PAGE
8
Notes on Bisimulation and Congruence in LOTOS

Notes on Bisimulation and Congruence in LOTOS
By Luigi Logrippo (on the basis of course notes by Ed Brinksma)
Document date: 2005
One of the useful characteristics of LOTOS is that it combines aspects of Hoare’s CSP [4] and Milner’s CCS [5, 6, 7].
Semantically the language is more akin to CCS, having been carefully designed to inherit basic results on bisimulation and congruence from CCS. The dynamic semantics of LOTOS is described using inference rules in CCS style, rather than in terms of fixpoints as in CSP. Internal actions exist in LOTOS as in CCS. Process synchronization generates internal actions in LOTOS as in CCS. Nondeterminism is described in LOTOS by using internal actions as in CCS rather than by special operators as in CSP. Some LOTOS operators, such as enable >>, were designed in such as way as to allow certain bisimulation properties as we will see below. Therefore, just as CCS, LOTOS has rich bisimulation properties but weak fixpoint properties with respect to CSP.

On the other hand, LOTOS’s process synchronization mechanism is more akin to CSP’s, so it has been possible to develop for LOTOS a testing theory based on refusal and failure sets. However this will not be discussed in these notes.
What follows is essentially a summary of parts of [3] (all the errors are mine, of course). In turn, much of the materials in this reference were adapted from [5], esp. Chapter 7. Proofs omitted here can be found in these sources, or can be easily obtained from them. Another very useful source on process algebras in general is [1]. Basic LOTOS concepts to understand these notes can be obtained by reading [2].

Some abbreviations and notation to be used:

LHS, RHS: Left hand side, right hand side expression

ε is the empty string,  denotes set membership
L is the set of all visible actions (labels)
Id is the identity relationship

b.e.: behavior expression

wb: weak bisimulation

= denotes behavior equality as defined by the expansion theorems

:= denotes process definition

Definition 1. A relation over be is a strong bisimulation if < B1, B2> and a  L ({i}:
1) if B1-a-> B1’ then B2 –a-> 2’ and < B1’, B2’> 

2) and vice-versa (exchange B1, B2)
In other words, strongly bisimilar b.e. are able to offer the same actions, and if they engage in these actions they transform into strongly bisimilar b.e. We write in this case B1 B2
Definition 2. Weak bisimulation, also called observational equivalence ≈
i) Let s denote a string in a  L ({i}, s= a1…an. We write B-s->B’ iff n s.th. B- a1-B1 …Bn-1-an->Bn = B’. s can also be empty, so we can write B-ε->B.
ii) Let s denote a string in L, and let im, in, io be strings of m, n, o internal actions, for nonnegative integers m,n,o.
iii) We write B=s=>B’ whenever im a1 in a2… an io (s with arbitrary sequences of internal actions interspersed) s.th. B- im a1 in a2… an io -> B’
iv) A relation over b.e. is a weak bisimulation or observation equivalence if for any pair < B1, B2>and for any string s of observable actions:
1) whenever B1=s=> B1’ then for some B2’: B2=s=> B2’ and < B1’, B2’>
2) and vice-versa (exchange B1 and B2)
v) < B1, B2>is also written B1≈ B2
Facts:
i) i; B ≈ B

ii) b; B1 [] i; c; B2 /≈ b; B1 [] c; B2 (the RHS can transform into c; B2 by ε but the LHS cannot)
Occasionally it is useful to use the concept of simulation. B1 strongly (weakly) simulates B2 if only 1 is true in Definition 1 (Definition 2).
The definitions of bisimulation, simulation, etc. are typical examples of coinductive definitions.
Example 1:

The following three b.e. are mutually not wb equivalent:

[image: image1]
Example 2: This example suggests that in some cases wb is too strong:
a; (a; a; stop [] a; stop) /≈ a; a; a; stop [] a; a; stop
Both machines can offer two or three a. The point where the decision is taken should not be important. However if the environment offers a on the RHS machine it is possible to end in a situation where only a; stop is possible. The LHS machine will end in (a; a; stop [] a; stop). These two expressions are not wb equivalent.
Following are some examples of proofs involving wbe.
Proposition 1.

