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Abstract. Several secrecy models are known in practice, and governance 
requirements  may  make it necessary to combine them in order to implement 
the secrecy policies of an enterprise.  However, inconsistencies may arise as a 
result of implementing multiple secrecy models in an enterprise network, and 
these inconsistencies may well undermine the intended functioning of the 
system.  We propose a method to detect and report these inconsistencies at the  
time when the secrecy system is designed.  The method is based on specifying 
the models and their secrecy policies in logic and applying a formal analyzer.  
A given combination of such models can be analysed for inconsistency, and if 
found inconsistent this combination of models  must be modified before 
implementation.  Our proposed method is demonstrated by using as example a 
mixed model involving Bell-La Padula (BLP) and Role based access control 
(RBAC) in addition to separation of concerns (SOC). The logic analyzer Alloy 
is used to check consistency. The method's principles are conjectured to be 
generic and hence can apply to any secrecy model.  
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1   Introduction 

Secrecy requirements are part of governance requirements in typical enterprises.  
Such requirements  specify who has access to what and when, possibly in what order. 
In order to satisfy such requirements, secrecy models have been developed. These 
models specify properties such as: multi-level protection,  separation of concerns, no-
read-up, inheritance of rights, pessimistic mode.  As enterprises increasingly integrate 
networks with various tools and operating systems there is a need for integrating  
secrecy models with different characteristics, possibly even models that may conflict 
in some cases.  Further, as enterprises specify business policies, situations may arise 
were these policies cannot be implemented since they may violate other policies or 
the chosen secrecy model. 

Several secrecy models  are used in practice and others have been studied in 
theory.  Well-known secrecy models are Bell-La Padula (BLP) and Chinese Wall 
(CW), other models will be mentioned later.  Each model is characterized by a set of 
fundamental properties that represent intrinsic meta-policies. As mentioned, practical 



necessities may motivate the use of some of these models in combination [1][2][3] , 
and in addition other business policies may be necessary, in order to implement the 
secrecy goals determined by the enterprise.  

Combining multiple secrecy models with business policies in the same network 
may cause inconsistencies. An inconsistency, or logical contradiction, may undermine 
the proper functioning of a real system, creating situations where some user may be 
allowed access to an object according to a rule, and not allowed according to another 
rule. Clearly, it is important that inconsistencies be detected at the design stage of the 
system.  

This paper will show the capability of logic based models to represent an 
abstraction of secrecy models and business policies.  Once this is done, a logic 
analyzer can detect inconsistencies prior to system deployment.  

We differentiate between two types of inconsistencies: model inconsistencies, 
which are inconsistencies between secrecy models; and system inconsistencies, which 
are inconsistencies between business policies and secrecy models. A model 
inconsistency indicates failure to combine tools or networks.  On the other hand, a 
system inconsistency is an indication that some business policies need to be revised. 

Combination of models can be done according to one of two modes, that we shall 
call mixed and hybrid. In a system that adopts mixed-mode secrecy, it is possible to 
implement policies following any parent model. Mixed models combine the parent 
model’s policies and their properties. Hybrid models, on the other hand, inherit 
properties from parent models or may include additional properties not present in 
parent models. Schematizing in simple mathematical terms, suppose a mixed mode 
secrecy system including two parent models with properties P1 and P2. The set of 
properties of the mixed model will be  M = P1 ∪ P2.  On the other hand, in a hybrid 
model obtained by combining the same parents, we can only say that the set of 
properties H obeys the relation H ∩ (P1 ∪ P2 )≠ ∅ , meaning that the hybrid model 
shares some properties with parent models, and it may include others.  Mixed models 
will be the focus of this paper.  

Inconsistency in a mixed model can be a consequence of the fact that that the 
models that have been composed are incompatible and hence cannot be mixed. For 
example, consider two multilevel secrecy type models. Both models include three 
classifications and a 'no-read-up' policy, yet one of them has an 'allow-write-down' 
policy while the other bans it.  These two models cannot be mixed given  this 
contradiction.  

