Secrecy UML Method for Model
Transformations™*

Waél Hassan®, Nadera Slimani?, Kamel Adi?, and Luigi Logrippo?

1 University of Ottawa, 4051D-800 King Edward, Ottawa, Ontario, KIN-6N5
2 Universit du Qubec en Outaouais, 101 Rue St-Jean-Bosco, Gatineau, Qubec, J8X
3X7
wael@acm.org, {slin02, Kamel.Adi, luigi}@uqo.ca

Abstract. This paper introduces the subject of secrecy models devel-
opment by transformation, with formal validation. In an enterprise, con-
structing a secrecy model is a participatory exercise involving policy mak-
ers and implementers. Policy makers iteratively provide business gover-
nance requirements, while policy implementers formulate rules of access
in computer-executable terms. The process is error prone and may lead
to undesirable situations thus threatening the security of the enterprise.
At each iteration, a security officer (SO) needs to guarantee business
continuity by ensuring property preservation; as well, the SO needs to
check for potential threats due to policy changes. This paper proposes
a method that is meant to address both aspects. The goal is to allow
not only the formal analysis of the results of transformations, but also
the formal proof that transformations are property preserving. UML is
used for expressing and transforming models [1], and the Alloy analyzer
is used to perform integrity checks [6].

Keywords: Model transformation, Property preservation, SUM, Alloy,
UML.

1 Introduction

Governance requirements dictate a security policy that regulates access to infor-
mation. This policy is implemented by means of secrecy models® that establish
the mandatory secrecy rules for the enterprise. For example, a secrecy rule may
state: higher-ranking officers have read rights to information at lower ranks. In
addition, Business policies may specify instances such as: user A has access to
department M. Hence, an enterprise governance system is composed of a combi-
nation of secrecy model rules and business policies.

Automation helps reduce design errors of combined and complex secrecy
models [3]. However, current industry practices do not include precise meth-
ods for constructing and validating enterprise governance models. Our research

* This work has been funded in part from grants of the Natural Sciences and Engi-
neering Research Council of Canada and CA Labs.
3 We concentrate in this paper on secrecy, which is one of several aspects of security.

Secrecy UML Method for Model Transformations 17

proposes a formal transformation method to construct secrecy models by way of
applying transformations to a base UML model. It provides the advantage of for-
mal validation of constructed models. For example, starting from an initial model
called Base Model (BM), with only three primitives: Subject/Verb/Object, we
can generate —by transformation functions— RBACO (Role Based Access Control
model) in addition to a SecureUML model.

By way of examples we intend to show that our method is potentially useful
for building different types of secrecy models. By means of formal analysis we
intend to show that a SO will be able to validate a resultant model for consistency
in addition to detecting scenarios resulting from unpreserved properties.

In this paper, we present our method in section 2. In section 3, we show ex-
amples that illustrate our approach with application results. Finally, we conclude
this paper, in section 4, and discuss the future work and perspectives.

2 Secrecy UML Method (SUM)

SUM serves as a systematic method to construct secrecy properties for enter-
prise governance. Starting from a generic UML model, that we call base model
(BM) and a set of transforming operations (TOs) (see Fig. 1). The operations
are conjectured to be property-enriching as well as property-preserving and are
applied to achieve a resultant model (RM). In Fig. 1, several rectangles labelled:
Specialize, Aggregate, Compose, Split Right, Split Left, Reflex, Tree Macro, and
Graph Macro. These rectangles represent the transformation operations. Each
of the transformation operations takes as input a class labelled ’input’ —shown
using a grey shading— and produces the respective output —as shown. The TOs
modify the base model iteratively in a way that, in practice, the resultant model
is customized and used to govern security or privacy properties of a particular
enterprise.

We use a first order logic formalism to: represent the base model, the trans-
formation operations, and the resultant model. We show that it is possible to
validate the resultant model for consistency using logic analysers. The transla-
tion from the UML language to a logic analyser language can be done through
the use of a specialised secrecy modelling language called SML [4]. SML provides
a component view of Alloy code that is conjectured to facilitate the represen-
tation of secrecy models. Alternatively it can be done directly through a UML
to Alloy translator [6]. In all cases a transformation tool can be programmed to
map a model to another. Alloy will validate the models for properties of model
preservation and consistency.

2.1 Base-model (BM).

The base model proposed in this paper includes three primitives components: S,
V and O. A subject S is a subject in the enterprise. A verb V denotes the fact
that an action or right is given or denied to the subject. An object O is the data
item or object to which the action or right refers.

18 W. Hassan, N. Slimani, K. Adi, and L. Logrippo

Specialize Aggregate Compose Split Right Split Left

Input Input Input Input Input

i ¥ t o

Input
Input Input
] []] 1
Reflex Tree Macro Graph Macro

Fig. 1. Transformation operations.

2.2 Transformation Operation (TO).

A TO is an operation consuming an input and producing an output model. Our
method defines the following T'Os: Specialisation, Aggregation and Composition,
Reflex, Split, Tree Macro, Graph Macro (See Fig. 1).

Specialisation: Following the UML definition [5] this operation extends a
general class into a specific one with detailed features.

