
Semantics of
LOTOS operators

Main LOTOS operators

(operators are used to combine actions and behavior expressions
into more complex b.ex.)
(let a, a1, a2,.. be actions, and B, B1, B2... be behavior expres-
sions).

a; B: the action prefix operator “;” means that action a is
offered and then actions from behavior B are offered.

B1 [] B2: the choice operator means that the next action can
be obtained either from B1 or from B2. The other behavior is
discarded.

B1 ||| B2: the interleaving operator means that at any point
actions from B1 or from B2 can be offered.

B1 || B2: the full synchronization parallel operator means
that every action must be a common action from B1 and B2. At
each step, if such an action exists, it is offered (synchronization)
and then the next common action must be obtained similalry and
so on.

B1 |[a1, a2,... an]| B2: the general parallel operator is a gen-
eralization of the full synchronization and interleave operators. It
means that on actions a1,...,an, B1 and B2 must synchronize; on
other actions B1 and B2 interleave.

B1 [> B2: the disable operator means that at any time during
the execution of B1, B2 can take over, thus terminating B1.

B1 >> B2: the enable operator means that provided that B1
has completed successfully (exit), B2 can start offering actions.

hide a in B: it internalizes actions a occurring in B.

INFERENCE RULES

LOTOS operational (=dynamic) semantics is expressed in terms
of inference rules of the general form

B1 -a1-> B1’ B2 -a2-> B2’ ...
--

C -b-> C’

Meaning:

If behavior expression B1 can transform to B1’ by execution of
action a1 and B2 can transform to B2’ by action a2 etc. ...

Then behavior expression C can transform to C’ by execution
of action b

There are also inference axioms, meaning that certain actions
can occur unconditionally in certain situations (empty premiss).

Note: for non-internal actions, execution is synonim with syn-
chronization with environment on the action.

Inference rules are becoming one of the standard forms of ex-
pressing the operational semantics of computer languages.

The idea of using inference rules in this way is due to Plotkin.
It was applied to process algebras by Milner, and Hennessy
wrote a whole book about it.

The Inference Rule for the ; (action prefix) operator is

a simple Inference Axiom:

Meaning:

when action a is executed in behavior a ; B
then what remains to be done is B.

Note: in order for action a to be executed, the environment must
participate in it (= synchronize with it)

E.G. : given the behavior expression: coin; coffee; stop

There is no inference rule for stop so execution ends.

The behavior expression has resulted in the trace

coin coffee

by applying twice the inference axiom for the action prefix oper-
ator

a ; B a B

coin ; coffee ; stop

coin coffee ; stop

coffee stop

(we call these
derivations)

coin; coffee; stop

coffee; stop

stop

coin

coffee

There is a direct relationship between inference rules and
behavior trees.

One can think that the arrow shown in the inference rule
is also the arrow shown in the behavior tree.

CHOICE: B1 [] B2

where B1 and B2 are behavior expressions.

Example:

A phone station can be represented as a choice between two be-
haviors:

 off_hook ; tone ; dial ; talk ; stop

 []

 ring ; answer ; talk ; stop

The first behavior is a call initiator.
The second behavior is a call responder.

The environment and the station together determine the behav-
ior of the phone station, by cooperating on the first action of one
of the two choices.

In order to obtain the set of all possible initial actions from this
behavior expression, we have to apply the inference rules on
both behaviors B1 and B2 individually.

We then find action prefix operators yielding:

 off_hook and ring as the two possible first actions.

Different behaviors will result from each of these choices.

Simplified Inference Rule:

 B1 - a1-> B’1

 B1 [] B2 - a1-> B’1

 B2 - a2-> B’2

 B1 [] B2 - a2-> B’2

When it has been determined which first action to execute, the
remaining next possible actions can only be the actions of the
resulting behavior.

 Suppose B1 = a1; B’ 1

If action a1 is selected, the next action will have to come from
behavior expression B’1.

Selecting the first action of B2 (suppose it is a2) will result in
next actions coming from B’2 .

