
Detecting inconsistencies of mixed secrecy models and
business policies

Waël Hassan1, Luigi Logrippo2

1 Université d'Ottawa, École d'ingénierie et de technologie de l'information
2 Université du Québec en Outaouais, Département d’informatique et ingénierie

wael@acm.org, luigi@uqo.ca

Abstract. Several secrecy models are known in practice, and governance
requirements may make it necessary to combine them in order to implement
the secrecy policies of an enterprise. However, inconsistencies may arise as a
result of implementing multiple secrecy models in an enterprise network, and
these inconsistencies may well undermine the intended functioning of the
system. We propose a method to detect and report these inconsistencies at the
time when the secrecy system is designed. The method is based on specifying
the models and their secrecy policies in logic and applying a formal analyzer.
A given combination of such models can be analysed for inconsistency, and if
found inconsistent this combination of models must be modified before
implementation. Our proposed method is demonstrated by using as example a
mixed model involving Bell-La Padula (BLP) and Role based access control
(RBAC) in addition to separation of concerns (SOC). The logic analyzer Alloy
is used to check consistency. The method's principles are conjectured to be
generic and hence can apply to any secrecy model.

Keywords: Governance, secrecy models, consistency, formal methods, Alloy.

1 Introduction

Secrecy requirements are part of governance requirements in typical enterprises.
Such requirements specify who has access to what and when, possibly in what order.
In order to satisfy such requirements, secrecy models have been developed. These
models specify properties such as: multi-level protection, separation of concerns, no-
read-up, inheritance of rights, pessimistic mode. As enterprises increasingly integrate
networks with various tools and operating systems there is a need for integrating
secrecy models with different characteristics, possibly even models that may conflict
in some cases. Further, as enterprises specify business policies, situations may arise
were these policies cannot be implemented since they may violate other policies or
the chosen secrecy model.

Several secrecy models are used in practice and others have been studied in
theory. Well-known secrecy models are Bell-La Padula (BLP) and Chinese Wall
(CW), other models will be mentioned later. Each model is characterized by a set of
fundamental properties that represent intrinsic meta-policies. As mentioned, practical

necessities may motivate the use of some of these models in combination [1][2][3] ,
and in addition other business policies may be necessary, in order to implement the
secrecy goals determined by the enterprise.

Combining multiple secrecy models with business policies in the same network
may cause inconsistencies. An inconsistency, or logical contradiction, may undermine
the proper functioning of a real system, creating situations where some user may be
allowed access to an object according to a rule, and not allowed according to another
rule. Clearly, it is important that inconsistencies be detected at the design stage of the
system.

This paper will show the capability of logic based models to represent an
abstraction of secrecy models and business policies. Once this is done, a logic
analyzer can detect inconsistencies prior to system deployment.

We differentiate between two types of inconsistencies: model inconsistencies,
which are inconsistencies between secrecy models; and system inconsistencies, which
are inconsistencies between business policies and secrecy models. A model
inconsistency indicates failure to combine tools or networks. On the other hand, a
system inconsistency is an indication that some business policies need to be revised.

Combination of models can be done according to one of two modes, that we shall
call mixed and hybrid. In a system that adopts mixed-mode secrecy, it is possible to
implement policies following any parent model. Mixed models combine the parent
model’s policies and their properties. Hybrid models, on the other hand, inherit
properties from parent models or may include additional properties not present in
parent models. Schematizing in simple mathematical terms, suppose a mixed mode
secrecy system including two parent models with properties P1 and P2. The set of
properties of the mixed model will be M = P1 ∪ P2. On the other hand, in a hybrid
model obtained by combining the same parents, we can only say that the set of
properties H obeys the relation H ∩ (P1 ∪ P2)≠ ∅ , meaning that the hybrid model
shares some properties with parent models, and it may include others. Mixed models
will be the focus of this paper.

Inconsistency in a mixed model can be a consequence of the fact that that the
models that have been composed are incompatible and hence cannot be mixed. For
example, consider two multilevel secrecy type models. Both models include three
classifications and a 'no-read-up' policy, yet one of them has an 'allow-write-down'
policy while the other bans it. These two models cannot be mixed given this
contradiction.

