Normative Systems:
the meeting point between Jurisprudence

and Information Technology?
A position paper

Luigi Logrippo
Université du Québec en Outaouais
Gatineau, Québec, Canada
luigi@ugo.ca

Abstract. It is argued that there are many concepts andhadstin common
between policy systems used in Information Techywland Jurisprudence, i.e.
legal theory. These concepts are found in the reseaea of ‘normative systems’
which encompasses them and provides a frameworkirfdying research. It is
further argued that advantages can be accruedtiorbsearch areas by favoring
interchanges of methods and principles in thisyimgf framework. A distinction is
made between norms in rule style and norms in reménts style. Issues of
completeness, consistency and conflicts are corsid€oncepts that are useful in
this research area include defeasible logic andlagies. Useful tools are theorem
provers and model checkers.

1. Background and Motivation

This paper presents the view that legal methodgldgyisprudence, has many issues
and concepts in common with software methodologlyerg is much that can be
learned in both fields by a process of conceptgatasis, or even convergence. This
process will be encouraged by the fact that theatieh of computational agents is
increasingly acquiring legal significance. There @aeveral areas in which this is
happening: e-business (including e-contracts andrigg) and IT governance. In these
areas, it might even become desirable that laws lmrformally translated into
computer programs, or that the correspondence ofTapolicy with law can be
formally audited. For example, a law on privacy nieye to be implemented in a set
of policies in a language such as XACML [18]. Tkist of policies may have to be
checked for conformance with the law. As the lawrgfes, the XACML policies may
have to be changed as well.

A force acting in the converse direction is proddey the fact that computer
networks are becoming like social systems, witlirtbin internal norms [20].

At the same time, just as in IT software to hekpate systems of policies is being
developed, in the area of jurisprudetegislative drafting systermexe being developed

! This paper is a slightly improved version of agrapf the same title appeared in
H. Fujita, D. Pisanelli (Eds.): New Trends in Saite¢ Methodologies, Tools and
Techniques. Proceedings of the sixth SoMet_07.P@Ss, 2007, 343-354.

[13]. XML is commonly used for syntactic supportlofth kinds of systems, however
for now formal semantics and semantic validatiaa raot primary goals in either field.
Surely, developing the necessary formal models leng-range research task in both
areas.

Motivated by these developments, this paper himgethe view that information
systems policies and legal systems have much imm@min fact are special cases of
normative systems. We identify aule style and arequirementstyle in both areas.
Issues of completeness and consistency are distusselation to these two styles.
Several concepts and tools of common interest eéybdiscussed.

It is important to note that we are not claimingatiress all aspects of the systems
we are discussing. Legal systems are extremely leongmd have aspects that are quite
difficult to formalize in any logic or any formahéory, since they have their roots in
sociology, history, psychology, ethics and politigd, 16]. Information systems
policies are of many different types for many diffet applications, but they are all
formalized because they are executed by machinewder to identify similarities, we
will schematize and simplify. However we claim amd shall show by examples, that
there are common concepts for expressing and anglgpme aspects of these systems.

From a Jurisprudence point of view, we are takirigrenalistic approach by which
laws are seen as having their own self-containedning as pure logical statements,
outside of consideration of political, sociologicat moral nature. We recognize of
course that these considerations exist and opemdkeo other types of discussion.

2. Nor mative systems

In 1993, Jones and Sergot wrote [9]:

“The general position which we here develop andsitiate is that---at the appropriate
level of abstraction---law, computer systems, amehynother kinds of organisational structure
may be viewed as instances of normative systemsu¥eethe term to refer to any set of
interacting agents whose behaviour can usefullyegarded as governed by norms. Norms
prescribe how the agents ought to behave, andfggemiv they are permitted to behave and
what their rights are. Agents may be human indigiglior collections of human individuals,
or computer systems or collections of computeresyst Normative systems include systems
of law, abstract models of computer systems, arttithysystems consisting of human and
computer agents in interaction.”

We subscribe to this view, with two exceptionss¥Fof all, are normative systems
sets of interacting agents (legal institutions)sets of norms? This question has been
extensively debated in philosophy of law and theneft should be avoided if possible.
In this paper, we are mostly interested in setsoofns. Second, this view characterizes
norms in terms of the deontic concepts of obligaffought to’) and permission. This
is a very common view, endorsed by the best autbsiil0]. However in Section 3 we
will see that normative systems can exist withagrdtic concepts.