Let B, B1, B2 be b.e. and a  L ({i}. The following hold:

a) i; B ≈ B
b) B [] i; B ≈ i; B

c) a; (B1 [] i; B2) [] a; B2 ≈ a; (B1 [] i; B2)

Proof.
Based on the fact that the following are wb:

a) {< i; B, B>} (Id

b) {<B [] i; B, i; B>} (Id
c) {< a; (B1 [] i; B2) [] a; B2, a; (B1 [] i; B2) >} (Id

We prove only c). Id is trivially a wb. Now about the rest. Consider the non-trivial =s=> derivations, for s any string in L. Obviously the derivations of the RHS are a subset of those of the LHS. Then it is sufficient to check that also the RHS weakly bisimulates LHS. It is sufficient to check whether each =s=> derivation of LHS=a;B2 can be weakly simulated by RHS = a; (B1 [] i; B2). Note that each non-trivial =s=> derivation of LHS is of the form a;B2 –a-> B2 =s’=> C with s=as’ (a≠i) or s=s’(a=i) for some C. These we can simulate by the derivation a;(B1 [] i; B2) -a-> (B1 [] i; B2) –i-> B2 =s’=> C, thus a; (B1 [] i; B2) =s=> C.
Proposition 2.

Let C, B1, B2 be b.e., a  L ({i}, A L and B1≈ B2. Then we have:

a) a; B1 ≈ a; B2
b) C |[A]| B1 ≈ C |[A]| B2
c) hide A in B1 ≈ hide A in B2
d) B1 >> C ≈ B2 >> C
e) C >> B1 ≈ C>> B2
f) B1 [> C ≈ B2 [> C
Proof.

Let be a wb with <B1, B2>It is easy to check that the following are adequate bisimulations:

a) {<a; B1, a; B2>} (
b) {<E |[A]| F , E |[A]| G> | <F,G> (see Prop. 4 below
c) {< hide A in F, hide A in G> | <F,G> (
d) B1 CB2 C > | C a b.e. } (
e) D >> B1, D >> B2 >| D a b.e. } (note: this justifies the need of the internal action i in the enable inference rule).
f) FC, G [> C > | <F,G> (
Exercises: what can be said for:
1) for f), FB1, G [>B2 > | <F,G> (

2) for b), {< B1 |[A]| F , B2 |[A]| G> | <F,G> (
Proposition 3.

B1 ≈ B2 (or, equivalently, <B1, B2> where is a wb iff:
a) for all a  L (observable actions)

if B1 –a-> B1’ then  B2’ s.th. B2 =a=> B2’ and B1’ ≈ B2’

if B2 =a=> B2’ then  B1’ s.th. B1 =a=> B1’ and B1’ ≈ B2’
b) if B1 –i-> B1’ then  B2’ s.th. B2 = ε => B2’ and B1’ ≈ B2’

if B2 –i-> B2’ then  B1’ s.th. B1 = ε => B1’ and B1’ ≈ B2’
Proposition 4 (case b) of Proposition 2).

Let F,G, E be b.e., a  L, A L and let be a wb. Then
{<E |[A] F, E |[A]| G> where <F,G> is also a wb.

Proof.

Since the above is symmetrical, only one direction needs to be checked. We have the following possible derivations for E |[A]| F :

a) E |[A]| F –i-> E’ |[A]| F

b) E |[A]| F –a-> E’ |[A]| F, a

c) E|[A]| F –i-> E |[A]| F’
d) E |[A]| F –a-> E |[A]| F’, a

e) E |[A]| F –a-> E’ |[A]| F’, a acould be
Case a) It must be that E-i->E’. But then also E |[A]| G –i-> E’ |[A]|G where <E’ |[A]| F, E’ |[A]| G> 

Case b) is similar.