 Policy combinations may be a cause of confusion and concern to system
administrators: confusion, because administrators may not understand the
implications of adding or removing policies; concern, since these policies may grant
rights that threaten secrecy, or revoke needed rights that are instrumental to the
business. To illustrate this point, consider an environment that mixes Bell-La Padula
(BLP) with Role Based Access Control (RBAC) model in addition to Separation of
Concerns (SOC) (some explanations on these models will be given later). A BLP
policy may state that client data is classified at the Secret level, while all aggregate
calculations (such as revenue and cumulative balances) are at the Top-Secret level. A
RBAC policy may state that tellers have access to update client accounts, and
managers can authorise withdrawals higher than 10K. A SOC policy may state that
there should be no data sharing between the marketing and accounting departments.

The system administrator may have at her disposal tools that allow her to determine
the results of these combined policies in specific cases, e.g., can Alice, a teller, access
the balance of client Bob? Much more rare are tools that identify problematic cases in
general, and one such tool we are proposing in this paper. .

This paper shows how mixed secrecy models can be checked for consistency. We
apply our method to commonly known secrecy policies such as those we have
mentioned. We use the formal language Alloy to define the models and its associated
logic analysis tool to validate consistency. We conjecture that the method is generic
and hence it can be applied to other models and model combinations. Our examples
show that enterprises, network providers, operating systems, and open source
communities can benefit from applying logical analysis tools to their secrecy models,
at the time the secrecy system is being defined or modified. Hopefully, in the not too
distant future industrial tools to do the analysis we propose will become available.

Section 2 provides the background for this work. Section 3 discussed the
motivation detailing some practical examples. Section 4 presents basic definitions
needed to understand the approach in the paper. Section 5 introduces the method and
providing sample examples. Section 6 shows a logic representation of BLP, RBAC
and SOC policies. Section 7 provides a review of related work. Section 8 concludes
the paper.

2. Background

The Bell-La Padula (BLP) model is a security model that has its origins in the
military, and is based on a system of security classifications and clearances. These
represent an object’s sensitivity and the degree of trust placed on a subject. Security
levels and security clearances are partially ordered. A user has access to an object if
his security clearance is higher than the sensitivity level of the object.

Role-Based Access Control (RBAC) is a secrecy mechanism that associates roles
with individual users. The essence of RBAC lies in the notion of role as an
intermediary between subjects and objects: roles are given access rights to objects
while subjects are associated with roles.

Other types of secrecy mechanisms that will not be considered in this paper but
that may come into consideration in this type of analysis are the Chinese Wall and the
Delegation of Authority. The Chinese Wall (CW) [23] policy was originally aimed at
the financial sector where consulting companies assign consultants to provide audit
and consultation services to client companies. Insider information creates conflicts of
interest for the consultant if she were able to access data of two competing companies.
The objective of Delegation of Authority is giving control to another subject, , in
other words a subject can delegate to another subject its right of access to objects.

We use Alloy-41 for logic analysis. Alloy consists of a formal language and a
related logic analyzer and therefore implements a formal method, which can be used
to precisely capture and analyze logical specifications of systems. The Alloy language
is a structural modeling language based on first-order logic. Alloy features the ability

1 http://alloy.mit.edu

to express complex structures whether static or dynamic. It is declarative in nature
providing full logical ability with conjunction and negation. Using Alloy, a system
can be described as a set of constraints.

3 Motivation

There are industrial and research drivers for this work. Industry is interested in
building interoperable environments by testing that their integrated tools and
operating systems can interconnect given their respective secrecy models. On the
other hand, the research world finds in this area the possibility of demonstrating the
power of formal methods, particularly relational logic, to model and analyse secrecy
models in mixed, hybrid, or single modes.
The need for understanding the consequences of combined secrecy policies from
multiple domains has been documented in [4][5][24]. There are others who are keen
on developing logic representations of combined access control models[6][7][25].
This paper shows through examples the ability of formal analysers such as Alloy to
model and identify system inconsistencies.