There are few attempts to define formally norms aadnative systems. Most of
these attempts take a limitative view, based ocipdormalisms. A much-cited book
by Alchourron and Bulygin [1], which claims applizan to social sciences only,
loosely defines norms as statements that relatescts solutions. As in Jones and
Sergot, the solutions are expressed in deontic§orm

We shall take the broad view that normative systenesman-made systems of
logical statements, the norms, which relate faotsntended consequences. Their

intention is to regulate the functioning of setdraéracting agents. Although they may
be expressed in deontic terms, the norms can bsldted into fact-consequence form.
In this sense, normative systems are similar ®-balsed systems. We shall see that the
systems in this very general class have some contharacteristics that are worth
comparing and discussing. The similarities thusogeized can lead to the use of
common principles and methods across differentsyeormative systems.

Examples of policy systems encountered in inforomatiechnology, to some of
which we will make further reference below, are:

e Firewalls and routers

« Telecommunications features, call control

¢ Information access control systems (e.g. languayeé ML)

e Security models (Bell-LaPadula, Chinese Wall, RBAL...

* Web services orchestration and choreography @nguiage BPEL)
« E-commerce policies and contracts, service-leget@ments

3. Normsthat aresimplerules

As biologists can learn much by studying elemenltiéeyforms, we can learn much by
studying elementary normative forms.
The Hammurabi code, written about 3,700 years egatains norms such as this:

“If any one steals cattle or sheep, or an ass,pg&r a goat, if it belong to a god or to
the court, the thief shall pay thirty fold; if théyelonged to a freed man of the king he shall
pay tenfold; if the thief has nothing with whichgay he shall be put to death.”

This can be recognized as written in the well-knoB@A: <event, condition,
action> format which is widely used in data basegnt systems, etc. [£9]

Event = any one steals cattle or sheep, or aroasspig or a goat
Condition = if it belong to a god or to the court
Action = the thief shall pay thirty fold

The Hammurabi code is an early example of coherentagislative style, since it
consists of about 300 articles which are almostwaitten in ECA format, another
witness of the greatness of the Babylonian culture.

On the IT side, let us considirewalls:

DROP all -- nuisance.com anywhere

This is a rule in a Linuxouter to drop packets having any (“all”) protocol that
come from node “nuisance.com” and go anywhere. This is again in the ECA
format, although the condition is empty (conditimmsnpare the incoming events with
facts that are known in the context, such as the f occurrence, or the concepts of
‘god’ or ‘court’ in the previous example, which pramably are known in an implicit
contextual ontology).

These examples show that, in spite of prevalentiopito the contrary, normative
systems can exist without deontic concepts. In, faet conjecture that all normative

2 Such systems of rules could also be read as prsgmaotably Prolog programs.

systems can be expressed as sets of rules in the fé@nat, although this
representation may not be finite.

4. Normsin the deontic context

A commonly held view of norms interprets them indeontic context, for which
deontic logic is a frequently used formalizatio®][1Deontic logic is a type of modal
logic that uses modalities such@ermittedandobligatory, which are mutually related
by relationships such as:

obligatory A = not permitted not A = forbidden it

In this interpretation, the Hammurabi norm aboveatgs, in the case specified, an
obligation to pay thirty fold; the firewall norm eates an obligation to drop all
nuisance.com packets.

An early example of legal system that is expliciigsed on deontic concepts is
Moses’ law:

Thou shalt not steal

In other wordsit is forbidden to stealln this normative style, we gain abstraction,
since the brief statement just given covers a dez#cles of the Hammurabi code, but
we lose specificity: what happens if one steals® ksothis norm enforced?

In software engineering terminology, one could khiof a compilation of the
Moses Code into Hammurabi terms, or ofeaerse engineeringf the Hammurabi
code into Moses terms.

In IT one encounters deontic statements as parlooumentation, or in the
statement of requirements. For example, a polieyospital could be:

The accounting department shall not have acceisetparts of a patient’s record that
deal with health history

This requirement will be translated in terms ofegjle.g. if employees of the
accounting department attempt to access certaldsfiem the patient's record, the
request will be blocked, or they will be penalizétigh-level languages that allow the
direct expression of such requirements are becomauailable, but eventually these
must be translated into rules.

