
Equality and Expansion

THE IDEA OF THE EXPANSION LAWS

Let us see a behavior expression as a syntactic tree having
operators as nodes:

The expansion laws allow to transform this behavior
expression into another one where [] is the top operator:

By doing this repeatedly, one can push down all operators
different from ‘[]’ and ‘;’. It is possible that at the end we
obtain a fully expanded expression, or the process can run
forever.

|||

|[G]|

a;b;stop

>>

c;d;Q d;e;exit a;b;stop

[]

Example for the ||| operator:

assume that B and C are already part. expanded, e.g.

the expansion law for ||| is applied:

|||

B C

|||

[] []

B1 B2 B3

b1 b2 b3 c1 c2

C1 C2...

CB

...

[]

b1 b2 b3 c1 c2

B1|||C B2|||C B3|||C B|||C1 B|||C2... ...

SOME BASIC EQUALITIES AND NOTATION FOR []

B1 [] B2 = B2 [] B1
B1 [] (B2 [] B3) = (B1 [] B2) [] B3
B1 [] stop = stop [] B1 = B

These can be proven on the basis of the inference rules.
As a consequence of the second one, we can write

B1 [] B2 [] B3...

without brackets. In fact, as a consequence of the first two,
the following notation can be used:

Notation: [] will be the prefix n-ary [] operator over sets of

beh.expr., similar to ∑ for +, i.e.

[]{B1,...,Bn} = B1[] ... [] Bn.

Then stop =def []{} [{} : empty set of beh.exp.]

Also, []{B1,...,Bm} [] []{C1,...,Cn} = []{B1,...,Bm,C1,...,Cn}

Expansion Laws

The expansion laws are the algebraic counterpart of the
inference rules. They exist for each operator, except of
course [] and ; They can be proven as theorems from the
inference rules.

Theorem (simplified expansion of |||).
Let B= []{bk;Bk | k∈K} and C= []{cj; Cj | j∈J}.

Then B|||C = []{bk;(Bk|||C) | k∈K}

 [] []{cj;(B|||Cj) | j∈J}
Proof.
By the inference rules all derivations from B are of the form
B-bk->Bk (k∈K) and similarly for those from C. Then all der-
ivations from B|||C will be of the form
B|||C-bk->Bk|||C (k∈K) or B|||C-cj->B|||Cj (j∈J).
These two sets of derivations are exactly those of
[]{bk;(Bk|||C) | k∈K} [] []{cj;(B|||Cj) | j∈J}

B|[G]|C

Expansion of Parallel Composition (general case):

if B = [] {bk; Bk | k ∈ K} [] [] {exitn | n ∈ N}

C = [] {cm; Cm | m ∈ M} [] [] {exitj | j ∈ J}

then B|[G]|C =
 [] {g; (Bk |[G]| Cm) | ∃k∈K m∈M g∈G, bk=cm=g≠i}

[][] {bk; (Bk |[G]| C) | ∃k∈K bk∉G or bk=i}

[][] {cm; (B |[G]| Cm) | ∃m∈M cm∉G or cm=i}

 [][] {exit | n∈N, j∈J}

Note: the last alternative means that exits must ‘pair up’
from the two sides in some way, i.e.

exit |[G]| exit = exit
and

exit |[G]| []{} = []{} |[G]| exit = []{}
because none of the alternatives is possible.

Other Equality Laws for |[]|
(can be proven on the basis of the expansion laws)

B1 |[G]| B2 = B2 |[G]| B1

B1 |[G]| (B2 |[G]| B3) = (B1 |[G]| B2) |[G]| B3

Note: B || stop = stop unfortunately false if B has internal
actions as initials.