If neither B1 nor B2 is stop, then they must be of the form ai ;
B’ i and we say that

B1 [] B2 can be expanded as a1 ; B’1 [] a2 ; B’2

and also that the following derivations are possible:

 a1 ; B’1 [] a2 ; B’2 - a1 -> B’1

or a1 ; B’1 [] a2 ; B’2 - a2 -> B’2

Obviously, if either B1 or B2 is stop (i.e. it has no action), the ac-
tion will have to come from the other behavior:

B1 [] stop = B1
stop [] B2 = B2

so only one of the two derivations above is possible.

For example, in

 off_hook ; tone ; dial ; talk ; stop (B1)

 []

 ring ; answer ; talk ; stop (B2)

it is possible to use either inference rule

B1 - off_hook-> (tone ; dial ; talk ; stop)
--
B1 [] B2 -off_hook -> (tone ; dial ; talk ; stop)

or

B2 - ring -> (answer ; talk ; stop)
--
B1 [] B2 - ring -> (answer ; talk ; stop)

The environment and the process decide together which infer-
ence rule is executed by synchronizing on off_hook or ring .

In terms of behavior trees...

 off_hook ; tone ; dial ; talk ; stop

 []

 ring ; answer ; talk ; stop

tone ; dial ; talk ; stop answer ; talk ; stop

dial ; talk ; stop talk ; stop

talk ; stop stop

 off_hook ring

stop

 tone

talk

dial

answer

talk

NONDETERMINISM

coin ; chocolate ; stop

[]

coin ; candy ; stop

If the environment offers coin, either inference rule
can be applied.

The process must decide which way to go.

How?

The specification does not say

Nondeterminism is a powerful specification concept:

It means that at the specification level,
we don’t care how the choice is handled.

i can be used to model nondeterminism:

 off_hook ;
 (tone ; ...

 []

 i ; line_down ; stop
)

user can get either tone or silence depending on an internal
event.

One can say that line_down has priority, in the sense that if the
env’t proposes it, it will occur.

But if the env’t proposes tone after the process has decided to do
the internal action, tone will be refused.

NONDETERMINISM IN LOTOS

Nondeterminism occurs when at some point, considering what
the environment and the process offer, several inference rules are
applicable.

i can be executed without participation of the env’t and will be ex-
ecuted eventually if it is the only possible choice (the inference
rules will stop only when none is applicable).

Note that i can either be specified explicitly, or arise from the ex-
ecution of hidden actions.

Can we consider that the first and last case are equivalent?
We shall see...

will always accept coin
but subsequently will accept
only one of choc or coffee,
dep. on nondetermin. choice

after coin will always accept
coffee, may or may not accept
choc, depending on whether
it decides to do i

after coin may or may not
accept coffee or choc,
dep. on nondet. choice

 coin; coffee; stop
[] coin; choc; stop

coin;
 (i; coffee; stop
[] choc; stop)

coin;
 (i; coffee; stop
 [] i; choc; stop}

INTERLEAVED PARALLELISM: |||

B1 ||| B2

example:
 the behavior of two phone stations placing a call

 phone_one_off_hook ;
 phone_one_tone ;
 phone_one_dial ;
 phone_one_talk ;
 stop

 |||

 phone_two_off_hook ;
 phone_two_tone ;
 phone_two_dial ;
 phone_two_talk ;
 stop

Each phone behaves totally independently from the other.
This means the actions of the two phones can mutually inter-
leave in all possible ways.

INTERLEAVE EXPANSION

This is a partial expansion of the interleaved expression.

 phone_one_off_hook ;
 (phone_one_tone ;
 (phone_one_dial ;
 []
 phone_two_off_hook ;
)
 []
 phone_two_off_hook ;
 (phone_one_tone ;
 []
 phone_two_tone ;
)
)
 []

 phone_two_off_hook ;
 (phone_two_tone ;
 (phone_two_dial ;
 []
 phone_one_off_hook ;
)
 []
 phone_one_off_hook ;
 (phone_two_tone ;
 []
 phone_one_tone ;
)
)

 INTERLEAVE OPERATOR
SIMPLIFIED INFERENCE RULES

 B1 - a1-> B’1

 B1 ||| B2 - a1 -> B’1 ||| B2

 B2 - a2 -> B’2

 B1 ||| B2 - a2 -> B1 ||| B’2

In short: when one selects an action from one behavior
 the whole other behavior is still active.