Obligations can be specified in several policy lzames for computing systems
(notably access control [18] and business-to-bssif@nguages [14]), however in this
context they don’t seem to have the same meanmthd computing context, to say
that a behavior is forbidden simply means thatilt mot take place. To say that a
behavior is compulsory means that it will take plaicthe conditions are verified. It
could be claimed that such obligations or permissiare in fact rules.

Therefore, there is a difference between the megaoirdeontic modalities in law
and in IT policies, difference that must be resdbefore we can use such concepts
interchangeably in the two domains.

It is our view that, although modal logics have maeed extensively in both
Computing and Jurisprudence, the tendency to mbkenta ubiquitous paradigm
should be resisted, because they add a level oplecity while many types of analysis
can be done without them.

5. Rules and requirements
We have therefore identified two normative styles:

e Therule style(of which examples are the Hammurabi and the filestyle)
e Therequirements styléof which an example is the Moses style)

This is consistent with the distinction betweenuisgment and implementation in
software methodology. The deontic style specifezsuirements to be implemented by
means of rules, just as software specificationstnbesimplemented by means of
programs.

In societal terms, it appears that the rule stylgeif-sufficient: a society can be run
by it. However the enforcement of a requirementrse® depend on the existence of
rules that say what will happen if the requiremisridroken.

The distinction between ‘rules’ and ‘principles’legal theory is explored in [25].
This paper makes the point that rules and prinsiplee the extremes of a spectrum,
rather than two essentially different normativelegy This is reasonable, however we
contend that in a well-structured normative systeese two types of norms should be
clearly identified and separated, just as requirgmend implementation are kept
separate in software methodology. The Hammurabi thedMoses codes are very
consistent in their use of styles.

There are of course many other normative styleuding styles that have a place
between the two identified above, and others whosspretation and classification
could be the subject of endless discussion. Howasanentioned we shall schematize
and reason in terms of these two styles.

6. Common resear ch topics

Within this framework, there are several reseaogics that are equally relevant in the
areas of law and in the area of policy systemdirin these topics, common methods
can be used. These are the topics of Complete@Gessjstency, and Conflicts.

In law, as in software methodology, questions ohpleteness and consistency can
arise:

* Betweenrules
* Between requirements
» Between rules and requirements

These questions may be difficult to answer becadfisegical interrelationships
among norms. In an access control system, there lmeag rule stating that only
executives can access budget information, as veeldefinitions from which it is
possible to deduce that receptionists are not eéxes, so it will be possible to
conclude that receptionists cannot access budfggmation. This derived rule can be
inconsistent with respect to others, or can filegpparent gap.

6.1. Completeness

Are all cases covered in a law, are all cases eovir a software specification or in a
program? What are the ‘cases’? In law, conceivahly are all possible social
situations. In computing, they are all possibleuitsgo a system, and rigid type systems
are used to limit consideration to certain typesngiuts; other inputs will simply be
ignored, typically resulting in error messages.

In logic, a system is complete if for any statemna proof exists for either P or
not P. In normative systems and jurisprudence, ethare different and more
complicated definitions [1, 3, 4], but one wondetsy.

In law, one could at first think that if a situaties not considered, then there is no
rule for it, and anything goes. In criminal law, poovision usually means that the
situation is tolerated, it is sometimes said that $ystem contains an implicitosure
normto this effect: “nullum crimen sine lege”.

To reason more systematically, let us consider ridationships that we have
established between rules and requirements.

First of all, consider rules only or requirementiyoIn programming, we can have
a series of tests on a variable of a certain typeome values of the type are not
considered, then the program will go to an expliitimplicit ‘otherwise’ statement,
which plays the role of a closure norm, so incorngiess is impossible.

But normative systems often do not have ‘otherwidalses, and in the case of
law often the data types are not clearly definelde Tases that are not considered
remain in some sort of limbo that has generated hmiiterature [1, 3, 4]. The
legislator’'sintention comes into consideration, and this can be theltreunductive
reasoning. The intention becomes a sort of implégiuirement. Suppose that there is a
domain that consists of subdomains some of whiehcarvered by norms, and others
that are not, without an explicit norm that covels subdomains. For example,
consider the case where the downtown of a city istmsef streets A, B, C, and D.
Different rules punish parking on A, B and C witiffetent fines. One can conclude
that parking on all downtown streets, except Doibidden, or that possibly the system
is incomplete.

