
FORMAL CONCEPTS OF 
IMPLEMENTATION AND 

TESTING



VIEWS OF IMPLEMENTATION 
(Brinksma, Scollo, van Steenbergen)

A) implementation as a synonym of the real/physical system that 
is the subject of conformance requirements and conformance 
testing [view not to be dealt with further - not formalizable].

B) implementation as a (deterministic) reduction of a given 
specification.  In this context specification and implementation 
are relative notions in a hierarchy of system descriptions, where 
one description is viewed as an implementation of another 
description, the specification, if the former results from the 
latter by resolving choices that were left open in that 
specification (consider reduction of non-determinism).

C) implementation as an extension of a given specification.  Again 
specification and implementation are to be regarded as relative 
notions in a hierarchy.  An implementation adds information 
that is consistent with the original specification.  Unlike 
refinement however, (proper) extension involves additional 
information about the observable behavior of the system 
described.  This notion is especially relevant in the context of 
partial specification (consider resolution of deadlocks).

D) implementation as a refinement of a given specification.  Also 
working with relative notions of implementation and 
specification, in this case an implementation provides more 
detail on the subdivision of the specification itself into smaller 
components.  Both descriptions are extensionally equivalent, 
i.e. their observable behavior cannot be distinguished.  The 
intension of both descriptions is not the same, as the 
implementation gives more details about the internal structure 
of the object of specification (see style transformations later in 
course).



Testing:  Checking correspondence 
implementation ↔ specification

Black-Box Testing vs. White-Box Testing:

In Black-Box Testing, one cannot assume any 
information on the structure of the system being 
tested (one works on the basis of the 
specification, which could have different 
structure from implementation).  In the case of 
protocol standards, this is called Conformance 
Testing.

In White-Box Testing, one can assume 
complete information of the internal structure of 
the system being tested.

We deal with Black-Box Testing.

Note that (in general) no finite number of finite 
tests applied on a black box will be able to 
ensure that the box implements the specification 
(this is a well-known results from automata 
theory).



SYNCHRONOUS TESTING

SPEC

TEST
CASES IMPLEM.

derive

derive

test process
will report “pass” or “fail”
for each test

Note however that much real testing is 
asynchronous, i.e. there are queues between
tester and implementation. 



The basic concepts of implementation and 
testing of non-deterministic processes go 
back to C.A.R. Hoare

This specifies a machine that may or 
may not give you tea, but will always 

give you coffee.

Thus the tea part is optional and 
does not need to be implemented.

∴ A tester for this machine won’t report 
failure if tea is not implemented.

coin

tea

coffee

i



Example:

Suppose we want to test an 
implementation of:

We need two testers:

Successive runs of the implementation must 
satisfy both.

a b

a band



Non-Deterministic Example:

The tester should be prepared for either 
possibility at each run, so tester is:

This example shows that, in the case of 
nondeterministic implementations, even 
repeated runs of the test may not be able to 
determine conformance. 

Note that applying a and b by themselves in turn will prove 
nothing because the tester can always decide to go the 
other way.

Testing nondeterministic processes is practicallly infeasible 
because it is the nondeterministic process that has the ini-
tiative and can refuse what the tester proposes.

The tested entity 
could go either way!a b

ii

a b



Note also that, strictly speaking, it is not 
sufficient to test acceptance; it is also 
necessary to test refusals (robustness 
testing)

E.g. for LTS

It is not sufficient to test that it accepts 
25¢; coffee 

it should also be tested that it refuses 10¢ at 
beginning, 25¢ after 25¢, everything after 
coffee.

The testing theory presented 
here does not consider 

robustness tests.

25¢

coffee



Basic Notation

Where P, P’ are behaviors,  a ∈  L, σ ∈  L*  

P, Q trace equivalent:  Tr(P) = Tr(Q)

The empty set ∅  will be written {}

P σ=  ⇒   =def    P’ P∃ σ P’⇒=

P a=  ⇒ P’ P∃ a P’⇒= =

P after σ P’ P σ= P′⇒{ }=

Tr P( ) σ P σ=  ⇒{ }=



Refusal sets are sets of sets of actions

Ref(P,σ) =def
{X ⊆  L | ∃  P’ ∈  P after σ,

such that ¬(P’=a⇒) , ∀  a ∈  X}

A set X ⊆  L belongs to Ref(P,σ) iff P may 
engage in trace σ and, after doing so, refuse 
every event in set X

Understand well this definition!

Note: Ref(P,σ) = {}  if σ ∉  Tr(P)

Observe difference w.r.t. Ref(P,σ) = {{} }
                (nothing is refused)



Refusal Trees:

Note:  all subsets are included (e.g. {}) but 
not shown usually

a

b

a b

a a

b c

a i

b

i i

a b

LTS REF.TREE

a

{{b}}

{{a}}

b {{a,b}} in fact
{{},{a},{b},{a,b}}

{{}}
a b

{{a,b}} {{a,b}}

{{b,c}}

a {{a,b},{a,c}}
b c

{{a}}
a b

{{a},{b}}
a b



Notes on refusal trees

An action can show both in the refusal set 
for a node, and in the label of an edge 
outgoing that node.