Note the difference w.r.t. the choice operator [] .

The choice operator [] implies comitment to the chosen
branch.

The interleave operator ||| implies that it is always possible to
take an action from any of the participating processes.

(We are ignoring synchro. on exit: see later)

DEPENDENT PARALLELISM: ||

B1 || B2

Every visible action of B1 has to synchronize with a visible ac-
tion in B2. Each of B1 and B2 acts as the env’t of the other.

Example: a phone station and its controller.

 off_hook ;
 (
 tone ; dial ; talk ; stop
 []
 dial ; tone ; talk ; stop
)

 ||

 offhook ; tone ; dial ; talk ; stop

No call can be placed before the controller has received
an off_hook signal from the station. Then the user has
to wait for a dial tone before dialing.

The second choice of user behavior will not synchronize with
what the controller is expecting.
The result of this behavior expression is:

 offhook ; tone ; dial ; talk ; stop

Note how the choice has been resolved by the second process.

INTERNAL ACTION i

Internal actions denote internal events of the system.
Are not visible.

 a ; i ; b ; stop
 ||
 a ; b ; stop

a and b will synchronize because i, being an internal action,does
not need to synchronize

DEPENDENT PARALLELISM
SIMPLIFIED INFERENCE RULES

 B1 - a -> B’1 B2 - a -> B’2
 -- a≠i
 B1 || B2 - a -> B’1 || B’2

Each action of one process must match (= synchronize with) a
corresponding action in the other process.

After matching, both processes go to their next behavior
expression.

(for simplification, we are ignoring synchronization on exit,
also there is nothing that says that a process can independently
offer internal actions - see later)

DEADLOCK

Deadlock is expressed in LOTOS as stop

It corresponds to the case when no "next action" is
possible.
 i.e., no inference rule can be applied.

e.g.

 off_hook ;
 (
 tone ; dial ; talk ; stop
 []
 dial; tone ; talk ; stop
)
 ||
 off_hook; tone; onhook ; offhook ; tone ; dial ; talk;
 stop

 is equivalent to:

 off_hook ; tone ; stop (= DEADLOCK)

a simpler example:

 a; b; stop || c; b; stop = stop

If there are inference rules that can be executed, there is no
deadlock

a; b; stop [] c; d; stop

||

c; d; stop

this is equivalent to c;d; stop

a; b; stop [] c; d; stop

||

c; d; stop [] d; f; stop

this is also equivalent to c; d; stop

However there is no "look-ahead’ and premature deadlock can
result later:

a; b; stop [] a; c; stop

||

a; b; stop

this is equivalent to a; b; stop [] a; stop

In other words, the environment can interact successfully with
P||Q iff the sequence of events it provides satisfies both P and Q

This is the main idea of constraint-oriented specification in
LOTOS.

It comes from Hoare’s CSP.

Examples involving nondeterminism

a; stop || (i; a; stop [] i; b; stop) = i; a; stop [] i; stop

(a; stop [] i; b; stop) || (a; stop [] i; b; stop) =
 a; stop [] i; i; b; stop [] i; i; b; stop

as we’ll see later, this can be simplified to
a; stop [] i; i; b; stop

and further to
a; stop [] i; b; stop

AND UNFORTUNATELY (perhaps)

 a; b; stop [] a; c; stop
 ||
 a; b; stop [] a; c; stop

expands to

 a; b; stop [] a; stop [] a; stop [] a; c; stop

which can be simplified to

 a; b; stop [] a; stop [] a; c; stop

meaning that, in the presence of certain kinds of nondetermin-
ism, A||A ≠ A (|| is not like a logical AND operator)

GENERAL PARALLEL COMPOSITION:
|[g1, g2]|

In

P|[g1, g2]| Q

P and Q must synchronize on gates g1and g2,
interleave on all others.