 Studying combined secrecy models is motivated by the increase in the number of
security vulnerabilities as a result of the use of multiple security policies [2].
Management is driven by cost cutting measures towards tool convergence between
enterprise content management, enterprise communication and collaboration, and
business intelligence. The requirement for integration has prompted Nokia [1] to
develop a Multiple Domain Security Tool that can be deployed by an enterprise to
interconnect securely multiple internal departments or extranets, or can be deployed
by a service provider hosting multiple small customers, each depending on its security
policy.

 The integration of secrecy models is a characteristic of two areas: Operating
system/networks (OS), and tool integration.

For the first area, there are several environments where the network is restricted to
OS applications supporting multilevel secure systems such as BLP [8]. Military OS
are dominated by the use of BLP for highly secure networks [8]. Windows Vista
[2][27] on the other hand, allows several types of policies including least privilege
user based access2, process based levels of security 'with inheritance', and multi-level
security for user interface communication. Furthermore, Vista suggests classification
of 'restricted' processes and 'un-restricted' ones. Our method can be applied to test the
ability of integrating Vista's security model with a multilevel security system.

Integrating the Plone/Zope3 web content management tool with a project
management tool such as Clarity© from CA is an industrial example of the trend
towards tool integration. In Plone/Zope there are four components to an
authorisation : users/user groups, roles (Manager, Author), permissions (rwx4),
acquisition (containment hierarchy). Their access model supports delegations
amongst other mechanisms. Clarity© on the other hand, has the following

2 Also called user account protection
3 Used by the ACM portal
4 rwx: read write execute

components: users, roles, organisational structures, financial structures, process
structures, in addition to user interface access control lists. Clarity supports positive
authorizations in addition to optional inheritance of rights.

It would be possible to check the ability of these systems to integrate by using
logic analysers. Many potential conflicts can be detected sooner and at a lower cost
than with manual techniques and empirical tests. The need and the scope of the latter
may not be eliminated, but will be reduced.

While this paper does not consider examples of complexity comparable to the one
of the systems we have just mentioned, some of the same ideas can be applied.

4 Domain and definitions

Before proceeding we would like to present some important definitions needed to
describe our approach. We first present a distinction between security and secrecy.
Often one may find that these terms are used interchangeably, however they shouldn't
be. In computing systems, a system is said to be secure if it is able to guarantee its a)
availability, reliability b) authentication including non-repudiation c) secrecy
(confidentiality) and e) integrity [9]. Secrecy is defined as the ability to hide specific
information from certain users according to some policy specifying which users
should be forbidden to acquire what kind of information [10]. These policies are
generic, involve sets of users and objects, instead of being specific such as: Alice can
read the bulletin board.

Governance Requirements: Informally defined, a requirement is a documented need
of what a particular product or service should be or do [11] . It is a statement that
identifies necessary attributes, capabilities, characteristics, or qualities of a system for
it to have value and utility to a user [12]. Governance requirements may specify
secrecy models, secrecy properties, and related business policies. For example, a
governance requirement may be to have a secrecy model that combines the properties
or functionalities of SOC and BLP. An enterprise property can require four levels of
security. A business policy can be to prevent network sharing between the human
resources department and the information technology department.

Corporate Governance: Informally defined, corporate governance is the system by
which business corporations are directed and controlled. Corporate governance has
several sub-processes, makes use of tools and methods, and dictates a certain
organisational structure. This structure specifies the distribution of rights and
responsibilities among different participants in a corporation and spells out the rules
and procedures for making decisions on corporate affairs. It also provides the
processes through which a company’s objectives are set, the means for attaining those
objectives and for monitoring the performance. The law and business policies are the
sources of governance requirements. Hence governance requirements prescribe legal
and business attributes, capabilities, or qualities of an enterprise system [13]. They
state the models involved along with enterprise properties and business policies. Part

of governance requirements are the secrecy policies, models and mechanisms that an
enterprise uses.

Secrecy meta policy: A part of governance requirements are secrecy requirements.
Secrecy requirements specify meta policies. We use this term to identify the high-
level rules according to which access control must be regulated [14]. Examples of
meta-policies are: access to financial information is based on role participation; there
are two classifications for data: private and non-private; subjects who have access to
private data cannot delegate their access to subjects who have access restricted to non-
private data.