Case c) It must be that F-i->F’. Since <F,G> by proposition 3 there must be G’ s.th. G= ε=>G’ s.th. <F’,G’>But then also E|[A]|G =ε=> E|[A]|G’ where <E|[A]|F’, E|[A]|G’> 
Case d) is similar.

Case e) It must be that E-a->E’ and F-a->F’. But then by Proposition 3 there must be G’ such that G=a=>G’ and <G’,F’> Also E|[A]|G=a=>E’|[A]|G’ and <E’|[A]|F’, E’|[A]|G’>
Corollary 1.

Let C[●] be a context of the form B|[A]| ●

Then B1≈ B2 implies C[B1]≈C[B2] (same for C[●] = B|[A]| ●)
Proof by Prop. 4.
Definition 3. B1≈c B2 iff C[●],C[B1]≈C[B2]
≈c is called wb congruence or observational congruence.
Basic intuition regarding ≈ and ≈c: while i; B ≈ B because for ≈ initial internal actions don’t matter, i; B /≈ B because internal actions create nondeterminism in a choice (or disable) context if i; B is replaced for B.
Proposition 5 (compare with Prop. 3).

B1 ≈cB2 (or, equivalently, <B1, B2> where is a wb iff:

a) for all a  L (observable actions)

if B1 –a-> B1’ then  B2’ s.th. B2 =a=> B2’ and B1’ ≈ B2’

if B2 =a=> B2’ then  B1’ s.th. B1 =a=> B1’ and B1’ ≈ B2’
b) if B1 –i-> B1’ then  B2’ s.th. B2 –i-> Bx =ε=> B2’ and B1’ ≈ B2’

if B2 –i-> B2’ then  B1’ s.th. B1 –i-> Bx =ε=> B1’ and B1’ ≈ B2’
Proof. Omitted. Note that we have used B2 –i-> Bx =ε=> B2’ instead of simply B2 =i=> B2’ because = =>is not defined for i. The meaning is that an initial i is derived, possibly followed by more i.
So the only difference between wbe and congruence is the fact that in the former one may simulate an initial internal step by doing nothing, while in the latter one must do at least one internal step. Or, what ≈ c adds with respect to ≈ is the capability of prefixing internal actions.
Definition 4. B is stable if it is not possible to derive i as an initial action from B, i.e there is no derivation B-i->B’.

Corollary 2. B1 ≈ c B2 implies that B1 is stable iff B2 is stable.

Proof. From Proposition 5.

Proposition 6. B1 ≈ B2 iff B1 ≈ c B2 or B1 ≈ c i; B2 or i;B1 ≈ c B2

Thus, ≈ c ≈.

In fact, = ≈ c = ≈

(where = is the equality by the expansion theorems).
Proposition 7. ≈ c ≈ over a subset of LOTOS including only stop, exit, ; , |[]|, hide, >> (note: [] and [> are excluded).

Proof. From the list of wb proved in Prop. 2.

In other words, choice and disable contexts are critical for congruence.

Definition 5: Let ≈[] be a relation over b.e. such that B1 ≈[] B2 iff D B1[] D ≈ B2[] D

Proposition 8. ≈[] = ≈ c
Proof. A bit long…
In other words, two b.e. are wb congruent iff they yield wbe expressions when replaced one for the other in a choice [] context.
Proposition 9 (some important congruences)

Let B, B1, B2 be b.e. and a L({i}. We have:
a) a; i; B ≈ c a; B

b) B [] i; B ≈ c i; B

c) a; (B1 [] i; B2) [] a; B2 ≈ c a;(B1[] i;B2)
Proof.

a) By Proposition 8, we only need to show a; i; B ≈ [] a; B. But it is obvious that Da; i; B [] D ≈ a; B [] D.

b,c) Require the introduction of the concept of ‘rooted bisimulation’. Omitted.

