
Requirements and compliance in legal systems: a logic approach

Waël Hassan1 Luigi Logrippo1,2
1University of Ottawa, 2Université du Québec en Outaouais

wael@acm.org, luigi@uqo.ca

Abstract

It is shown that the concepts of requirements and

implementation exist in normative systems, in particu-
lar in law, and are similar to homologous concepts in
software engineering. Concepts of compliance and
conformance are also similar in the two areas. Fur-
ther, it is shown how a logic analyzer such as Alloy
can be used in order to verify legal compliance by
checking consistency between legal and enterprise
requirements. Examples are taken from privacy law
and financial reporting law.

1. Introduction

Legal systems are traditionally expressed in natural
language. However, increasingly, laws include norms
that were created with the intention of determining,
directly or indirectly, the operation of computing sys-
tems. These norms must be implemented in software,
which is based on formalized languages, directly or
indirectly executable by computer programs. Ideally, a
translation mechanism should exist, be objective and
repeatable to reflect changes in the law.

However translation between natural language and
formalized language presents well-known challenges.
Usually, not all the natural language text can be trans-
lated, and many assumptions must be made. It is con-
ceivable that some laws including computer code be
adopted, but for now this is very rare.

As enterprises must adhere to norms, they strive to
correctly translate legal requirements and automate
legal compliance checks. Privacy and access to infor-
mation and financial laws are primary areas of con-
cern, they belong to the general area of enterprise legal
governance. This area presents several challenges such
as (a) determining applicable laws and understanding
interdependencies of domain and jurisdiction (b) ex-
tracting legal requirements (c) validating extracted
requirements for consistency and compliance (d) im-
plementing legal requirements using software architec-
ture. We concentrate on the third challenge.

 Since legal systems are normative [1], many of the
observations of this paper are valid beyond law, and

we will sometimes talk in more general terms than just
law. Examples of normative systems that are imple-
mented in software or hardware are information pro-
tection systems including firewalls and access control
systems, computer networks regulated by policies, e-
business and e-governance systems.

2. Contributions and related work

In Section 3, the role of ontologies for the proper
representation of legal semantics is discussed. Section
4 presents various methods for the validation of nor-
mative requirements. Section 5 discusses normative
levels. Section 6 provides a high-level description of
our compliance verification method, with some details
and examples given in Section 7.

We propose a compliance and consistency valida-
tion method that represents and combines legal and
enterprise requirements. The method uses ontologies
for capturing enterprise definitions and first order logic
to represent requirements. The method is able to de-
tect violations that are consequence of lack of compli-
ance and inconsistency.

Deontic logic has been widely used for representing
normative rights and obligations. However, we focus
on the effectiveness of non-modal, first order predicate
logic and ontologies in their ability to represent legal
requirements and automate legal compliance and con-
sistency checks in a practical setting. Thus far, we
have not compared the two approaches, but we have
been able to prove by example the capabilities of our
method.

Sartor and others [7][10][12] proposed logic ab-
stractions of legal concepts. In addition, [4][5] have
discussed regulatory compliance. Our approach differs
from others in this area by the use of ontologies com-
bined with first order logic. Pioneering work in this
subject was done in [7].

Related research on extraction of requirements from
legal script is presented in [4][9][16]. Methods of im-
plementing laws include legal programming [13]. Our
proposed roadmap is similar to ones proposed by
[2][16].

3. The role of ontologies

In order to present legal semantics precisely, we
need ontologies, usually defined as formal representa-
tions of sets of concepts within a domain, together with
the relationships between these concepts. These are
often implicit in law. A very basic example is family
law, which cannot be understood without reference to
family ontology. In order to understand laws related to
enterprise governance, we need to refer to enterprise
ontologies, where enterprises are defined as hierarchi-
cal structures including departments or roles, to which
it is possible to assign processes or steps [5]. Ontolo-
gies can also be explicitly specified by laws, e.g. pri-
vacy law may specify that consent can be received
through a signature, a check-off box, or verbal ac-
knowledgment: this requirement establishes an equiva-
lence relationship between these methods. With human
assistance, the concepts of law must be mapped into
concepts represented in formal ontologies. For exam-
ple, a legal ontology can determine applicable laws in
e-commerce transactions with multiple parties and
cross jurisdictions. Consider using a credit card to
pay for a doctor’s note: such a transaction is subject to
the provincial healthcare privacy law as well as the
federal privacy law dedicated to commercial activity.
A legal-ontology can represent a structure of applica-
bility. This helps in situations where vertical laws are
combined in the same jurisdiction and horizontally at
the municipal, provincial, and federal levels. For a
discussion of legal ontologies, see [15].