A secrecy model: is a combination of secrecy meta policies. A secrecy model can be
represented in a set of data types with their relations. Some of these relations describe
policies that are intrinsic to the model, these are the meta-policies of the model. For
example, a multilevel-secrecy model can have the following classifications:
TopSecret, Secret, Classified and Unclassified. TopSecret is a higher classification
than Secret, Classified, and Unclassified and so on. Two meta policies are usually
included in this model: No-read-up and No-write-down. No-read-up implies that no
one classified Secret can read TopSecret information. Examples of secrecy models
are the well-known ones presented above: BLP, RBAC, CW.

A business Policy: A business policy, in this context, is one that specifies the
modality of access over objects. As mentioned, it explicitly states who has access to
what and when, and in what order. A business policy can specify for example that
managers only have read access to their subordinates HR files. More specifically, it
can say that Lena has access to HR files. A business policy can also say that
employees cannot approve their own time-sheet, rather, they are only accessible by
their managers.

Relation: A secrecy model is a combination of a set of meta-policies. Each policy
suggesting a governance requirement. Meta policies have priority over a business
policy. Furthermore, a business policy follows the format specified in secrecy model.
For example if the secrecy model specifies role based access then business policies
could have the form: users belong to roles and roles have positive or negative
modality of access over objects. In addition, meta policies change infrequently
compared to business policies. A meta policy is usually changed upon the
introduction of a new network or tool that has a different secrecy model. Whereas
manging users membership in roles and role access rights, for example, is much more
frequent. Finally, meta-policies are usually a select few policies where as business
policies are numerous.

Figure 1 shows in schematic form the process of checking governance
requirements for consistency. The figure contains two main entities and two
processes. The entities are : Governance Requirements, and the Live System
implementing these requirements. The two processes are the Model and System
consistency checks.

Fig. 1. Phases of formal design
Even though governance requirements from a business perspective may come as a
single package, checking them requires a two-step process. As per our method, the
mixed model needs to be checked for consistency. This is shown in the figure using
the Model Consistency Check process. If the check fails, the metapolicies of the
combined models are inconsistent and the model needs to be redesigned. Otherwise
we proceed to the next step: the governance requirements represented by the business

policies need to be integrated with the meta-policies to form a logical model of the
system. This analysis checks if the combination of model meta-policies and business
policies causes inconsistency.

If a system is free of inconsistencies , it can be deployed in a live environment as
shown in the third entity in Fig. 1 labeled live system. The figure represents some
common live system artifacts such as the decision points, model policies, business
policies, and data objects.

 This paper is concerned with the processes of checking consistency of models and
system.

5. Logic Analysis Method

 Fig. 2. Validation Method
This section shows the steps taken to check a mixed secrecy model for consistency

along with business policies.

To recapitulate, in a mixed secrecy model there is always the possibility of
inconsistency.

We address two types of inconsistencies: model, and system. Model inconsistency
is defined as a logical conflict between properties and meta policies, i.e. the
governance requirements, of two models. Such conflicts render the mixed model void
and not useful. On the other hand, a system inconsistency is defined as a result of
conflict between user policies or between user policies and meta policies.

Figure 2 schematizes the validation procedure using our method. The mixed
models are represented using the analyzer language and are presented to the
consistency checker. If the consistency checker fails then we can deduce that these
two models cannot coexist and hence are deemed incoherent. If no model
inconsistency is detected, there remains the possibility that there are inconsistencies
when the business policies are added. If there is such interaction, it would be detected
in the second validation.

Alloy allows a user to check if a model is inconsistent, in addition to providing
sample scenarios showing the reasons for inconsistency. This can be done by
appropriate use of the two statements fact and assert. A fact describes a model
property. A combination of facts may cause a model to be inconsistent, in which case
the tool will state no instance found, with no additional information. Inconstent
scenarios will be generated by stating the same property by using an assertion, as we
will see in the examples below.

6. Case Study

Consider two multilevel secrecy models, suggesting levels of classifications and rules
for read and write access across levels.