This means that the action can be refused, 
depending on a non-deterministic choice

Note that this implies that a behavior tree can be obtained 
from a refusal tree.

a i

b

{{a}}
a b

i i

a b

{{a},{b}}
a b

BEH. TREE REF. TREE
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 more complicated example

Ref(S,ε) = {{},{b},{c},{b,c}}
Ref(S,a) = {{},{a},{b},{c},{a,b},{a,c}}

For simplicity, only maximal sets are shown 
usually, so we can say

Ref(S,ε) = {{b,c}}
Ref(S,a) = {{a,b},{a,c}}

a i

b

{{b,c}}

a {{a,b},{a,c}}
b c

a

i

c

b

S

L = {a,b,c}

←Note that b and c can 
be both refused and 
accepted.  Not so a.

=
>



The conformance relation tries to capture 
the concept of implementation of a 
specification

• An implementation may not involve some 
options (actions which can be refused) so 
it can be a reduction of a specification

  e.g. a specification of a coffee machine that may or may 
not give tea can be implemented by omitting tea 
altogether: reduction

• An implementation can resolve some 
deadlocks, by adding transitions 
(extension)

e.g. a specification of a phone system may state that it is 
not possible to dial before offhook

(->refusal = deadlock)
an implementation may resolve the deadlock by saying 
that such a dial will cause the system to return to initial 
state:  extension.

(deadlock as abstraction from implementation details)



The conformance relation

I conf S =def ∀  σ ∈  Tr(I) ∩ Tr(S) (for all common traces σ)

Ref(I, σ) ⊆  Ref(S, σ) (not symmetric)

so I conf S iff, placed in an environment whose traces are 
limited to those common to I and S, I can only deadlock 
when S can.  (I will deadlock in fewer cases)

Refusal trees:

Tr(I) ∩ Tr(S) = {ε, a}
Ref(I,ε) = {b,c}  ⊆   Ref(S,ε) = {b,c}
Ref(I,a) = {a,c}  ⊆   Ref(S,a) = {a,b,c}

so I conf S

i b

a c

a

b

I Se.g.

L = {a,b,c}

a b

{a,b,c} c

{b,c}

{a,b}

{a,b,c}

{b,c}

{a,c}

{a,b,c}

a

b



The conformance relation is unfortunately 
not transitive - nor symmetric

(it is not an equivalence, nor a preorder)

check these!

conf becomes transitive for sets of 
processes with the same tace sets.
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The reduction relation

I red S iff
(i) Tr(I) ⊆  Tr(S)
(ii) I conf S
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Hierarchies of reductions

b and c are options

c i
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The extension relation
I ext S iff

(i) Tr(I) ⊇  Tr(S)
(ii) I conf S

Theorem: conf = red ext
(a conf is the red of an ext)



There are interesting relationships between 
these relations, e.g.

red = ext = conf 
for processes with equal trace sets

P1 te P2 iff   P1 red P2 and P2 red P1
                      P1 ext P2 and P2 ext P1
                      P1 conf P2 and P2 conf P1 (*)

te = red ∩ red-1

= ext ∩ ext-1

= conf ∩ conf-1 (*)

 (*) true only for processes with equal trace sets, because 
otherwise conf is not transitive



The LOTOS Flower
 

(Note: true  for conf only for processes with equal trace
sets)

red -1ex
t

ex
t-
1

conf conf-1

red

te



red and ext are reflexive, transitive

Also:   ≈ ⊂  te

i.e. weak bisim. eq. implies testing eq..

(∴ non te implies non wbe)

(try to prove this...)



Canonical Tester (E. Brinksma)

T is a canonical tester of S iff (def.):
(i) Tr(T) = Tr(S)
(ii) ∀  I : I conf S iff 

∀ σ ∈  L*,
 I || T=σ⇒  stop
implies T=σ⇒  stop

(i.e. the composition of the tester T and any 
given process I can reach a deadlock before 
T stops iff I does not conform to spec S)

i i
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are mutal c.t. are also mutual c.t.

etc.



Example

This conforms to S.
It passes the tester T

This does not conform to S.  
It hangs up with T on right 

branch.
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A CONSTRUCTIVE DEFINITION OF 
CANONICAL TESTER ( G. LEDUC)

The following alternative definition of 
canonical tester is a bit of a brain-twister, but 
it implies an algorithm for constructing it.

T(S) is defined thus:

(i) Tr(T(S)) = Tr(S)

(ii) ∀ σ ∈  Tr(S), ∀  A ⊆  L, we have:

A ∈  Ref(T(S),σ) iff
(L ∈  Ref(S,σ) ⇔ L-A ∈  Ref(S,σ))

It constructs the refusal tree of the canonical 
tester.

Try it!

Recall: L = set of all labels (obs. actions)
L ∈  Ref(S,σ) = σ leads to deadlock



Example 

Here is a small example of use of the ’constructive’ definition of canonical tester.