Other examples are discussed in detail in [1]. 8spghat there are norms for the
case where A and B are true, and for the case wiatrd andnot B are true. What is
the norm for the case where only one of A or Brigg? The fact that some cases are
considered and others are not can point to an @hpéquirement that all cases should
be considered.

Similar situations of course can arise in the afesoftware requirements, if these
are manually generated and interpreted.

In some domains, it is a requirement that a degisioist be always achieved. An
example of this situation is provided by firewallseems. A firewall must decide
acceptance or rejection for each and every pa8efif there is no rule for a specific
packet type, the system must apply some sort éatdenorm’ to decide. For example,
in Cisco firewalls, if there is no rule for a céntgpacket, then the packet is refused. In
Linux firewalls, the default decision is acceptartieese are the ‘closure norms’.

A similar situation exists in inheritance law, wbea way must be found to
distribute the whole inheritance.

The cases we have discussed make reference taitmplijuirements. Of course,
incompleteness can also be caused by relating céixpéquirements with sets of
explicit rules.

For example, the following norm of the Canadian i@reof Rights and Freedoms:
‘Everyone has the right to life...” has been usedatgue that Canada’s law is
incomplete because it has no norms to addressiatoort

The introduction of new requirements will likelygrate incompleteness, which
must be filled by the introduction of new rules.

The treatment of incompleteness is very differegtiMeen legal systems and IT
systems. In IT, incompleteness is pathological taedsystem must be made complete,
either by default rules or by intervention of tresiner.

It is interesting to note that in legal systemsdinij incompleteness is often
considered to be a role of the judiciary. For tigigson, it is sometimes said that legal
systems cannot be incomplete, because a judgelwagsafind the rule to apply [3,4].
In IT, one could think of providing a system witteta-rules to solve incompleteness,
however, unless these rules are very simple (ssckthe@ mentioned closure rule),
incompleteness or inconsistency can exist at tietastevel.

6.2. Consistency

In classical logic, a system is consistent if thexyeno statement A for which it is
possible to prove botA andnot A Different rules can cover the same cases with
contradictory effects. This situation of coursamat be confused with the similar case
in which two rules can be applied, but their reswdte compatible (e.g. one norm
stipulates a repayment, another stipulates a finAs for incompleteness, we can
identify the following cases:

* Inconsistencies between rules
* Inconsistencies between requirements
« Inconsistencies between rules and requirements

In classical logic, in an inconsistent system aimglcan be derived, because an
inconsistency is false and from false anything d#n derived. Therefore, any
inconsistency has global implications. However thinclusion is insignificant in
practice. If an enterprise database contains apnsistency, users normally still
believe the rest, although the more inconsisteraiedound, the more confidence will
decrease. If an inconsistency is found in rulesafaromplex game, players will still
play the game according to the remaining rulesrdfioee the users of an inconsistent
system tend more to isolate the inconsistent plaat) to say that since the system is
inconsistent it can't be used. And in those cabkas dre not flagrant, users try to iron
out inconsistencies by means of interpretation, by trying to show that different
assertions apply to different cases. In other woaitdsiay be possible to interpret the
clauses in such a way that the inconsistency desagp This is a main occupation for
judges and lawyers.

In software methodology, inconsistency among rexménts is generating a
literature [7, 16], and the solutions proposedcamplex.

The case of inconsistencies between rules is ettplaonsidered in several types
of IT systems. In most cases (programs, firewdlis)rules are executed top-down and
this will automatically eliminate inconsistency bese one of the mutually inconsistent
rules won't be reached. However it remains to sehether the result corresponds
to the intent of the designer. In other systemsetlage explicit ‘combining algorithms’
to solve inconsistencies. For example, in the aafs¢he access control language

XACML these are Deny-Overrides, Permit-OverrideisstFApplicable, and Only-One
Applicable, plus others that can be defined byuber [18].

In Western jurisprudence, some overriding princpleave been known for
centuries, such as (in their Latin versionigx specialis derogat legi generali, lex
posterior derogat legi priori, lex superior derog#&gi inferiori, i.e. a law can be
overridden by a more specific one, or by a latex,@r by one of higher hierarchical
position.

Still, there is question of whether the applicatioh the chosen algorithm or
principle may betray the intention of the authortb& norms, who may not fully
understand all existing conflicts and their posstmlutions.