 Policy combinations may be a cause of confusion and concern to system 
administrators:  confusion, because administrators may not understand the 
implications of adding or removing policies; concern, since these policies may grant 
rights that threaten secrecy, or revoke needed rights that are instrumental to the 
business. To illustrate this point, consider an environment that mixes Bell-La Padula 
(BLP) with Role Based Access Control (RBAC) model in addition to Separation of 
Concerns (SOC) (some explanations on these models will be given later).  A BLP 
policy may state that client data is classified at the Secret level, while all aggregate 
calculations (such as revenue and cumulative balances) are at the Top-Secret level. A 
RBAC policy may state that tellers have access to update client accounts, and 
managers can authorise withdrawals higher than 10K. A SOC policy may state that 
there should be no data sharing between the marketing and accounting departments. 



The system administrator may have at her disposal tools that allow her to determine 
the results of these combined policies in specific cases, e.g., can Alice, a teller, access 
the balance of client Bob? Much more rare are tools that identify problematic cases in 
general, and one such tool we are proposing in this paper. .   

This paper  shows how mixed secrecy models can be checked for consistency. We 
apply our method to commonly known secrecy policies such as those we have 
mentioned. We use the formal language Alloy to define the models and its associated 
logic analysis tool to validate consistency. We conjecture that the method is generic 
and hence it can be applied to other models and model combinations. Our examples 
show that enterprises, network providers, operating systems, and open source 
communities can benefit from applying logical analysis tools to their secrecy models, 
at the time the secrecy system is being defined or modified.  Hopefully, in the not too 
distant future industrial tools to do the analysis we propose will become available. 

Section 2 provides the background for this work. Section 3 discussed the 
motivation detailing some practical examples.  Section 4 presents basic definitions 
needed to understand the approach in the paper.  Section 5 introduces the method and 
providing sample examples.  Section 6 shows a logic representation of BLP, RBAC 
and SOC policies. Section 7 provides a review of related work.  Section 8 concludes 
the paper. 

2. Background 

The Bell-La Padula (BLP) model is a security model that has its origins in the 
military, and is based on a system of security classifications and clearances. These 
represent an object’s sensitivity and the degree of trust placed on a subject. Security 
levels and security clearances are partially ordered.  A user has access to an object if 
his security clearance is higher than the sensitivity level of the object.   

Role-Based Access Control (RBAC) is a secrecy mechanism that associates roles 
with individual users. The essence of RBAC lies in the notion of role as an 
intermediary between subjects and objects:  roles are given access rights to objects 
while subjects are associated with roles.  

Other types of secrecy mechanisms that will not be considered in this paper but 
that may come into consideration in this type of analysis are the Chinese Wall and the 
Delegation of Authority. The Chinese Wall (CW) [23] policy was originally aimed at 
the financial sector where consulting companies assign consultants to provide audit 
and consultation services to client companies. Insider information creates conflicts of 
interest for the consultant if she were able to access data of two competing companies. 
The objective of Delegation of Authority is giving control to another subject, , in 
other words a subject can delegate to another subject  its right of access to objects.   

We use Alloy-41 for logic analysis.  Alloy consists of a formal language and a 
related logic analyzer and therefore implements a formal method, which can be used 
to precisely capture and analyze logical specifications of systems. The Alloy language 
is a structural modeling language based on first-order logic. Alloy features the ability 
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to express complex structures whether static or dynamic.   It is declarative in nature 
providing full logical ability with conjunction and negation.   Using Alloy, a system 
can be described as a set of constraints. 