4. Validating normative requirements

Once a precise translation of parts of a law or regu-
lation has been done, it must be validated, as it will be
seen in the following examples.

Scenario validation is a partial method of testing
compliance. An enterprise user, usually an accountable

enterprise authority, should have available a tool that
provides the results of test case scenarios. For exam-
ple, a privacy policy of a company specifies that credit
card information must be removed from the company’s
data base after the transaction purpose is achieved. It
should be possible to test this case to validate that the
information is in fact removed. This is of course useful
but testing may not show certain violations. It is quite
possible for example that the information will be re-
moved from one data base, but not from others [5],
through information sharing, or it is possible that it
will be removed in the scenario tested, but not in oth-
ers. Testing may also ignore user’s real intentions. For
example, an administrator issues a user specific right,

and later on, by mistake, revokes that right through a
group policy. A priority scheme of 'deny overrides'
would ignore the original intent of the user-specific
right, and testing may not show this.

Consistency checks can combine legal and enter-
prise requirements for validation. They can determine
that norms are mutually inconsistent, independent of
conflict resolution rules such as ‘deny override’, ‘per-
mit override’ or others [11]. In the example above a
consistency checker could detect a conflict between
user specific right and the group policy. It would de-
tect that the group policy is violated at inception, and
the system utilizing the checker could ask whether the
user-specific right should be up-held as an exception.
An enterprise may wish to check whether an enterprise
policy, as a whole, is consistent with applicable laws.
The feasibility of these checks is dependent on the
characteristics of available analysis tools. Some such
packages, often conceived for verification work in
software engineering, use highly optimized SAT
solvers. They are able to find inconsistencies within
bounded scope; an example is Alloy [6], which cur-
rently uses the Kodkod [14] SAT solver.

One may also wish to check completeness. For ex-
ample, a city could have a regulation saying that park-
ing on downtown streets is forbidden. Related regula-
tions impose different fines for different named streets,
but somehow Murray Street, a downtown street ac-
cording to an ontology, is not mentioned. Unfortu-
nately in practice this can be a difficult test to imple-
ment, because there may be too many cases to con-
sider, especially when continuous domains (time,
amounts…) are involved.

5. Normative levels

Laws can express principles at different levels. Two
levels are particularly apparent, we call them rule level
and requirements level. By the name of their apparent
‘inventors’ we could call them the Hammurabi level
and the Moses level [10].
▪ The Rule level has cause-effect rules, similar to
Event-Condition-Action (ECA) rules in data bases: if
a person does not pay debt, their possessions will be
sold. Rule level specifies the final implementation of
law, which can be capable by itself of enforcing a le-
gal system. Normative systems can exist at this level
only (e.g. the Hammurabi code, XACML policy sys-
tems[11], firewalls).
▪ The Requirements level expresses desirable states of
affairs, a situation that ‘ought to be’ [8], such as:
debts must be repaid. It appears that this level cannot
exist alone, and that it depends on the rule level for

enforcement and ultimate effectiveness. The en-
forcement of the Moses code depends on other rules,
notably rules dictating sanctions in the case of viola-
tions.

In addition to these two, we have mentioned:
▪ The Ontology level which is orthogonal and ex-
presses the domain structure, usually common to both
previous levels: Financial Controllers should report
to CFO is a requirement that requires reference to an
enterprise ontology for its implementation.