Example:

(a; b; stop [] c; d; stop) |[a,b]| (a; b; stop [] d; f; stop)

=

a; b; stop [] (c; d; stop ||| d; f; stop)

=

a; b; stop []
(c;(d;d;f;stop [] d;(d;f;stop [] f;d;stop)) []

d;(c;(d;f;stop [] f;d;stop)[] f;c;d;stop))

PARTIAL SYNCHRONIZATION

 | [g1, . . . , gn] |

 | [a, d, g] |

 (synchronize on a,d,g
 interleave on all others)

 NOTE: IF THERE IS CHOICE, POSSIBILITIES RESULTING
 IN "STOP" ARE DISCARDED.

a g
 d

 i j b f

 c e

 d d

c e

b f

a g

a g

a g

b f

c e

GENERALIZED PARALLEL
COMPOSITION: |[g 1,...,gn]|

B1 |[g1,..,gn]| B2

Processes B1 and B2 must synchronize on actions that appear
in the action list [g1,...,gn] but interleave on the remaining ac-
tions.

For example a controller process is in parallel with a call initi-
ator phone and a call responder phone. Normally it will interact
with both phones in various sequences but not at the same time.

This is the high level behavior of a primitive phone system:

 call_initiator_phone[...]

 |[conreq, conconf,connect_initiator]|

 controller[...]

 |[ring,connect,connect_responder]|

 call_responder_phone[...]

The controller will "talk" and agree with both phones on different actions

The controller expects to agree with the call initiator on a connection request ac-
tion (conreq)

 it will then turn to the call responder side and expects to agree on a ring

 it will then eventually agree on connecting the responder and confirming the con-
nection to the initiator.

 call_initiator[...] |[conreq, conconf]|

 controller[...] |[ring,connect]|

 call_responder [...]

where

 process call_initiator [...]:noexit:=

 off_hook ; tone ; dial ; conreq ; conconf ; talk1 ; stop

 endproc

 process controller[...]:noexit:=

 conreq ; ring ; connect ; conconf ; stop

 endproc

 process call_responder [...]:noexit:=

 ring ; answer ; connect ; talk2 ; stop

 endproc

 call_initiator[...] |[conreq, conconf]|

 controller[...] |[ring,connect]|

 call_responder [...]

where

 process call_initiator [...]:noexit:=

 off_hook ; tone ; dial ; conreq ; conconf ; talk1 ; stop

 endproc

 process controller[...]:noexit:=

 conreq ; ring ; connect ; conconf ; stop

 endproc

 process call_responder [...]:noexit:=

 ring ; answer ; connect ; talk2 ; stop

 endproc

Applying the inference rules will result in the following se-
quence of actions:

off_hook, tone, dial : by the call initiator because they are the
only initially independent actions

conreq: is the first action on which both the call initiator and the
controller have to agree on in order to mutually proceed.

ring: is the next common action controller / responder
answer: the only action that can be executed independently after

ring
connect follows for similar reasons
talk 2 or conconf are equally possible afterwards

The ordering of actions is given explicitly by this expansion:

 off_hook ; tone ; dial ;
 conreq ; ring ; answer ; connect ;
 (conconf ;
 (
 talk2 ; talk1 ; stop
 []
 talk1 ; talk2 ; stop
)
 []
 talk2 ; conconf ; talk1 ; stop
)

NOTE: the design error, which is hidden in the parallel com-
position, shows up explicitly in the expansion.

An expanded specification such as this one is said to be in
’monolithic’ style, while a specificaton such as the one pre-
sented earlier, showing a set of communicating components, is
said to be in ’resource-oriented’ style.

Resource-oriented specs have architectural meaning, while
monolithic ones emphasize action sequences.

MESSAGE SEQUENCE CHART

diagram showing independent actions and synchronizations

off_hook

tone

dial conreq

 answer

connect

talkcon_conf

talk

call initiator controller call responder

ring

Following CSP (and unlike CCS) LOTOS adopts a multi-way
synchronization concept.

In order for an action to be executed, all behaviors that share
that action by virtue of the parallel composition operator (and
for which the action is not hidden, see later) must simultaneous-
ly participate in the action.