In IT, much study has been generated by a partityee of inconsistency, called
Feature Interaction. This subject attracted thenéitin of designers of telephony
features, when they realized that the combinatioseweral features led in some cases
to problems, because one feature could disruptirttesded effect of another. This
could occur on one end of the system, or, worseyden ends. The more general case
of this problem can be stated in the following wiya component-based system, some
components may have mutually inconsistent requiresnéHow can this be detected,
can they still be combined? A series of workshaps @onferences has been dedicated
to this topic, they started in 1992 and the mostmé has been [18].

An analysis of inconsistency of norms from the legad deontic point of view is
presented in [5].

It appears then that the most practical solutionif@onsistency in normative
systems is to report the existing inconsistenaebé designer of the system for human
resolution.

6.3.Ontologies

Advanced normative systems use extensive setsfifitds to structure the domain
on which they act. Family and inheritance laws tgpécal examples. Companies have
organizational structure that is taken into consitlen in company policies. For
example, employees can be characterized by roles.avé all familiar with call
processing systems that forward calls on specifitens to employees with a certain
role. The well-known access control method called8AR (for Role-Based Access
Control) [6] uses roles to determine access righttatabases or other resources.

These definitions form ontologies, which are hiehigal data structures
containing attributes for the entities in a certalomain, together with their
relationships. Some literature [5] refers to ongids with the name ofworld
knowledgewhich they contrast withormative knowledge.

The conditions that we have mentioned with relationECA systems refer to
ontologies.

Ontologies and definitions can act as rule genesaig. we can have a norm
saying that theft is punished in a certain way,nthiefinitions saying that certain
behaviors are theft. The combination of these defims with norms that use them
creates new norms. By using RBAC, access contieSrare associated to roles rather
than to users. Without RBAC, access rules have tattached to users, so there have to
be many more rules, in addition there have to behaeisms for attaching and
detaching rules from users, as the roles of udemage. Similarly, in object-oriented
languages such as Java, one can define an arsydents, and then on this basis one
can create a Java class for each student.

Hence, the use of ontologies can substantially lfiyngnd shorten the expression
of rules.

Although some normative systems may not containli@xpdefinitions or
ontologies, in reality every such system dependsumh information, which may be
externally defined or understood in the social eattFirewalls, for example, depend
on implicit ontologies such as the structure of th&ernet addressing space, the
structure of the systems ports, etc.

Ontologies introduce a third normative style widspect to the two identified in
Section 5, one that is orthogonal with respechtis¢. We could call thisntological
or definitional style

The study of ontologies for legal systems is arfyudlire research area in which
Jurisprudence seem to be taking the greatest atgpirfrom Information Technology
[2, 23, 24].

6.4. Conflicts between peers

Conflicts can occur between peers when their ragumspolicies are incompatible, in
fact or potentially. In the case where parties @ireing at an agreement, it may be
possible to solve conflicts by a negotiation phase)y concluding that no agreement
is possible. In law, this is the material for ardtiors, judges, lawyers. In computing
systems, this is material for the operating systeemtralized or distributed. The
operating system is the government authority irsehgystems. The difficulty of this
subject is visible in many examples. For exampie, deadlock problem in operating
systems is computationally unsolvable, in the sehaeit is impossible to determine
that a deadlock is possible or to prevent it.

Although nowadays there is a lot of confidence éermpto-peer systems and their
ability to solve problems by peer-to-peer agreesieigsues such as the feature
interaction problem and the deadlock problem shwat this confidence is unfounded.
Authentication also cannot be done on a pure erahtbbasis. It appears that trusted
third parties are necessary to solve these problessvell as others. Trusted third
parties are already used in authentication. Hetlis&jbuted systems will acquire some
of the architectural characteristics of legal systewith their legislators, judges and
notaries.

7. Nor mative systemsfor electronic societies

Societies are ruled by laws and customs. Thosedehmot abide by them are punished
or emarginated. Electronic societies can span trdvand these enforcement methods
may not be effective, as we all know by our consfayht against spam and viruses.
Similarly, we can get into what appears to be aabiithe electronic agreement with a
party, and then we are helpless when we see thapdhty does something we don’t
believe was agreed.

A model for peer-to-peer agreements and electremiieties may be provided by
international law, which is constituted mainly efstoms and multilateral conventions.