Aggregation and Composition: Aggregation and Composition describe the
construction of a parent class from sub-classes, that are mandatory (sub-classes)
in the case of Composition. Example of Composition: An audit department is
composed of financial and privacy audit sub-departments. Both departments (pri-
vacy and financial audits) are necessary for the audit department to exist. On
the other hand, the set of employees consists of full-timers, part-timers, and
consultants is considered an Aggregation.

Reflex operation: A reflex transformation adds a relation to the input class.
This operation is frequently used, mostly to represent a structural relation. e.g.
a node is a sibling of another node.

Split operation: A split is often used to transform a component into a relation
between two components. For example, an object can be split into a session
controlling an object. A split can preserve all or some of the original relations of
the input component. In Fig. 1, we show two kinds of split left, right, which we
will detail in future work.

Secrecy UML Method for Model Transformations 19

Tree Macro: The tree macro is useful for the construction of several secrecy
models. For instance, it can be used to represent a relation between a subject and
its department or Group.

Graph Macro: A graph macro takes an input class and creates a graph of
classes. For example, it can be used for building business processes.

3 Examples

3.1 Transforming BM to RBAC

In this first example of transformation, we apply a set of operations so that the
resultant model is similar to RBAC (Role Based Access Control model) in [2].
Fig. 2 shows the syntax representation of the RM components at each iteration.

Rale ‘

Session Rale

— |

Role

-

S v]
T Role _I'—" I

Operation

Session

Session

Operation

User

Permission

Role

Session

Object

|

]

Operation

L §

I

Fig. 2. Transformation steps from BM to RBAC model.

In this case, we simply apply three Split operations on both primitive compo-
nents: Subject and Verb, followed by the Renaming operation, e.g. Verb becomes

20 W. Hassan, N. Slimani, K. Adi, and L. Logrippo

Operation. Here is a list of the used successive operations, so that in the left side
(the function result) we have the set of components forming the new model:

Split(S)={S, Role}
Split(S)={S, Session}

Split(V)={Verb, Operation}
Rename(S, V)={User, Permission}

3.2 Transforming BM to SecureUML

SecureUML is a security modeling language based on RBAC with refinement
[3]. Fig. 3, shows the transformations needed to develop the meta-model of Se-

cureUML.

S v 0
0 S B =— (6] -
]
Role
S Role \ 0
Group User
S Role Permission]
Croup User Autherisation Constraint
s Role Permission Action Resource
<+
J} Ay E)
Group User Authorisation Constraint
User Role Permission Action Resource
(L FaY ?} T
Group User Authorisation Constraint | |Composite Action| |Atomic Action

Fig. 3. Transformation steps from BM to SecureUML model.

Secrecy UML Method for Model Transformations 21

The SecureUML is defined as an extension of RBAC. It supports: the policy
constraint (using the Authorisation Constraint component), the Action hierar-
chy, the Specialisation of the Action in Atomic Action and Composite Action,
etc. Since, SecureUML is more complicated. It requires using more than two
types of TO, in the following operation list:

— Split(S)={S,Role}

— Specialise(S)={Group,User}

— Aggregate(Group)={S}

— Aggregate(Role)={Role}

— Split(V)={V, AuthorisationConstraint }
Rename(V)={Permission}
— Compose(Resource)={Action}
— Specialise(Action)={AtomicAction, CompositeAction}
— Aggregate(AtomicAction)={Action}

4 Conclusion

In conclusion, the Secrecy UML method (SUM) supports the construction of
complex secrecy models from a base-model by a disciplined transformation method.
We believe that its application would be to assist a security officer in achieving
the required enterprise security policy by model transformation. We will show in
future publications that our technique, combining the use of UML and relational
logic, allows verification of the final result using the Alloy analyser. Future work
will strengthen this conjecture by proving the property-preserving characteristics
of the transformations. There are several avenues for future work in this domain.
We plan (i) to provide a detailed formal description of the transformation oper-
ations on a case study; (ii) to extend this paper to include the SML statements
corresponding to the output model in each case; (iii) to show the ability to de-
tect inconsistencies in the design. Finally, we foresee to create a graphical user
interface module that allows a designer to transform a UML model, using SUM
operations, and to create an automatic SUM to SML translator.

References

1. Berardi, D., Calvanese, D.,De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. Essex, UK , 2005. 70-118, Elsevier Science Publ. Ltd.

2. Ray, L., Li, N., France, R., Kim, D.: Using UML to visualize role-based access control
constraints. SACMAT’04. NY, USA, 2004. 115-124, ACM.

3. Basin, D., Doser, J. and Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. Softw. Eng. Methodol. NY, USA, 2006. 39-91,
ACM Press.

4. Hassan, W.: Secrecy Modelling Language. http://code.google.com/p/sml-silver/.
Accessed Aug 2009.

5. Evans, A., France, R. B., Lano, K. and Rumpe, B.: The UML as a Formal modelling
Notation. UML’98: London, UK, 336-348, 1999. Springer-Verlag.

6. Anastasakis, K., Bordbar, B., Georg, G., Ray I.: On Challenges of Model Transfor-
mation from UML to Alloy. MoDELS 2007. 436-450.