B1 ||| B2 = B1|[{}]| B2 [where {} is the empty set of gates]

For a beh. expr. B, let L(B) be the set of gates (labels) in B

B1 |[G]| B2 = B1 |[G’]| B2
 if G ∩ (L(B1)∪L(B2)) = G’ ∩ (L(B1)∪L(B2))

B1 |[G]| B2 = B1 || B2 if (L(B1) ∪�����������L(B2)) ⊆ G

B |[G]| stop = B if (G U δ) ⊄ L(B)
 so B ||| stop = B if B does not exit

B [> C

Expansion of Disable:

if B≠exit and B = [] {bk; Bk | k ∈ K}

 then B [> C = [] {bk; (Bk [> C) | k∈K} [] C

exit [> C = exit [] C

Other equality laws for [>:

stop [> C = C immediately by the expansion and def of stop

B [> stop = B by recursive argument because C= stop

(B1 [> B2) [] B2 = B1 [> B2
(B1 [> B2) [> B3 = B1 [> (B2 [> B3)

B >> C

Expansion of Enable:

if B = [] {bk; Bk | k ∈ K} [] [] {exitn | n ∈ N}

then B >> C =
 [] {bk; (Bk >> C) | k ∈ K }

 [] [] { i ; C | n ∈ N}

Other equality laws for >>:

stop >> C = stop
exit >> C = i; C
(B1 >> B2) >> B3 = B1 (B2 >> B3)
B >> stop = B ||| stop if B does not exit

hide G in B

Expansion of hiding:

if B = [] {bk; Bk | k ∈ K} [] [] {exitn | n ∈ N}

then hide G in B =
[] {bk; hide G in Bk | bk∉G and k ∈ K}

 [] [] { i ; hide G in Bk | bk∈G and k ∈ K}

 [] [] {exitn | n ∈ N}

Other equality laws for hide:
G, A, A’, A” are sets of gates

hide G in stop = stop
hide A in B = hide A’ in B if A ∩ L(B) = A’ ∩ L(B)
hide A in B = B if A ∩ L(B) = {}
hide A in g; G = g; hide A in G if g ∉ A
hide A in B1 [] B2 = (hide A in B1) [] (hide A in B2)
 similar for >> and [>
hide A in B1 |[A’]| B2 = (hide A in B1) |[A’]| (hide A in B2)
 if A∩A’ = {}
hide A in hide A’ in B = hide A’’ in B, if A’’ = A∪A’

B[S]

Let B[S] be a relabeling, and S(g) be a renaming function
on gates.

Expansion of Process Instantiation:

if B[G] = [] {bk; Bk | k ∈ K} [] [] {exitn | n ∈ N}

 then B[S] = (S(bk); Bk[S] | k ∈ K} [] [] {exitn | n ∈ N}

In general, note that if S is one-to-one, for each beh. expr.
B it holds that B[S] = B’, where B’ is the result of substitut-
ing S(a) for a everywhere in B - in other words, in this case,
instantiation-time renaming produces the same results as
action-by-action relabeling as defined by the inference
rules (examples to the contrary involve many-one relabel-
ings).

Equality laws for relabelling:

S(stop) = stop

S(exit) = exit

S(a; B) = S(a); S(B)

S(B1[] B2) = S(B1) [] S(B2), same for >> and [>

S(B1|[G]|B2) = S(B1) |[S(G)]| S(B2) if S is one-to-one

S1(S2(B)) = S1.S2(B) where . is the composition of maps

INFERENCE RULES VS EXPANSION RULES
Milner’s fundamental contribution was to invent a concur-
rent language (CCS) which was executable, and in which
at the same time several useful algebraic properties held.

The expansion theorems are the algebraic counterpart of
the inference rules.

They can be proven by induction from the inference rules.

An algebraic language such as LOTOS could be defined by
giving the expansion rules first, as axioms. The inference
rules could then be derived as ‘programs’ for calculating
the expansion. ACP, the Algebra of Communicating Pro-
cesses, was defined in this way.

Therefore, in LOTOS and similar languages an execution is
a proof: The LTS of a process can be identified with the
expansion of the process.

If, by applying the inference rules on beh. expr. B, one gets
an LTS T, and if we know that B’ is another behavior
expression whose LTS is also T, then we have a proof that
B=B’.

More simply, if by executing inference rules on B we can
derive a sequence of actions s, then we have a proof that s
is some initial part of a branch of the expansion of B.