Assume that model A includes two classifications (Classified and Unclassified), in
addition to two meta-policies.

Meta Policy-A-1: No-read-up, which means that subjects at the Unclassified-level are
not able to read objects at the Classified-level.

Meta Policy-A-2: No-write-down, which prevents subjects at the Classified level to
write objects at the Unclassified level.

These two meta-policies can be written in Alloy using the following code:

No Read-up (A1):

no ((Classified.~sec).~R & UNClassified.~level)

This statement says that there is no intersection between users at the unclassified
level and users who have read rights to objects at the classified level. No intersection
implies that it is not possible to be in both sets at the same time.

No Write-down (A2):

no ((UNClassified.~sec).~W & Classified.~level)

This statement says that there is no intersection between the set of users who have
read rights to objects at the Classified level and the set of users at the Unclassified
level. No intersection implies that it is not possible for a user to be in both sets at the
same time.

Meta Policy-B-1: No-read-up, which means that subjects at the Unclassified-level are
not able to read objects at the Classified-level, in addition subjects at the Classified
level cannot read objects at the TopSecret level, furthermore, subjects at un-classified
level cannot read objects at TopSecret level

Meta Policy-B-2: Allow-write-down for Secret and Unclassified classifications only.
B-2 translates to two statements: a) Subjects at the Secret-level can write on objects
at the Unclassified-level; b) subjects at the Top-Secret level cannot write objects at
the classified level.

No Read-up (B1):

no ((Classified.~sec).~R & UNClassified.~level)
no ((TopSecret.~sec).~R & Classified.~level)

Allow write-down (B-2):

no ((TopSecret.~sec).~W & Classified.~level)
some ((UNClassified.~sec).~W & Classified.~level)

6.1 Model consistency

Combining models A and B generates an inconsistency since the no-write-down
policy A-2 of model A contradicts the write-down policy B-2 in model B

Executing "Run example"
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
0 vars. 0 primary vars. 0 clauses. 11ms.
No instance found. Predicate may be inconsistent. 0ms.

Fig. 3. Alloy output showing inconsistency

In other words, the logical conjunction of the two models A and B is always false.
Figure 3 shows the results produced by the logic analyzer when the inconsistent
model is checked.

Fig. 4. Visualized version of the inconsistency

We then asked the Alloy analyzer to generate an instance of the violation, by using

the assert statement. The result is shown in Fig. 4. In this figure it is possible to see
clearly how a ‘user’ at the Classified level has write access to object1 which is at the
unclassified level, therefore breaking the no-write-down policy.

Note that Alloy shows a possible world where the inconsistency occurs, withoug
pinpointing its reasons. These must be found by inspection. To facilitate the task in
complex scenarios, the tool provides a filtering facility, which allows selecting
different aspects of a scenario.

6.2 System consistency

For studying system inconsistency we create a model instance of per the mixed
model shown in Figure 5. The model shows three classifications (Classified,
TopSecret, UNClassified). A user has a certain level that is attached to a
classification. An object has a security relationship with the meta-class classification.
A user can have read and write relationships with objects. The two class extensions
usera and disk are instances of the classes user and object respectively. We define
two policies for the model: No-read-up and No-write-down.

Fig. 5. Meta-model of mixed models A & B

In this example we show how a business policy can interact with model meta-policies.
Assume that we have a business policy S stating that usera is at the unclassified level.
S also states that usera has access to a certain network component labeled disk which
is at the secret classification. We can check if the combined model including the
newly added policy S can cause logical conflicts using the Alloy code shown below:

fact businessPolicyS {
usera.level = UNClassified
some usera.R
some usera.W
Classified in disk.sec
disk in usera.R
}

This code says that userA is at the unclassified level, there are some objects that

are accessible for read by userA, there are some objects that are accessible for write
by userA, the object disk is at the classified level of secrecy, finally it says that userA
is able to access the disk for read.

We checked policy S with the combined policy meta model. The result was an
inconsistency resulting in the impossibility of implementing such a combination of
policies, see Figure 5.

Executing "Run example"
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20, 259 vars.
40 primary vars. 379 clauses. 6ms.
No instance found. Predicate may be inconsistent. 1ms.

