for the risk. This value is used to determine if the risk
is acceptable or not for the PDP. Note that, we cannot
give a general definition for this function. Its definition
is rather related to specific access control applications
(banking, hospital, etc.). For instance, in a banking
application, the threshold may be higher if economic
indicators are good (described in theε parameter)
and the requested loan (parametersa ando) is not high.

(3) Permission rule with risk assessment:The
permission rule with risk assessment is formalised as
follows:

permit(r, a′, o′, c) ∈ P (ε), ε ⊢ c, holds(u, r),
rv(u, r) ≤ risk threshold(ε, a, o), a 6 a′, o 6 o′

permit with risk(u, a, o, rv(u, r))

This rule is the same as the standard permission rule
except that a useru is permitted to conduct action
a on object o with risk value rv(u, r) only if this
value is below a threshold given by the function
risk threshold(ε, a, o).

(4) Delegation rule with risk assessment:The
delegation rule with risk assessment is formalised as
follows:

delegate(u1, u2, a
′, o′, c) ∈ D(ε), ε ⊢ c,

permit with risk(u1, a
′, o′, t),

t + del risk(u1, u2) ≤ risk threshold(ε, a, o),
a 6 a′, o 6 o′

permit with risk(u2, a, o, t + del risk(u1, u2))

This rule reveals an accumulation of risk due to the
delegation. Indeed, suppose that a useru1 can perform
an actiona on an objecto with a risk valuet and
that useru1 can delegate this permission to another
user u2, then the risk value for useru2 to perform
actiona on objecto may be greater thant, that is, (t+
del risk(u1, u2)) > t, depending on the confidence
values ofu1 andu2.

Now, with these rules, we can reason about
permissions assignment with risk assessment.

Example 2.
We assume that:
(1) MLC(trainee) = 2, CNF (alice) = 1.9.

(2) risk threshold(ε, write, notes) = 0.1.

From assumptions 1, we have:
(3) rv(alice, trainee) = 0.05.
From assumption 2, and 3, we have
(4) rv(alice, trainee) ≤ risk threshold(ε, write, notes)

By 4 and the permission rule with risk assessment, we
get:
(5) permit with risk(alice, write, notes, 0.05).
The last formula means that Alice is permitted to write
notes with risk value 0.05.

2

V. I MPLEMENTATION ISSUES

A prototype of the system proposed above was
implemented in Prolog. This implementation contains
two major modules: one is for calculating risks based
on risk functions, the other is for decision making.

In this implementation, the main issues we consider
are:

• How to express the relations, such asa ⊑a a′ and
o ⊑o o, and permissions as facts in Prolog,

• How to translate inference rules to Prolog rules,
and

• How to translate risk functions to Prolog rules.
For simplifying the Prolog implementation, we de-

fine a unified predicate,lessEq(X,Y), to represent
the relationsX ⊑a Y and X ⊑o Y . Note that,
when using the predicate,X andY must be the same
type of variables or constants, i.e., in any instance of
the predicate, bothX and Y are actions or both are
objects. Thus, in the Prolog program, we may have the
following facts:

lessEq(read,modify).
lessEq(modify,modify).
lessEq(notes,records).
lessEq(records,records).

In order to translate risk function to Prolog rules,
we may need to define some predicates that can be
specifically used for this purpose. For example, with
this risk function

rv(u, R) =

{

0 , if CNF (u) ≥ MLC (R)

1 − CNF (u)
MLC (R) , otherwise

we first introduce predicates,rv(U,R,RV),
cnf(U,X), and mlc(R,Y). These predicates
correspond torv(u, R), CNF (u), and MLC(R),
respectively, and their meanings are as follows:
RV = rv(U, R), X = CNF (U), andY = MLC(R).

Then, the functionrv(u, R) can be translated into
two Prolog rules:

rv(U,R,RV):- is_user(U),
is_role(R),
cnf(U,X), mlc(R,Y),
X >= Y, RV=0.

rv(U,R,RV):- is_user(U),
is_role(R),
cnf(U,X), mlc(R,Y),
Y > X, Z is X/Y,
RV = 1 - Z.