3   Motivation 

There are industrial and research drivers for this work.  Industry is interested in 
building interoperable environments by testing that their integrated tools and 
operating systems can interconnect given their respective secrecy models. On the 
other hand, the research world finds in this area the possibility of demonstrating the 
power of formal methods, particularly relational logic, to model and analyse secrecy 
models in mixed, hybrid, or single modes.    
The need for understanding the consequences of combined secrecy policies from 
multiple domains has been documented in [4][5][24]. There are others who are keen 
on developing logic representations of combined access control models[6][7][25].  
This paper shows through examples the ability of formal analysers such as Alloy to 
model and identify system inconsistencies.     

  Studying combined secrecy models is motivated by the increase in the number of 
security vulnerabilities as a result of the use of multiple security policies [2]. 
Management is driven by cost cutting measures towards tool convergence between 
enterprise content management, enterprise communication and collaboration, and 
business intelligence. The requirement for integration has prompted Nokia [1] to 
develop a Multiple Domain Security Tool that can be deployed by an enterprise to 
interconnect securely multiple internal departments or extranets, or can be deployed 
by a service provider hosting multiple small customers, each depending on its security 
policy.   

 The integration of secrecy models is a characteristic of two areas: Operating 
system/networks (OS), and tool integration.  

For the first area, there are several environments where the network is restricted to 
OS applications supporting multilevel secure systems such as BLP [8]. Military OS 
are dominated by the use of BLP for highly secure networks [8]. Windows Vista 
[2][27] on the other hand, allows several types of policies including least privilege 
user based access2, process based levels of security 'with inheritance', and multi-level 
security for user interface communication.  Furthermore, Vista suggests classification 
of 'restricted' processes and 'un-restricted' ones. Our method can be applied to test the 
ability of integrating Vista's security model with a multilevel security system.  

Integrating the Plone/Zope3 web content management tool with a project 
management tool such as Clarity© from CA is an industrial example of the  trend 
towards tool integration.   In Plone/Zope there are four components to an 
authorisation : users/user groups, roles (Manager, Author), permissions (rwx4), 
acquisition (containment hierarchy).  Their access model supports delegations 
amongst other mechanisms.  Clarity© on the other hand, has the following 
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components: users, roles, organisational structures, financial structures, process 
structures, in addition to user interface access control lists. Clarity supports positive 
authorizations in addition to optional inheritance of rights.   

It would be possible to check the ability of these systems to integrate by using 
logic analysers. Many potential conflicts can be detected sooner and at a lower cost 
than with manual techniques and empirical tests.  The need and the scope of the latter 
may not be eliminated, but will be reduced.  

While this paper does not consider examples of complexity comparable to the one 
of the systems we have just mentioned, some of the same ideas can be applied. 

4   Domain and definitions 

Before proceeding we would like to present some important definitions needed to 
describe our approach.  We first present a distinction between security and secrecy. 
Often one may find that these terms are used interchangeably, however they shouldn't 
be. In computing systems, a system is said to be secure if it is able to guarantee its a) 
availability, reliability b) authentication including non-repudiation c) secrecy 
(confidentiality)  and e) integrity [9]. Secrecy is defined as the ability to hide specific 
information from certain users according to some policy specifying which users 
should be forbidden to acquire what kind of information [10]. These policies are 
generic, involve sets of users and objects, instead of being specific such as: Alice can 
read the bulletin board. 

 
Governance Requirements: Informally defined, a requirement is a documented need 
of what a particular product or service should be or do [11] .  It is a statement that 
identifies necessary attributes, capabilities, characteristics, or qualities of a system for 
it to have value and utility to a user [12].  Governance requirements may specify 
secrecy models, secrecy properties, and related business policies.  For example, a 
governance requirement may be to have a secrecy model that combines the properties 
or functionalities of SOC and BLP. An enterprise property can  require four levels of 
security. A business policy can be to prevent network sharing between the human 
resources department and the information technology department.   
 