(a major consequence is the possibility of the constraint-orient-
ed style in LOTOS)

SPECIFYING PARTIAL ORDERING

BETWEEN EVENTS

a > d and b > d and c > d (> : precedes)

(NOTE: NO ORDER SPECIFIED BETWEEN a, b, c)

WE CAN SPECIFY THIS BY:

 a; (b;c;d;stop [] c;b;d;stop)
 [] b; (a;c;d;stop [] c;a;d;stop)
 [] c; (a;b;d;stop [] b;a;d;stop)

OR, EQUIVALENTLY, BY THREE PARALLEL
PROCESSES SYNCHRONIZING ON d

 (a; d; stop) | [d] | (b; d; stop) | [d] | (c; d; stop)

(PROCESSES:
 INTERLEAVE W.R.T. a, b, c
 SYNCHRONIZE W.R.T. d)

e.g. a d b impossible WHY?

 NOTE THE MULTI-WAY SYNCHRONIZATION

Note that identical actions in parallel processes which are not in
the synchronization set interleave:

 a; b; c; stop |[b]| a; b; d; stop

expansion:

 a; a; b; (c; d; stop [] d; c; stop)
 []
 a; a; b; (c; d; stop [] d; c; stop)

or

 a; a; b; (c; d; stop [] d; c; stop)

 SIMPLIFIED GENERAL PARALLELISM
 INFERENCE RULES

 B1 -a-> B’1 B2 -a-> B’2
--if a∈ {g1,...,gn}
 B1 |[g1,...,gn]| B2 -a-> B’1 |[g1,...,gn]| B2’

 B1 -a1-> B’1
-- if a1 ∉ {g1,...,gn}
 B1 |[g1,...,gn]| B2 -a1-> B’1 |[g1,...,gn]| B2

 B2 - a2 -> B’2
 --- if a2 ∉ {g1,...,gn}
 B1 |[g1,...,gn]| B2 - a2 -> B1 |[g1,...,gn]| B’2

i cannot be included in the synch set, so any process can exe-
cute i independently.

Note that synchro. is binary, but after each binary synchroni-
zation the action is still available for further synchronization
up to a possible hide (see later).

In other words, although the env’t sees the system as offering
all synchronizing actions together, the inference rules derive
them in pairs, e.g.

(a; d; stop) |[d]| ((b; d; stop) |[d]| (c; d; stop))

After a, b, and c are executed independently the second and
third d synchronize and the resulting d is propagated and syn-
chronizes with the first d. If the env’t also offers d, the action
(a single d) occurs.

DISABLE: "[>"

B1 [> B2

Models interruption

example:

 off_hook ;
 (
 tone ;
 dial ;
 stop
 [> hang_up ; stop
)

The user can hang up the phone anywhere after the
off_hook action and once hung up the user can no
longer execute the normal sequence of actions.

Expansion of the above behavior expression:

 off_hook ;
 (tone ;
 (dial ; hang_up ; stop
 []
 hang_up ; stop
)
 []
 hang_up ; stop
)

Behavior trees

In general, disabling an expression is equivalent to
attaching the subtree of the disabling expression to
every node of the disabled expression:
hang_up

 tone

 dial

[> hang_up =

hang_up

tone

dial

So the behavior of the whole expression will be:

off_hook

tone

dial
hang_up

hang_up

hang_up

e.g.

DISABLE OPERATOR
SIMPLIFIED INFERENCE RULES

 B1 - a1-> B’1
---------------------------------- (no disable, ctn. B1)
 B1 [> B2 - a1-> B’1 [> B2

 B2 -a2 -> B’2
 --------------------------- (disable occurs, go to B2)
 B1 [> B2 - a2-> B’2

For each action of B1 there is the alternative to enter in be-
havior B2. And once entered in behavior B2 only
remaining actions of B2 can be performed.

Relation with exit behavior ignored for now.

Note important differences:

 a; b; c; . . .
 [> d; . . .