Definition 6. A relation over b.e. is a congruence iff:

i) is an equivalence relation over b.e.
ii) For all contexts C[], and all b.e. B1, B2 we have: B1  B2 implies C[B1]

C[B2]

Proposition 10. ≈ c is a congruence relation, in fact the largest congruence relation contained in ≈

As a consequence, B1 ≈ c B2 implies not only B1 ≈ B2 but also C[B1] C[B2]. This makes it possible to obtain additional congruences from know congruences by substitution. See following proposition.

Proposition 11.

i; (B[]C) [] B ≈ c i; (B[]C)

Proof.

i; (B[]C) [] B

≈ c
i; (B[]C) [] (B[]C) [] B

 (from Proposition 9 b)
≈ c
i; (B[]C) [] ((B[]B) [] C)

(assoc. and commut. of [] and = ≈ c)
≈ c
i; (B[]C) [] (B[]C)

(B[]B and ≈ c)
≈ c
i; (B[]C)
In general, infinitely many congruences exist, and no finite number of congruence axioms can be devised to derive all congruence rules. The practical use of congruences is for helping simplifying b.e. in conjunction with the expansion theorem. An example of use follows.

A question comes up at this point, is it possible to axiomatize congruences, i.e. is it possible to provide a finite set of congruences such that all congruences can be derived from this finite set by using proofs such as the one given above? For Turing-complete languages, such as LOTOS, the answer is negative [1].
Example 3. Two equivalent ways of defining a two-position buffer: as two communicating one-position buffer or as a state machine whose states are Empty, HalfFull, Full.
Let

NewBuffer [in, out] := hide mid in Buffer[in, mid] |[mid]| Buffer[mid, out]

Buffer [in, out] := in; Buffer [out; in]

And let:

DoubleBuffer [in, out] := Empty [in, out]

Empty [in, out] := in; HalfFull [in, out]
HalfFull [in, out] := in; Full [in, out] [] out; Empty [in, out]
Full [in, out] := out; HalfFull [in, out]

[image: image2]
Can we prove: NewBuffer [in, out] = DoubleBuffer [in,out]?
Let us define:

Empty’ =def NewBuffer [in, out]

HalfFull’ = def hide mid in Buffer [in, out] |[mid]| out; Buffer [mid, out]

Full’ = def hide mid in mid; Buffer [in, mid] |[mid]| out; Buffer [in,out]

By using the expansion theorems and congruences:

Empty’ = in; i; HalfFull’ ≈ c in; HalfFull’
HalfFull’ = in; Full’ [] out; Empty’

Full’ = out; i; HalfFull’ ≈ c out; HalfFull’

So NewBuffer [in, out] = Empty’ = Empty [in, out] = DoubleBuffer [in, out] as desired.
References

1. Bergstra, J.A., Ponse, A., Smolka, S.A. (Eds.): Handbook of Process Algebra. Elsevier, 2001.

2. Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language LOTOS. Comp. Netw. and ISDN Syst. 14(1), 1987, 25-59.

3. Brinksma, E.: Formele analyse van gedistribueerde systemen (Course notes, Universiteit Twente, 1990).
4. Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall, 1985.

5. Milner, R.: A Calculus of Communicating Systems. LNCS 92, Springer 1980.
6. Milner, R. Communication and Concurrency. Prentice-Hall, 1989.

7. Milner, R.: Operational and Algebraic Semantics of Concurrent Processes. In: Van Leeuwen, J. Handbook of Theoretical Computer Science, Vol. B. Elsevier, 1990.
i; a; b; stop [] i; a; c; stop

(ε can lead to a; b; stop)

(no effect for ε here)

a; (i; b; stop [] i; c; stop)

(a leads to

(i; b; stop [] i; c; stop)

(no effect for ε here;

a can lead to b; stop)

a; b; stop [] a; c; stop

in

out

DB=E

HF

in

out

F

DoubleBuffer