Corporate Governance: Informally defined, corporate governance is the system by 
which business corporations are directed and controlled. Corporate governance has 
several sub-processes, makes use of tools and methods, and dictates a certain 
organisational structure. This structure specifies the distribution of rights and 
responsibilities among different participants in a corporation and spells out the rules 
and procedures for making decisions on corporate affairs. It also provides the 
processes through which a company’s objectives are set, the means for attaining those 
objectives and for monitoring the performance.  The law and business policies are the 
sources of governance requirements.  Hence governance requirements prescribe legal 
and business attributes, capabilities, or qualities of an enterprise system [13].  They 
state the models involved along with enterprise properties and business policies. Part 



of governance requirements are the secrecy policies, models and mechanisms that an 
enterprise uses.   
 
Secrecy meta policy: A part of governance requirements are secrecy requirements.  
Secrecy requirements specify meta policies.  We use this term to identify the high-
level rules according to which access control must be regulated [14].  Examples of  
meta-policies are: access to financial information is based on role participation;  there 
are two classifications for data: private and non-private; subjects  who have access to 
private data cannot delegate their access to subjects who have access restricted to non-
private data.   
 
A secrecy model: is a combination of secrecy meta policies.  A secrecy model can be 
represented in  a set of data types with their relations. Some of these relations describe 
policies that are intrinsic to the model, these are the meta-policies of the model. For 
example, a multilevel-secrecy model can have the following classifications: 
TopSecret, Secret, Classified and Unclassified. TopSecret is a higher classification 
than Secret, Classified, and Unclassified and so on. Two meta policies are usually 
included in this model: No-read-up and No-write-down.  No-read-up implies that no 
one classified Secret can read TopSecret information.  Examples of secrecy models 
are the well-known ones presented above: BLP, RBAC,  CW. 
 
A business Policy: A business policy, in this context, is one that specifies the 
modality of access over objects. As mentioned, it  explicitly states who has access to 
what and when, and in what order. A business policy can specify for example that 
managers only have read  access to their subordinates HR files.  More specifically, it 
can say  that Lena has access to HR files.  A business policy can also say that  
employees cannot approve their own time-sheet, rather, they are only accessible by 
their managers.  
 
Relation: A secrecy model is a combination of a set of meta-policies.  Each policy 
suggesting a governance requirement. Meta policies have priority over a business 
policy.  Furthermore, a business policy follows the format specified in secrecy model. 
For example if the secrecy model specifies role based access then business policies 
could have the form: users belong to roles and roles have positive or negative 
modality of access over objects. In addition, meta policies change infrequently 
compared to business policies.  A meta policy is usually changed upon the 
introduction of a new network or tool that has a different secrecy model.  Whereas 
manging users membership in roles and role access rights, for example, is much more 
frequent.  Finally,  meta-policies are usually a select few policies where as business 
policies are numerous.  

Figure 1 shows in schematic form the process of checking governance 
requirements for consistency. The figure contains two main entities and two 
processes.  The entities are : Governance Requirements, and the Live System 
implementing these requirements.  The two processes are the Model and System 
consistency checks. 



Fig. 1. Phases of formal design  
Even though governance requirements from a business perspective may come as a 
single package, checking them requires a two-step process.  As per our method, the 
mixed model needs to be checked for consistency. This is shown in the figure using 
the Model Consistency Check process.  If the check fails, the metapolicies of the 
combined models are inconsistent and the model needs to be redesigned. Otherwise 
we proceed to the next step: the governance requirements represented by the business 



policies need to be integrated with the meta-policies to form a logical model of the 
system.  This analysis checks if the combination of model meta-policies and business 
policies causes inconsistency. 

If a system is free of inconsistencies , it can be deployed in a live environment as 
shown in the third entity in  Fig. 1 labeled live system. The figure represents some 
common live system artifacts such as the decision points, model policies, business 
policies, and data objects. 

  This paper is concerned with the processes of checking consistency of models and 
system.  

5.   Logic Analysis Method 

 

 Fig. 2. Validation Method 
This section shows the steps taken to check a mixed secrecy model for consistency 

along with business policies.  



To recapitulate, in a mixed secrecy model there is always the possibility of 
inconsistency.   