Disable is triggered by environment offering action d

 a; b; c; . . .
 [> i; d; . . .

disable is triggered by internal event, thus is nondeterministic
and can occur anytime

 a; b; c; d; stop
 [> b; . . .

if after a the environment offers b, the disable may or may not
occur.
However, if the first b from the env’t does not cause a disable,
the second one will.

EXECUTABILITY OF LOTOS

LOTOS is a specification language, not an implementation
language.

However executability at the specification stage is useful, be-
cause the specification becomes a prototype of the system.

By execution of inference rules it is possible to simulate a spec-
ification step by step

Simulation enables the designer to see the system functioning
before it is implemented.

Design flaws can be detected, and test data can be generated.

Note: it is possible to write in LOTOS specifications that can-
not be executed, because evaluation of certain conditions may
not terminate (see later). Usually this is avoided.

USING INFERENCE RULES
(the operation of the interpreter)

 (
 a ; b ; c ; stop
 []
 c ; a ; b ; stop
)

 |[a]|

 (
 a ; c ; stop
 [>
 b ; c ; stop
)

Decomposing the behavior expression:

The first operator encountered is "|[a]|"

 B1 |[a]| B2

 where
 B1 is : a ; b ; c ; stop
 []
 c ; a ; b ; stop

 and
 B2 is : a ; c ; stop
 [>
 b ; c ; stop

We have to apply inference rules on each expression
 B1 and B2 separately:

 B1 is an expression of the form B11 [] B12

 where B11 is "a ; b ; c ; stop"
 and B12 is "c ; a ; b ; stop"

 B11 and B12 are action prefix expressions.

 inferring B11 will produce action "a".
 inferring B12 will produce action "c"

We perform the same operation on B2:

 B2 is a disable expression of the form B21 [> B22

 where B21 is "a ; c ; stop"
 and B22 is "b ; c ; stop"

 B21 and B22 are action prefix expressions.

 inferring B21 will produce action "a".
 inferring B22 will produce action "b"

Applying inference rules is a recursive process:

The inference rules require to go down the syntactic tree of the
behavior expression looking for actions, i.e. inference axioms.

Once found, inference axioms make it possible to derive actions,
which then can be used by the inference rules.

It is then possible to perform the chain of recursive returns for
the inference rules.

We have reached the lowest level of inference, we may
 return to the higher level where we had a parallel
 operator | [a] | .

Applying this operator on the resulting actions
 derived above will give us three possible actions:

 action "a" result of the synchronization of action "a"
 that occured in B1 and action "a" that occured in B2.

 an action "c" coming from B1 that is the result
 of interleaving.

 an action "b" coming from B2 that is the result of disabling

TRANSITION TO THE NEXT BEHAVIOR

If we choose action "a" the next behavior
 expression to infer on will be:

 (
 b ; c ; stop
)

 |[a]|

 (
 c ; stop
 [> b ; c ; stop
)

Explanation:

 Choosing to execute action "a" corresponds to having
selected the first action of B11 and B21. When doing so,
this means that we are abandoning the branch corresponding to
behavior B12.

 The "disable" B22 however remains possible

 Choosing action "c" in the initial behavior
will result in:

 a; b; stop

 |[a]|

 (
 a ; c ; stop
 [>
 b ; c ; stop
)

Some syntax:

Basic Syntax (so far...):

behexpr = ’stop’ | action ’;’ behexpr
 | behexpr op behexpr
op = ’[]’ | ’|||’ | ’||’ | ’|[]|’ | ’[>’

Examples:

stop; stop all syntactically invalid
stop; a; stop because act. pref. joins
stop; a an action and a behav. expr.

a; stop OK

a; b [] c; d invalid: [] is between behav. expr.
a; b ||| c; d invalid: ||| is betw. b. exp.

a; b; stop [] c; d; stop OK
a; b; stop || c; d; stop OK

(a; b; stop [] c; d; exit); b; c; stop invalid

Concepts discussed in Class 2:

• Inference axioms and inference rules

• Operators:

•• action prefix

•• choice

••parallel composition (multi-way synchro.)

•• disable

• Nondeterminism

• Deadlock

• Executability by inference rules