When CNF (U) ≥ MLC(R), the first rule is
applied, otherwise, the second one is applied. Further,
with the risk function, we also need a rule with head
“mlc(R,Y)”, which is applied for calculating MLC(R).

The decision rules in the Prolog program are
directly translated from the rules we have proposed in
Section 4. However, to obtain the appropriate Prolog
rules, we need to fixε, the environment, for a practical
application by defining a state where each context has a
certain truth value. For example, if in the environment
ε we havepermit(r, a, o, c) ∈ P (ε), and ε ⊢ c, then
at ε we definitely have that bothpermit(r, a, o, c) and
exists(c) are true. Assume thatr, a, o, c represents
“admin”, “modify”, “records” and “guidance”
respectively, andexists(c) may represent “guidance
is available”, then in this environment, we have both
permit(ass admin, modify, records, guidance)
and guidance is available are true. Thus, in the
environmentε, the permission rule with risk can be
expressed as follows:

permit(r, a′, o′, c) ∧ exists(c) ∧ holds(u, r) ∧
(a ⊑a a′) ∧ (o ⊑o o′) ∧
rv(u, r) ≤ risk threshold(ε, a, o)
→ user permit(u, a, o).

Translating the rule directly, we get the following
Prolog decision rule:

permitInRisk(U,A2,O2,RV) :-
p(R,A1,O1,c), exists(c),
holds(U,R), lessEq(A2,A1),
lessEq(O2,O1), rv(U,R,RV),
thred(A2,O2,Threshold),
RV <= Threshold.

VI. CONCLUSION

Risk analysis is an important issue for access con-
trol systems. In this paper, we have proposed a role
based access control model with risk, called RBACR.
Within this model, we have proposed a method for risk
analysis, which enables systems to evaluate the risks
associated with access requests. This model shows how
assessing risk for decision making could be done in
principle in such systems.

Future work will include refining the partial orders
to include more sophisticated risk measures. Dynamic
aspects of security requirements associated with the
RBACR model will also be taken into consideration.

Another interesting aspect is the investigation of man-
agement issues of RBACR policies.

ACKNOWLEDGEMENT

This research has been funded in part by grants from
PROMPT Qúebecand from CA Labs.

REFERENCES

[1] M. A. Al-Kahtani and R. S. Sandhu. A model for
attribute-based user-role assignment. InACSAC, pages
353–364, 2002.

[2] B. Aziz, S. N. Foley, J. Herbert, and G. Swart. Recon-
figuring role based access control policies using risk
semantics. J. High Speed Networks, 15(3):261–273,
2006.

[3] D. E. Bell and L. J. LaPadula. Secure computer sys-
tem: Unified exposition and multics interpretation. In
Technical Report MTR-2997, The MITRE Corporation,
Bedford, Massachusetts, 1976.

[4] N. Dimmock, A. Belokosztolszki, D. M. Eyers, J. Ba-
con, and K. Moody. Using trust and risk in role-based
access control policies. InSACMAT, pages 156–162,
2004.

[5] S. Kondo, M. Iwaihara, M. Yoshikawa, and M. Torato.
Extending RBAC for large enterprises and its quanti-
tative risk evaluation. InII3E, pages 99–112, 2008.

[6] N. Nissanke and E. J. Khayat. Risk based security
analysis of permissions in rbac. InWOSIS, pages 332–
341, 2004.

[7] S. A. Obiedkov, D. G. Kourie, and J. H. P. Eloff. On
lattices in access control models. InICCS, pages 374–
387, 2006.

[8] R. S. Sandhu. Lattice-based access control models.
IEEE Computer, 26(11):9–19, 1993.

[9] R. S. Sandhu. Role hierarchies and constraints for
lattice-based access controls. InESORICS, pages 65–
79, 1996.

[10] R. S. Sandhu and V. Bhamidipati. An oracle imple-
mentation of the PRA97 model for permission-role
assignment. InACM Workshop on Role-Based Access
Control, pages 13–21, 1998.

[11] H. Takabi, M. Amini, and R. Jalili. Trust-based
user-role assignment in role-based access control. In
AICCSA, pages 807–814, 2007.