These levels, and other intermediate ones that nor-
mally exist, may not be explicitly distinguished, and
may not be explicitly present, but need to be made ex-
plicit for analysis. An example of requirement-level
norm in PIPEDA1 is the “Accountability Principle-1”
which states that An organization is responsible for
personal information. In the same law, one also finds
rule level norms such as the “Consent Principle-3”:
when an individual expresses a withdrawal of consent,
the organization needs to inform the individual of the
implications.

The use of the terms: requirements and implementa-
tion, widely used in software terminology [17], has
been intentional, since in our view there is a similarity
between legal theory and software theory in this classi-
fication. Requirements and implementations are kept
separate in software engineering. Perhaps it should be
concluded that they should be kept separate in law as
well; however many laws include requirements and
rules without any clear distinction, and we have just
seen an example.

Issues:
1. Deriving rule level norms from requirement level

norms. For example, Sarbanes-Oxley2 (SOX) section
404 asserts that approvals cannot be granted to trans-
actions initiated in other departments (separation of
concerns). This can be implemented through an ECA
rule if initiator is in different department then deny
access to approval action. In the presence of a
sound ontology, this translation could be partially
automated; templates of cause effect rules could be
produced, to be completed by human intervention.
As a further example, the enterprise accountability
principle mentioned previously is a declaration of a
fact. The accountability fact may be further imple-
mented using other provisions in the law such as, an
organisation shall designate an individual or indi-
viduals who are accountable for the organization's
compliance. This can be implemented further in
ECA `rule` form. We have found evidence of recur-

1 PIPEDA is Canada’s Personal Information Protection and Elec-
tronic Documents Act
2 Sarbanes-Oxley is a financial reporting law in the U.S.

ring translation techniques, leading to the concept of
translation patterns. Patterns can help by identify-
ing common solutions to recurring problems. Our
experience has revealed several such patterns: ac-
countability, responsibility, separation of concerns,
etc.

2. Determining the logical consistency of coexisting
requirements, possibly at different levels and of dif-
ferent origins, including the related ontologies. The
relation between compliance and consistency will be
discussed in the following section.

3. Determining completeness of rules with respect to
requirements. PIPEDA specifies: all collected data
should be used solely for its intended purpose. This
requirement can be refined into a number of re-
quirements such as: collect data for a purpose; re-
strict access to data unless purpose is valid; destroy
data once purpose is achieved. These requirements
can be further translated into ECA rules. Complete-
ness and consistency checks can validate if the rule
level policies satisfy requirement level policies.

6. A method for compliance verification

Our method validates compliance and consistency
of normative requirements originating from two
sources: enterprise regulations and the law. We define
compliance (sometimes also called conformance, a
term used in software engineering with a similar mean-
ing) as the mutual consistency of legal requirements
and enterprise requirements. It could be said that there
are two aspects to compliance: completeness and con-
sistency. However often completeness reduces to con-
sistency, because if an implementation is incomplete
with respect to requirements, then scenarios may exist
that are inconsistent with the requirements.

Our semi-automated compliance detection method
involves a high-level language and tools [5]. It consists
of the following steps, see Fig. 1: a) Representation of
legal and enterprise requirements b) Generation of a
logic model c) Logic analysis..

In the first step the normative presentation includes
legal provisions at several levels. We discovered three
types of requirements. The first is structural; these
requirements could either be enterprise or process hi-
erarchy requirements. Norms of this type specify how
a business process is formed. For example: Every
process should have a secure disposal activity. We
can also have hierarchy requirements, such as: The
company’s board of directors should include the chief
financial officer and internal financial auditor. An-
other type of requirement may suggest specific user
assignments, for example: A chief financial officer

should be assigned to the task of selecting an audit
firm. Ontologies may define equivalence relations
between activities or enterprise roles.

The second type of requirements is logical. This
type consists of ontology requirements expressed in
first order logic. Examples are: there exists a financial
officer; if there is a central secure data disposal proc-
ess there is no need for secure disposal activity in each
process; if the company does not have a board of di-
rectors or if the board has been dissolved then the fi-
nancial submission activity is halted.