Fig. 6. System inconsistency detected
If we assert the policy, many counterexamples can be produced. Each

counterexample will show that it is not possible to allow usera to have access to disk
when usera is at the UNClassified level and disk at the Classified level.

 Fig. 7. Counterexample to the policy

6.3. Separation of Concerns

Prior to implementing separation of concerns policies, we have added to our
idealized system an Internet resource that can be shared amongst users. In addition,
we have allowed multiple instances of disk resources.

We extend the running example to include certain separation rules. Such rules
prevent users from concurrent access to certain resources. For example, interns who
have read disk access may be denied from having write rights to the Internet. In our
method, all resources are represented as objects, and the Internet is no exception.

fact SOCPolicy {
 internet in intern.W //write access to Internet
 no disk & intern.R // read access from disk
}
 The code listed above specifies the separation of concerns policy. It reads that an

intern cannot have read access to disk while having write access to the internet.

6.4. Role Based Access

Now we add the concept of roles to our existing mix of models. Hence, we will
have BLP, SOC, and RBAC meta policies in the same model. We also extend the
model by adding several business policies.

The combined model including the BLP, SOC, and RBAC properties in addition to
the business policies defines the following roles: employee, manager, director, VP,
CTO, CFO, CPO, and President in an enterprise. Three classifications of secrecy
remain: UNClassified, Classified, TopSecret. A User can have only one role. In
addition we add several user policies. HR files are a disk resource at the Classified
level. Client files are another disk resource at the Classified level as well.

The security and privacy objects are at the Top-secret level. Furthermore, the
Internet resource is at the Unclassified level.

To test if the meta-policies prevail over potential business policies, we try to assert
certain rules that are known to be a violation of the meta-model. For example the
policy specified in Alloy below stipulates that it should be possible for an intern to
have read access to security object, an object at the secret level in a potential instance
model.

assert businesspolicy3{
 !security in intern.R
}

Running the above assertion shows that it is not possible to have such a business

policy. The analyser rejects the above assertion, as shown in Figure 8.

Executing "Check businesspolicy3 for 6"
Solver=sat4j Bitwidth=4 MaxSeq=6 SkolemDepth=1 Symmetry=20, 1873 vars.
256 primary vars. 3031 clauses. 19ms.
No instance found. 7ms.

Fig. 8. Consistency analyser response
In the Alloy code below, we check if an intern can assume a president’s role.

assert userpolicy4{
!interna.A = President
}

There is no rule preventing an intern from assuming the role of president.
Hence, Figure 8 shows that Alloy was not able to produce a counterexample.

Executing "Check userpolicy4"
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20, 619 vars.
100 primary vars. 958 clauses. 8ms.
 No counterexample found. Assertion may be valid. 14ms.

Fig. 9. Consistency analyser response
Notice that the speed of checking these assertions is quite high. The speed of

execution is in the order of milliseconds, however these models are not representative
of potentially complex enterprise networks.

7. Related Work

Integration of models is not a new research topic. Existing work on combining
secrecy models concentrated on re-implementing models is presented in [26]. Re-
implementing or re-writing models is not the same problem as integration. In the
former approach, i.e. re-writing, one of the models ceases to exist, whereas in the
latter both models are translated into a common representation. We propose first
order logic for the common representation.

Formal methods are commonly used for verification of security systems as well as
for interaction detection [16]. For example in [15], the authors suggest a requirement
driven approach to the design and verification of web services. They also suggest the
use of model checkers to verify system constraints. In the security and privacy
domain [17] studies a methodology for reasoning and verifying policies.

This paper is a continuation of [18] where we proposed the use of logic for feature
interaction detection. In other previous work we have shown the ability of validating
access control policies using Alloy in [19]. Address modeling and verification of
XACML policies by using Alloy was discussed in [20]. In [21] we presented the
ability of to represent legal requirements using logic, this work was inspired by the
position argued in [22].