Collaboration of distributed systems can only bkiexed if they all use certain
common mechanisms. For example, interprocess caoncation in a set of distributed
Java processes depends on all the processes ysidigranized methods. Such tacit
agreements constitute customs.

In law and society, many customs exist that arpaeted by all who want to be
considered reliable citizen. For example, if Alleads a book to Bob, Bob is supposed
to check back with Alice if she wants to lend itQarl. However in telephony Bob can
automatically forward to Carl a call from Alice Wwaut checking with her. So Alice
may find herself talking to Carl, although she niewe Carl on her incoming call
screening list. This is a well-know example of mation of telephony features that is
possible because of violation of a rule that islwederstood in society, but not so in
telephony.

Unequal agreements with network entities such agp&kwho dictates terms of
operation, may be similar to protectorates. Comsoduch as Apache, where
participants can collaborate in the evolution & flystem, are more similar to alliances.
In computing systems we can have multi-facetedasins where a user can be
simultaneously in many such agreements, again iogeathe possibility of
inconsistencies. People routinely click the ‘Accafptconditions’ box, happily no one
compares all such clauses that have been accepted.

Network entities will associate with other entitifteey can trust, and this will
establish societies of mutual trust. Concepts andawn of operations will be created in
these societies, some of which will slowly gaingmtence, thus enlarging the societies.
The concept of Web of Trust is an application @ ttea.

8. Useful conceptsand tools
8.1. Defeasible logic

We have seen that in some systems there are itpleta-rules by which some rules
take the priority. l.e. in firewalls, the rules tl@me first take the priority. This is not
justifiable in logic terms, because order has npdrtance in logic. Similarly, in legal
system all norms are equally valid unless otherwisd.

Defeasible logids a logic already well-known in Al and philosopbf/law. It is a
non-monotonic logic first proposed in [17]. It idves three types of propositions:

« Hard rules: these specify that a fact is alwayomsequence of another: all

packets from spammers.com must be refused.

« Defeasible rules: specify that a facttypically a consequence of another: all

packets from nuisance.com must be refused

« Defeaters: specify exceptions to defeasible rules: packets from

luigi@nuisance.commust be accepted.

Therefore, before applying a defeasible rule, itstmiobe checked for defeaters.
Defeasible logic provides a framework for specifyirxceptions and priorities.
Interestingly, it is difficult to find hard ruleshrinowadays’ legal systems, a fact that
creates a lot of work for lawyers and judges...

The closure norm can be seen as a defeasible toemists in the system, but can
be defeated by any other norm. It applies onlyafather norm applies. If defeasible
logic is not used, the closure norm can be contgduas the norm that applies when the
conjunction of the negation of the premises of @her norms is true, and this
conjunction may be very lengthy indeed.

10

8.2. Theorem Provers and Model Checkers

The commonality of concepts and issues leads tonanmmnality of automated tools
that can be used in this research area.

Theorem provers and model checkers can be usedot® gonsistency and
completeness, although they face computational texitp constraints and are
difficult to use. Alloy [8] provides a notation armdtool that seem to ease in part these
problems.

Both in IT and in law, such methods face differehtillenges of scale and of
precision. At analysis time, it must be decidedwdrat aspects the analysis should be
concentrated in order to make it feasible.

8.3.Tools for Ontologies

It was mentioned above that there is considerabtélasity of methods between

Jurisprudence and IT in the use of ontologies. dat,f OWL, the Web Ontology

Language for the Semantic Web, together with itdstds a common reference in both
areas [2, 11].

9. Conclusions

In the new era of e-commerce and agent societiess lencountering some of the
problems that have motivated Jurisprudence forgdhods of years. Increasingly, the
behavior of information systems is gaining legaévance. On the other hand, IT can
contribute to transform these problems by injectmgw dimensions, as well as
methods and tools for precision and for quick, etic decisions.

Similarities and relationships can be found indheas of architecture (the system
of legal institutions in Jurisprudence) and noringhis paper we have concentrated on
this second area.

We have argued that there are many principles inngon among different types
of normative systems, including IT and Jurisprudenthese common principles can
be studied in general terms and common methodst@oig can be developed. Our
classification of normative styles in Section 5 hlewed us to draw several parallels.