Let’s take  S= i;a;stop [] i;b;stop
L = {a,b}, Tr(S) = {ε, a, b}

The set of all subsets A of L is {{} ,{a},{b},{a,b}}
Ref(S,ε) ={{} ,{a},{b}}     
Ref(S,a) = Ref(S,b) = {{} , {a},{b},{a,b}}

What is the refusal set of T(S) after ε?
Applying the definition systematically:
{} ∈  Ref(T(S),ε) iff {a,b} ∈ Ref(S,ε) <=> {a,b} ∈  Ref(S,ε)

The RHS of the iff reduces to True (False <=> False)
so {} ∈  Ref(T(S))

{a} ∈  Ref(T(S),ε) iff {a,b} ∈  Ref(S,ε) <=> {b} ∈  Ref(S,ε)
           The RHS is False (False <=> True), so {a} is not ...

{b}  etc. is similar

{a,b} ∈  Ref(T(S),ε) iff {a,b} ∈  Ref(S,ε) <=> {} ∈  Ref(S,ε) 
             RHS is False (False <=> True), so...

The rest is similar, for one last example let’s try
{a} ∈  Ref(T(S),a) iff {a,b} ∈  Ref(S,a) <=> {b} ∈  Ref(S,a)
          RHS is True, so {a} is in.

So T(S) is a;stop [] b;stop



The set of testers is the set of all possible 
reductions of a C.T. It includes the C.T. itself. 
Basic testers cannot be reduced.

E.g.

The testing of an implementation I of S will 
involve applying the test cases to I, and 
looking for premature deadlocks.

(if I can be nondeterministic, test cases will 
have to be applied repeatedly and we know 
that no number of tests can assure 
conformance)

i i

a b

a
a b b

S

C.T.
Basic tests
of implems.

of S



Why introduce the concept of tester and not 
always use directly the CT as tester?  

Because the CT can contain 
nondeterminism, while one would like 
testing to be a deterministic process. 

By reducing the nondeterminism in a CT, 
one obtains a set of deterministic tests 
which then can be applied in sequence by a 
test harness.



Extension to LTS

This method can be extended to LTSs
(with appropriate changes in the defs)

The only conditions is that there should be 
no loops of i, because then we can no 
longer compute refusals finitely

Loops of internal actions should be removed 
first by using congruence laws.

(this is always possible; see Milner 1989, p.148 
and 167)

i

i

a

b

b
i b
i b

a
Note the 
infinite 
sequence 
of i

=



Problematic aspects of Conf

∀  I, I conf stop (anything conforms to stop)

∀  I, stop conf I is false because of the 
empty trace in stop

However, for any S, one can construct easily 
an I such that I conf S.

E.g. if L = {a,b,c}, such an I is

Is conf too loose?

This suggests that the extension process 
needs constraints, otherwise anything can 
be added.

Note:
I never deadlocks!

a
b
c



Counterintuitive Example 1   
              Suppose we have a coffee dispenser in which you have to insert 
two coins before collecting a cup of coffee.  However, you should not insert 
the second coin too quickly, or you are left with nothing.  This dispenser 
can be modeled by:

Now take the following machine in which you insert two coins and get nothing:

Rather surprisingly, B2 red B1 .   With B2, no matter how long you wait before 
entering the second coin, you will never get coffee, and still it is considered a valid 
implementation of B1!  This anomaly results from the assumption that an internal 
event will eventually occur.

B2 red B1:

      because B2 can only engage in traces that are possible for B1 and 

only refuse actions that are refused by B1

B1  =
coin

 i

 coffee

coin

coin

coin

coin

B2  =



Counterintuitive Example 2

     Consider this coffee and tea dispenser:

Suppose you want to drink coffee.  First insert a coin, then try the coffee button.  If 
it won’t work, hit the machine, and try again:  this time you will be successful.  So 
with this dispenser you can always get what you want.  Now consider this dispen-
ser:

Obviously, with this dispenser the above procedure will not always work:  it might 
happen that you will have to settle for tea, even if coffee is what you want.  Howe-
ver, it turns out that   B1 te B2 .  So testing equivalence identifies the two processes, 

whereas intuitively they display a different behavior.

Note that B1 /≈ B2 suggesting that in this case w.b.e. is not too strong. 

coin

bang

coin

bang

coffee                                  tea

    tea                                   coffee         

B1 =

coin

coffee

bang

coin

bang

tea

     tea                                  coffee

B2 =



LOTOS testing theory is a nice formalization of what it 
means to test a nondeterministic system, something which 
perhaps is done less well in testing theory based on Finite 
State Machines.

However it has conceptual problems and it does not deal 
well with the ‘stimulus-response’ concepts which are at the 
basis of much testing practice. Also it does not deal with 
asynchronous testing.

Recent research has been addressing these problems. 
One way to solve the first problem is to add the concept of 
‘direction’ of actions (whether they are initiated by the env’t 
or by the system).

Useful applications of this theory were found to the area of 
design: 

• development of a detailed design from an abstract 
design

• testing of conformance of a design w.r.t. requirements