8. Conclusions and Future Work

Governance requirements representing legal and enterprise specifications may require
the integration of secrecy models and business policies. This integration may be
necessary because of the need to integrate networks including tools and operating
systems. Unfortunately, these tools may have multiple secrecy models and business
policies that can be found conflicting. This paper shows a method for representing
mixed secrecy models including enterprise business policies. It shows how a secrecy

system designer can validate consistency using a two step verification process: Model
and System consistency checking. The paper provides a method including the
definitions, the process, and the logic representation that are needed to understand the
method.Technically, we have demonstrated the use of a logic based approach for the
detection of dangerous inconsistencies in mixed model security systems.

The paper starts by presenting the formal process of defining an abstract model of
governance requirements in a given environment. We then show several examples
showing inconsistencies between two types of multi-level secrecy policies. In
addition we show inconsistencies between business policies and the mixed model
policies.

We have used a first order representation of BLP, RBAC, and Separation of
concerns policies, and show some results that can be obtained by analyzing combined
policies using our approach. The policy completeness problem was not addressed in
this paper, and is the subject of future work.

We believe that formal consistency checking at the design stage is of interest to
organisations intending to build systems with multiple secrecy policies. We have
shown that this formal approach can detect potential policy interactions and simulate
policy violations prior to empirical testing done after the implementation. Faulty
model and policy combinations can be detected in this way.

Another equally important aspect, also the subject for future research, is to explore
a language meant to represent secrecy models. A security designer may specify a
particular security model and test its potential inconsistencies with other models or
interactions with user policies. The language can be translated to a logic analyser
language for formal analysis. This future language can be benefit from the logic
models used in this paper.

Acknowledgment: This research was funded in part by grants of the Natural

Sciences and Engineering Research Council of Canada.

References

[1] Nokia Multiple security domains, Nokia, http://www.nokia-
asia.com/NOKIA_BUSINESS_26/Europe/Products/Security_Products/sidebars/pdfs/nokia
mds_datasheet_emea.pdf , Accessed April 2009.

[2] Windows Vista Security and Data Protection Improvements. Microsoft.
http://technet.microsoft.com/en-us/library/cc507844.aspx, Accessed April 2009.

[3] P. Chandrasiri et al, “Personal Security Domains.” Contribution to the 10th Wireless World
Research Forum(WWRF), New York, October 27-28, 2003.

[4] Matushima, R., Venturini, Y. R., Sakuragui, R. R., Carvalho, T. C., Ruggiero, W. V.,
Naslund, M., and Pourzandi, M. 2006. Multiple personal security domains. In Proceedings
of the 2006 international Conference on Wireless Communications and Mobile
Computing (Vancouver, British Columbia, Canada, July 03 - 06, 2006). IWCMC '06.
ACM, New York, NY, 361-366. DOI= http://doi.acm.org/10.1145/1143549.1143621

[5] W. R. Ford. 1995. Administration in a multiple policy/domain environment: the
administration and melding of disparate policies. In Proceedings of the 1995 Workshop on

New Security Paradigms (La Jolla, California, United States, August 22 - 25, 1995). New
Security Paradigms Workshop. IEEE Computer Society, Washington, DC, 42-52.

[6] L. Ninghui, J. Feigenbaum , B. Grosof, A Logic-based Knowledge Representation for
Authorization with Delegation, Proceedings of the 1999 IEEE Computer Security
Foundations Workshop, p.162, June 28-30, 1999.

[7] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. 2002. An algebra for composing
access control policies. ACM Trans. Inf. Syst. Secur. 5, 1 (Feb. 2002), 1-35. DOI=
http://doi.acm.org/10.1145/504909.504910.

[8] C. E. Landwehr. Formal models for computer security. ACM Computing Surveys,
13(3):247–278, 1981.

[9] Information networking: networking technologies for broadband and mobile networks :
international conference ICOIN 2004, Busan, Korea, February 18-20, 2004 : revised
selected papers By Hyun-Kook Kahng, Shigeki Goto, Hanʼguk Chŏngbo Kwahakhoe,
Jōhō Shori Gakkai (Japan) Edition: illustrated Published by Springer, 2004.