The third type of requirements is at a higher level.
Under this category, high-level requirements can be
decomposed into ontological or logic requirements.
e.g.: an enterprise is accountable for private informa-
tion; an enterprise must report its financial informa-
tion quarterly to the Securities and Exchange Commis-
sion.

In summary our language is able to directly repre-
sent statements of the first two types, whereas state-
ments of the third type need to be re-written manually
in the first two types.

Figure 1. Compliance Checking Method

Figure 1 shows the principle of our method, estab-

lishing a repeatable compliance process. One sees on
the left hand side that the compliance validation proc-
ess starts from enterprise law translated into our own
logic-based legal requirements specification language.
Similarly, on the right hand side, we start from an en-
terprise requirements specification.

The tool we have implemented takes as input our
specification language and generates a logic analysis
model representing requirements. The logic analysis

model can be understood as a ontology representing
structural and logic requirements.

 The tool then passes the constructed model to the
Alloy logic analyser, mentioned in Section 4. In addi-
tion, the tool creates theme filters, these are meta-files
that are able to filter output based on entity type and
relations. During analysis the tool visualizes complex
enterprise entities including processes, departments
and roles, user assignments and their relations. Theme
filters are able to project this complex state of affairs
into various views for detailed analysis.

In other words, having received the model and as-
sociated theme filters, the Alloy analyzer detects com-
pliance or produces a counterexample. In the second
case, the analyzer output displays a complete violating
model showing the instance objects and associated
relations. The output is stored in various formats and
it is possible to create visual displays focused on one
view on the basis of one of the theme filters. The in-
tention is to give the user the ability to do several
analyses based on various views.

7. Implementation details and examples

The analysis model is governed by the capabilities
and limitations of the tool of choice Alloy: essentially,
first-order relational logic operating over ontology
specifications. Our experience shows that the system
is suited for the analysis of enterprise normative re-
quirements. The tool is able to join and disjoin logical
assertions. Such a capability enables an enterprise offi-
cer to validate concurrent assertions. It can also simu-
late an instance model particular to a specific scenario
or refute a certain argument. We can ask the tool to
generate a possible instance of a banking model where
requirements of lending are in conflict with those of
borrowing, if both sets of rules are well defined. An-
other possibility is to validate an assertion to ensure
that: all forwarded data has been preceded by a signed
agreement. However, the tool may not be able to assert
that data is securely disposed of internally and exter-
nally in all cases once the purpose has been achieved,
since Alloy can only produce verdicts within bounded
scope.

We were able to validate compliance of legal norms
to enterprise specifications, validate consistency, and
detect interactions. In the privacy domain we have
studied the effects of delegation of authority and ac-
countability on enterprise ontology and process, as
specified by law. Our examples showed violations
related to collection, retention, and distribution of pri-
vate data. In the financial domain we have validated
examples related to separation of concerns, delegation

Enterprise Requirements

Legal Requirements

…....
........
Logic
.

+

…....
.......
Logic
….

+

Auto Generate Analyser Model

+
Logic Analyser check

Theme Filtered Results

Manually represent in logic-based language

Ontology Ontology

of authority, and basic access control conflicts. We
have also been able to capture financial requirements
such the ones given in SOX section 404. We were
able to validate consistency of enterprise and legal
requirements with respect to a combination of financial
and privacy laws.

Our experience, documented in [5], shows that pri-
vacy and financial reporting audits can be assisted by
the use of a tool such as the one we have briefly de-
scribed.

Our tool is able to uncover compliance problems
and assist in localizing violations. A visual interface
serving multiple theme analysis is an added benefit.

8. Conclusion and Future Work

We have argued that the concepts of requirements

and implementation (rules) exist in normative systems
and law as they exist in software engineering. They
are not always clearly distinguished in law, however
this distinction should be done to improve analysis. On
this basis, we have categorized various types of chal-
lenges facing normative systems: deriving rule level
laws from requirements level laws, as well as validat-
ing consistency, completeness and compliance of sys-
tems of norms at various levels. The key role of on-
tologies was also mentioned.