We address two types of inconsistencies: model, and system.  Model inconsistency 
is defined as a logical conflict between properties and meta policies, i.e. the 
governance requirements, of two models. Such conflicts render the mixed model void 
and not useful.  On the other hand, a system inconsistency is defined as a result of 
conflict between user policies or between user policies and meta policies. 

Figure 2 schematizes the validation procedure using our method.  The mixed 
models are represented using the analyzer language and are presented to the 
consistency checker.  If the consistency checker fails then we can deduce that these 
two models cannot coexist and hence are deemed incoherent.  If no model 
inconsistency is detected, there remains the possibility that there are inconsistencies 
when the business policies are added. If there is such interaction, it would be detected 
in the second validation.   

Alloy allows a user to check if a model is inconsistent, in addition to providing 
sample scenarios showing the reasons for inconsistency. This can be done by 
appropriate use of the two statements fact and assert. A fact describes a model 
property. A combination of facts may cause a model to be inconsistent, in which case 
the tool will state no instance found, with no additional information. Inconstent 
scenarios will be generated by stating the same property by using an assertion, as we 
will see in the examples below. 

 
 

6. Case Study 

Consider two multilevel secrecy models, suggesting levels of classifications and rules 
for read and write access across levels. 
 
Assume that model A includes two classifications (Classified and Unclassified), in 
addition to two meta-policies.  

Meta Policy-A-1: No-read-up, which means that subjects at the Unclassified-level are 
not able to read objects at the Classified-level. 

Meta Policy-A-2: No-write-down, which prevents subjects at the Classified level to 
write objects at the Unclassified level. 
 

These two meta-policies can be written in Alloy using the following code: 

No Read-up (A1):  

no ((Classified.~sec).~R  & UNClassified.~level)  



This statement says that there is no intersection between users at the unclassified 
level and users who have read rights to objects at the classified level.   No intersection 
implies that it is not possible to be in both sets at the same time.  

No Write-down (A2): 

no ((UNClassified.~sec).~W  & Classified.~level)  

This statement says that there is no intersection between the set of users who have 
read rights to objects at the Classified level and the set of users at the Unclassified 
level.    No intersection implies that it is not possible for a user to be in both sets at the 
same time.  

Meta Policy-B-1: No-read-up, which means that subjects at the Unclassified-level are 
not able to read objects at the Classified-level, in addition subjects at the Classified 
level cannot read objects at the TopSecret level, furthermore, subjects at un-classified 
level cannot read objects at TopSecret level 

Meta Policy-B-2: Allow-write-down for Secret and Unclassified classifications only. 
B-2 translates to two statements: a) Subjects at the Secret-level  can write on objects 
at the Unclassified-level; b) subjects at the Top-Secret level cannot write objects at 
the classified level.    

No Read-up (B1): 
 
no ((Classified.~sec).~R  & UNClassified.~level)  
no ((TopSecret.~sec).~R  & Classified.~level) 

Allow write-down (B-2): 

no ((TopSecret.~sec).~W  & Classified.~level)  
some ((UNClassified.~sec).~W & Classified.~level) 

6.1 Model consistency 

Combining models A and B generates an inconsistency since the no-write-down 
policy A-2 of model A contradicts the write-down policy B-2 in model B   

Executing "Run example" 
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 
0 vars. 0 primary vars. 0 clauses. 11ms. 
No instance found. Predicate may be inconsistent. 0ms. 

Fig. 3. Alloy output showing inconsistency 



In other words, the logical conjunction of the two models A and B is  always false.  
Figure 3 shows the results produced by the logic analyzer when the inconsistent 
model is  checked. 

Fig. 4. Visualized version of the inconsistency 
 
We then asked the Alloy analyzer to generate an instance of the violation, by using 

the assert statement.  The result is shown in Fig. 4. In this figure it is possible to see 
clearly how a ‘user’ at the Classified level has write access to object1 which is at the 
unclassified level, therefore breaking the no-write-down policy.  