[10] Computer security--ESORICS 2002: 7th European Symposium on Research in Computer
Security, Zurich, Switzerland, October 14-16, 2002 : proceedings By Dieter Gollmann,
Günter Karjoth, Michael Waidner Edition: illustrated Published by Springer, 2002 ISBN
3540443452, 9783540443452

[11] J. Fjardo, E. Dustin. Testing SAP R/3: A Manager's Step-by-Step Guide. Published by
Wiley-Interscience, 2007 ISBN 0470135484, 9780470135488.

[12] M. Evers . An analysis of the requirements for DSS on integrated river basin management.
, Management of Environmental Quality: An International Journal, Year: 2008 Volume:
19 Issue: 1 Page: 37 - 53 DOI: 10.1108/14777830810840354.

[13] W. Hassan. Validating Legal Compliance- Governance Analysis Method. PhD. Thesis.
Submitted 2009.

[14] P. Samarati, and S. De Capitani di Vimercati, " Access Control: Policies, Models, and
Mechanisms," in Foundations of Security Analysis and Design, R. Focardi, and R.
Gorrieri (eds.), Springer-Verlag, 2001

[15] M. Pistore, M. Roveri, P. Busetta. Requirements-Driven Verification of Web services.
Electronic Notes in Theoretical Computer Science. To appear.

[16] W. Hassan, L. Logrippo. Governance Policies for Privacy Access Control and their
Interactions. In: S. Reiff-Marganiec, M. Ryan. Feature Interactions in
Telecommunications and Software Systems VIII, ICFI'05, IOS Press, 114-130.

[17] L. Cholvy, F. Cuppens. Analyzing Consistency of Security Policies, 18th IEEE Computer
Society Symposium on Research in Security and Privacy.

[18] W. Hassan, L. Logrippo. Interactions among secrecy models. ICFI 2009 10th International
Conference on Feature Interactions in Telecommunications and Software Systems. To
Appear

[19] W. Hassan, L. Logrippo, M. Mankai: Validating Access Control Policies with Alloy.
Appeared in: K.Adi, L.Logrippo, M. Mejri. Proceedings of a Workshop on Practice and
Theory of Access Control Technologies (WPTACT 2005), Montréal, Jan. 2005, 17-22.

[20] M. Mankai, L. Logrippo. Access Control Policies: Modeling and Validation. Appeared in:
K. Adi, D. Amyot, L. Logrippo - Proceedings of the 5th NOTERE Conference, Gatineau,
Canada, August 2005. p 85-91.

[21] W. Hassan, L. Logrippo. Requirements and Compliance in Legal Systems: a Logic
Approach. In Proc. IEEE 16th International Requirements Engineering Conference
(RE'08): RELAW Workshop. Barcelona, Spain. Sep. 2008. (Electronic proceedings, 5
pages).

[22] L. Logrippo. Normative Systems: the Meeting Point between Jurisprudence and
Information Technology? In: H. Fujita, D. Pisanelli (Eds.): New Trends in Software
Methodologies, Tools and Techniques – Proc. of the 6th SoMeT_07. IOS Press, 2007,
343-354.

[23] D. F. C. Brewer and M. J. Nash. The Chinese Wall security policy. In Proc. of the IEEE
Symposium on Research in Security and Privacy, 206-214, Oakland, California, May
1989. Also available at http://www.gammassl.co.uk/topics/chinesewall.html.

[24] Ford, W. R. 1995. Administration in a multiple policy/domain environment: the
administration and melding of disparate policies. In Proceedings of the 1995 Workshop on
New Security Paradigms (La Jolla, California, United States, August 22 - 25, 1995). New
Security Paradigms Workshop. IEEE Computer Society, Washington, DC, 42-52

[25] Abadi, M. and Lamport, L. 1993. Composing specifications. ACM Trans. Program. Lang.
Syst. 15, 1 (Jan. 1993), 73-132. DOI= http://doi.acm.org/10.1145/151646.151649

[26] J. Zao, H. Wee, Jonathan Chu, Daniel Jackson, RBAC Schema Verification Using
Lightweight, Formal Model and Constraint Analysis, SACMAT 2003.

[27] M. Conover. Analysis of the Windows Vista security model. Available at
www.symantec.com/avcenter/reference/Windows_Vista_Security_Model_Analysis.pdf