Acknowledgment. This research has been funded in part by the Hla8giences and
Engineering Research Council of Canada. | am irdke Guido Governatori of the
University of Queensland for contributing ideashwitetailed comments on an earlier
version of this paper, and for introducing me téedsible logic. As well, | am indebted
to my PhD student Waél Hassan for many discus@anglated topics. | would like to
dedicate this paper to the memory of Fritz Paradidawyer and scholar in Frankfurt
and Amsterdam, who wrote about normative conceppsagramming languages in the
1960s.

11

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Alchourron, C.E., Bulygin, ENormative SystemSpringer, 1971.

Casanovas, P., Biasiotti, M.A., Francesconi, Fgrigav.T. (Eds): Proc. of the
Workshop on Legal Ontologies and Atrtificial Intgkince Techniques (LOAIT
2007), June 2007.

Chiassoni, P.: A tale from two traditions: CivillaCommon law, and legal gaps.
Analisi e Diritto, 2006, 51-74.
http://www.giuri.unige.it/intro/dipist/digita/fildésti/analisi_2007accessed June
2007.

Conte, A.G. :Saggio sulla completezza degli ordinamenti giurid@iappichelli,
1962.

Elhag, A. A. O., Breuker, J. A. P. J., Brouwer,W. : On the formal analysis of
normative conflicts. Information & Communicationechnology Law, 9:3 (2000),
207-217.

Ferraiolo, D.F., Kuhn, D.R., Chandramouli, Role-based Access Contrdittech
House, 2003.

Gervasi, V., Zowghi, D.: Reasoning about inconsisiies in natural language
requirements. ACM Transactions on Software Engingeand Methodology,
14(3):277-330, July 2005.

Jackson, D.: Software Abstractions. MIT Press, 2006

Jones, A.J.l.,, Sergot, M.: On the characterisatibfaw and computer systems:
The normative systems perspective. Deontic Logic in Computer Science:
Normative System Specificatioh;J.C. Meyer and R.J. Wieringa (Eds), Wiley,
1993.

Kelsen, H..General Theory of Law and Statdarvard University Press, 1945.
Lacy, L.W.:OWL: Representing Information Using The Web Ontploanguage.
Trafford, 2005.

Lee, A. J., Boyer, J. P, Olson, L. E., and GuriierA.: Defeasible security policy
composition for web services. In Proc. of the FHouwkCM Workshop on Formal
Methods in Security (Alexandria, Virginia, USA, Member 03 - 03, 2006).
Mclver, W.J.: Software support for multilingual Isative drafting. CIRN
Conference and Colloquium, Oct. 2004.

Medjahed, B., Benatallah, B., Bouguettaya, A., NaL5.H., Elmagarmid, A.K.:
Business-to-business interactions: issues and iegabéchnologies. The Very
Large Data Base Journal (2003) 12: 59-85.

Meyer, J.J.C., Wieringa, R.J. (Eds.peontic Logic in Computer Science:
Normative System Specificatidiiley, 1993.

Nuseibeh, B., Easterbrook, S., Russo, A.: Makimgphsistency Respectable in
Software Development, Journal of Systems and Soéw&8(2):171-180, 2001.
Nute, D.: Defeasible logic. IHandbook of logic in artificial intelligence anddic
programming, volume:3Nonmonotonic reasoning and uncertain reasonibg; 3
395. Oxford University Press, 1994.

OASIS, Organization for the Advancement of Struetliinformation Standards.:
XACML, eXtensible Access Control Language. www.o0asis-
open.org/committees/xacndtcessed May 2007.

Paton, N.W. (Ed.)Active Rules in Database Syste®@pringer, 1999.

Pitt. J. (Ed.):Open Agent Societies: Normative Specifications ialtiMgent
SystemsWiley, 2004.

12

21.
22.

23.
24.

25.

Reiff-Marganiec, S., Ryan, M.DEeature Interactions in Telecommunications and
Software Systems VJIIOS Press, 2005.

Sartor, G.Legal Reasoning: A Cognitive Approach to the L&pringer, 2005.
Valente, A.:.Legal knowledge engineering: A modeling approd€ts Press, 1995.
van Kralingen, R.W., van den Herik, H.J., Pring.J., Sergot, M., Zeleznikow J.
(eds.): Legal Knowledge Based Systems: Foundatibregal knowledge systems.
Proc. of Jurix 2006, 10S Press, 2006.

Verheij, B., Hage, J.C., van den Herik, H. J.: Ategrated view on rules and
principles. Artificial Intelligence and Law, Vol. @998), No. 1, 3-26

13