Note that Alloy shows a possible world where the inconsistency occurs, withoug 
pinpointing its reasons. These must be found by inspection. To facilitate the task in 
complex scenarios, the tool provides a filtering facility, which allows selecting 
different aspects of a scenario.   

6.2 System consistency  

For studying system inconsistency we create a model instance of per the mixed 
model shown in Figure 5. The model shows three classifications (Classified, 
TopSecret, UNClassified). A user has a certain level that is attached to a 
classification.  An object has a security relationship with the meta-class classification.  
A user can have read and write relationships with objects.  The two class extensions 
usera and disk are instances of the classes user and object respectively.  We define 
two policies for the model: No-read-up and No-write-down. 



 
 

Fig. 5. Meta-model of mixed models A & B 

 
In this example we show how a business policy can interact with model meta-policies.  
Assume that we have a business policy S stating that usera is at the unclassified level.  
S also states that usera has access to a certain network component labeled disk which 
is at the secret classification. We can check if the combined model including the 
newly added policy S can cause logical conflicts using the Alloy code shown below: 

 
fact businessPolicyS { 
usera.level =   UNClassified  
some usera.R  
some usera.W 
Classified in disk.sec 
disk in usera.R  
} 
 
This code says that userA is at the unclassified level, there are some objects that 

are accessible for read by userA, there are some objects that are accessible for write 
by userA, the object disk is at the classified level of secrecy, finally it says that userA 
is able to access the disk for read. 



We checked policy S with the combined policy meta model.  The result was an 
inconsistency  resulting in the impossibility of implementing such a combination of 
policies, see Figure 5.  

 
Executing "Run example" 
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20, 259 vars.  
40 primary vars. 379 clauses. 6ms. 
No instance found. Predicate may be inconsistent. 1ms. 

Fig. 6. System inconsistency detected 
If we assert the policy, many counterexamples can be produced.  Each 

counterexample will show that it is not possible to allow usera to have access to disk 
when usera is at the UNClassified level and disk at the Classified level.  

 Fig. 7. Counterexample to the policy 

6.3. Separation of Concerns 

Prior to implementing separation of concerns policies, we have added to our 
idealized system an Internet resource that can be shared amongst users.  In addition, 
we have allowed multiple instances of disk resources.   

We extend the running example to include certain separation rules.  Such rules 
prevent users from concurrent access to certain resources.  For example, interns who 
have  read disk access may be denied from having write rights to the Internet.  In our 
method, all resources are represented as objects, and the Internet is no exception. 



 
fact SOCPolicy { 
 internet in intern.W        //write access to Internet 
  no disk & intern.R        // read access from disk 
} 
 The code listed above specifies the separation of concerns policy. It reads  that an 

intern cannot have read access to disk while having write access to the internet.  

6.4. Role Based Access  

Now we add the concept of roles to our existing mix of models.  Hence, we will 
have BLP, SOC, and RBAC meta policies in the same model.  We also extend the 
model by adding several business policies.  

The combined model including the BLP, SOC, and RBAC properties in addition to 
the business policies defines the following roles: employee, manager, director, VP, 
CTO, CFO, CPO, and President in an enterprise.  Three classifications of secrecy 
remain: UNClassified, Classified, TopSecret.  A User can have only one role. In 
addition we add several user policies. HR files are a disk resource at the Classified 
level.  Client files are another disk resource at the Classified level as well.  

The security and privacy objects are at the Top-secret level. Furthermore, the 
Internet resource is at the Unclassified level. 

To test if the meta-policies prevail over potential business policies, we try to assert 
certain rules that are known to be a violation of the meta-model.  For example the 
policy specified in Alloy below stipulates that it should be possible for an intern to 
have read access to security object, an object at the secret level in a potential instance 
model.  

 
assert businesspolicy3{ 
   !security in intern.R 
} 
 
Running the above assertion shows that it is not possible to have such a business 

policy. The analyser rejects the above assertion, as shown in Figure 8. 
 