We follow existing approaches, however we offer a
specific method proposing that legal and enterprise
requirements can be validated for compliance using
logic analyzers and logic models including ontologies.
We have implemented consistency and compliance
checks using a tool that takes as input our legal and
enterprise requirements language and produces a logic
analysis model for validation. Our normative exam-
ples are taken from privacy and financial disclosure
laws such as PIPEDA (Canada) and SOX (U.S.A.). In
related work, we have considered enterprise require-
ments, e.g. from the Royal Bank of Canada. In various
ways, we have demonstrated our ability to detect in-
consistencies and non-compliance between laws and
enterprise regulations.

We have been able to detect compliance violations
in different practical scenarios: e.g. violations due to
information leakage and process dependency. Incon-
sistencies were detected in examples of conflicts in-
volving separation of concerns and process structural
requirements. Other examples include delegation of
authority conflicts with privacy requirements.

Immediate future work will focus on patterns of
translation of requirements to rules.

9. Acknowledgment

This work has been supported in part by grants of the
Natural Sciences and Engineering Research Council of
Canada. We are grateful to the anonymous referees for
several suggestions.

10. References

[1] Alchourròn, C.E., Bulygin, E.: Normative Systems.

Springer, 1971.
[2] Antón, A. I., Bertino, E., Li, N., and Yu, T. : A roadmap

for comprehensive online privacy policy management.
Comm. ACM 50, 7 (Jul. 2007), 109-116.

[3] Breaux, T. and Antón, A. : Analyzing Regulatory Rules
for Privacy and Security Requirements. IEEE Trans. SE
34, 1 (Jan. 2008), 5-20.

[4] Brodie, C. A., Karat, C., and Karat, J. : An empirical
study of natural language parsing of privacy policy rules
using the SPARCLE policy workbench. In SOUPS '06,
ACM Internat. Conf. Proc. Series Vol. 149, 8-19.

[5] Hassan, W., Logrippo, L.: Validating Compliance with
Privacy Legislation. Submitted for publication.

[6] Jackson D. : Software Abstractions: Logic, Language,
and Analysis. MIT Press. March 2006.

[7] Jones, A.J.I, Sergot, M.: Deontic logic in the implemen-
tation of law: Towards a methodology. AI and Law,
1(1), 1992, 45-64.

[8] Kelsen, H.: General Theory of Law and State. Har-
vard University Press, 1945.

[9] Kiyavitskaya, N., Zeni, N., Breaux, T. D., Antón, A. I.,
Cordy, J. R., Mich, L., and Mylopoulos, J. : Extracting
rights and obligations from regulations: toward a tool-
supported process. In Proc. ASE '07, 429-432.

[10] Logrippo, L.: Normative Systems: the Meeting Point
between Jurisprudence and Information Technology.
SoMet 2007, Rome, 343-354 .

[11] Mankai M., Logrippo L. : Access control policies:
Modeling and validation. In Proc. of the 5th NOTERE
Conference, 2005, 85-91,

[12] Sartor. G. Legal Reasoning: A Cognitive Approach to
the Law. Berlin: Springer. 2005.

[13] Subirana, B. and Bain, M. 2006. Legal programming.
Comm. ACM 49, 9 (Sep. 2006), 57-62.

[14] Emina Torlak, Felix Sheng-Ho Chang, Daniel Jackson:
Finding Minimal Unsatisfiable Cores of Declarative
Specifications. FM 2008: 326-341

[15] Valente, A. : Legal Knowledge Engineering. IOS Press,
1999

[16] Vàzquez-Salceda, J., Aldewereld, H., Grossi, D., Dig-
num, F. : From human regulations to regulated software
agents’ behavior - Connecting the abstract declarative
norms with the concrete operational implementation. A
position paper. Artif Intell Law (2008) 16:73–87.

[17] Zave, P. and Jackson, M.: Four dark corners of require-
ments engineering. ACM Trans. Softw. Eng. Methodol.
6, 1 (Jan. 1997), 1-30.