Executing "Check businesspolicy3 for 6" 
Solver=sat4j Bitwidth=4 MaxSeq=6 SkolemDepth=1 Symmetry=20, 1873 vars. 
256 primary vars. 3031 clauses. 19ms. 
No instance found. 7ms. 

Fig. 8. Consistency analyser response  
In the Alloy code below, we check if an intern can assume a president’s role.  
 
assert userpolicy4{ 
!interna.A = President 
} 
 



There is no rule preventing an intern from assuming the role of president.   
Hence, Figure 8 shows that Alloy was not able to produce a counterexample. 

 
Executing "Check userpolicy4" 
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20, 619 vars. 
100 primary vars. 958 clauses. 8ms. 
 No counterexample found. Assertion may be valid. 14ms. 

Fig. 9. Consistency analyser response  
Notice that the speed of checking these assertions is quite high. The speed of 

execution is in the order of milliseconds, however these models are not representative 
of potentially complex enterprise networks. 

 

7. Related Work 

Integration of models is not a new research topic.  Existing work on combining 
secrecy models concentrated on re-implementing models is presented in [26]. Re-
implementing or re-writing models is not the same problem as integration. In the 
former approach, i.e. re-writing, one of the models ceases to exist, whereas in the 
latter both models are translated into a common representation.  We propose first 
order logic for the common representation.   

Formal methods are commonly used for verification of security systems as well as 
for interaction detection [16]. For example in [15], the authors suggest a requirement 
driven approach to the design and verification of web services.  They also suggest the 
use of model checkers to verify system constraints. In the security and privacy 
domain [17] studies a methodology for reasoning and verifying policies.  

This paper is a continuation of [18] where we proposed the use of logic for feature 
interaction detection. In other previous work we have shown the ability of validating 
access control policies using Alloy in [19]. Address modeling and verification of 
XACML policies by using Alloy was discussed in [20]. In [21] we presented the 
ability of to represent legal requirements using logic, this work was inspired by the 
position argued in [22].  

 

8. Conclusions and Future Work 

Governance requirements representing legal and enterprise specifications may require 
the integration of secrecy models and business policies.   This integration may be 
necessary because of  the need to integrate networks including tools and operating 
systems. Unfortunately, these tools may have multiple secrecy models and business 
policies that can be found conflicting.  This paper shows a method for representing 
mixed secrecy models including enterprise business policies.  It shows how  a secrecy 



system designer can validate consistency using a two step verification process: Model 
and System consistency checking.  The paper provides a method including the 
definitions, the process, and the logic representation  that are needed to understand the 
method.Technically, we have demonstrated the use of a logic based approach  for the 
detection of  dangerous inconsistencies in mixed model security systems.   

The paper starts by presenting the formal process of defining an abstract model of 
governance requirements in a given environment.  We then show several examples 
showing inconsistencies between two types of multi-level secrecy policies. In 
addition we show inconsistencies between business policies and the mixed model 
policies. 

We have used a first order representation of BLP, RBAC, and Separation of 
concerns policies, and show some results that can be obtained by analyzing combined 
policies using our approach.   The policy completeness problem was not addressed in 
this paper, and is the subject of future work.  

We believe that formal consistency checking at the design stage is of interest to 
organisations intending to build systems with multiple secrecy policies. We have 
shown that this formal approach can detect potential policy interactions and simulate 
policy violations prior to empirical testing done after the implementation.  Faulty 
model and policy combinations can be detected in this way. 

Another equally important aspect, also the subject for future research, is to explore 
a language meant to represent secrecy models.  A security designer may specify a 
particular security model and test its potential inconsistencies with other models or 
interactions with user policies.  The language can be translated to a logic analyser 
language for formal analysis.  This future language can be benefit from the logic 
models used in this paper. 
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