
ITI 1121. Introduction to Computing II ∗

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of January 20, 2014

Abstract

• Inheritance
– Introduction
– Generalization/specialization

∗These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

The instance variables define the properties or state of an object.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

The instance variables define the properties or state of an object.

In particular, we have seen that OOP provides mechanisms to control the visibility
of the methods and the variables.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

The instance variables define the properties or state of an object.

In particular, we have seen that OOP provides mechanisms to control the visibility
of the methods and the variables.

The methods and variables that are public define the interface of the object.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

The instance variables define the properties or state of an object.

In particular, we have seen that OOP provides mechanisms to control the visibility
of the methods and the variables.

The methods and variables that are public define the interface of the object.

Having the interface clearly defined allows the implementers and the users of the
class to work independently; the creator can change the implementation of the
class, as long as it does not affect the interface, and the programs developed by
the users will continue to work.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

The instance variables define the properties or state of an object.

In particular, we have seen that OOP provides mechanisms to control the visibility
of the methods and the variables.

The methods and variables that are public define the interface of the object.

Having the interface clearly defined allows the implementers and the users of the
class to work independently; the creator can change the implementation of the
class, as long as it does not affect the interface, and the programs developed by
the users will continue to work.

As a general principle, in CS II, all the instance variables should be declared
private.

Summary

We have seen that object-oriented programming (OOP) helps organizing and
maintaining large software systems.

The data, and the methods that act upon the data, are encapsulated into a single
entity called the object.

The instance variables define the properties or state of an object.

In particular, we have seen that OOP provides mechanisms to control the visibility
of the methods and the variables.

The methods and variables that are public define the interface of the object.

Having the interface clearly defined allows the implementers and the users of the
class to work independently; the creator can change the implementation of the
class, as long as it does not affect the interface, and the programs developed by
the users will continue to work.

As a general principle, in CS II, all the instance variables should be declared
private.

If the value of a variable needs to be accessed (read or mutated) from outside
the class, then the interface of the object will include setter and getter methods.
This principle will allow us to maintain the integrity of the objects.

If the value of a variable needs to be accessed (read or mutated) from outside
the class, then the interface of the object will include setter and getter methods.
This principle will allow us to maintain the integrity of the objects.

The class specifies the content of the objects but it also exists during the execution
of a program. Each object knows the class from which it was instantiated from
(is an instance of). No matter how many instances there are, 0, 1 or n, there is
only one copy of the class.

If the value of a variable needs to be accessed (read or mutated) from outside
the class, then the interface of the object will include setter and getter methods.
This principle will allow us to maintain the integrity of the objects.

The class specifies the content of the objects but it also exists during the execution
of a program. Each object knows the class from which it was instantiated from
(is an instance of). No matter how many instances there are, 0, 1 or n, there is
only one copy of the class.

Class variables and methods are shared by all instances of a class.

If the value of a variable needs to be accessed (read or mutated) from outside
the class, then the interface of the object will include setter and getter methods.
This principle will allow us to maintain the integrity of the objects.

The class specifies the content of the objects but it also exists during the execution
of a program. Each object knows the class from which it was instantiated from
(is an instance of). No matter how many instances there are, 0, 1 or n, there is
only one copy of the class.

Class variables and methods are shared by all instances of a class.

⇒ In today’s lecture, we look at other important features of object-oriented
programming that help organizing and maintaining large software systems:
inheritance and polymorphism.

Inheritance

OO languages, in general, also offer other tools to structure large systems.
Inheritance is one of them.

Inheritance

OO languages, in general, also offer other tools to structure large systems.
Inheritance is one of them.

Inheritance allows to organize the classes hierarchically.

Inheritance

OO languages, in general, also offer other tools to structure large systems.
Inheritance is one of them.

Inheritance allows to organize the classes hierarchically.

Inheritance favors code reuse!

Inheritance

The class immediately above is called the superclass or parent class while the
class immediately below is called the subclass, child class or derived class.

Bird

Pigeon

is a

Inheritance

The class immediately above is called the superclass or parent class while the
class immediately below is called the subclass, child class or derived class.

Bird

Pigeon

is a

In this example, Bird is the superclass of Pigeon, i.e. Pigeon “is a” subclass of
Bird.

Inheritance

Bird

Pigeon

is a

In Java, the “is a” relationship is expressed using the reserved keyword extends,
as follows:

public class Pigeon extends Bird {

...

}

Inheritance

Bird

Pigeon

is a

In UML, the “is a” relationship is expressed using a continuous line connecting
the child to its parent, and an open triangle pointing towards the parent.

Inheritance

In Java, the classes are organized into a single hierarchy, with the most general
class, called Object, being at the top (or root) of the tree.

Object
#clone(): Object
+equals(Object:obj): boolean
+getClass(): Class
+toString(): String

Number
+byteValue(): byte
+doubleValue(): double
+floatValue(): float
+intValue(): int
+longValue(): long
+shortValue()

Integer
+MAX_VALUE: int
+MIN_VALUE: int

+byteValue(): byte
+doubleValue(): double
+floatValue(): float
+intValue(): int
+longValue(): long
+shortValue()
+compareTo(i:integer): int
+parseInt(s:String): int
+toString(): String

Double
+MAX_VALUE: double
+MIN_VALUE: double

+byteValue(): byte
+doubleValue(): double
+floatValue(): float
+intValue(): int
+longValue(): long
+shortValue()
+compareTo(d:Double): int
+parseDouble(s:String): double
+toString(): String

Inheritance

If the superclass is not explicitly mentioned, Object is the immediate parent
class, the following two declarations are therefore identical

public class C {

...

}

and

public class C extends Object {

...

}

Inheritance

In Java, all the classes have exactly one parent; except Object that has no parent.

Inheritance

In Java, all the classes have exactly one parent; except Object that has no parent.

We talk about single inheritance as opposed to multiple inheritance.

What does it mean?

A class inherits all the characteristics (variables and methods) of its superclass(es).

What does it mean?

A class inherits all the characteristics (variables and methods) of its superclass(es).

1. a subclass inherits all the methods and variables of its superclass(es);

What does it mean?

A class inherits all the characteristics (variables and methods) of its superclass(es).

1. a subclass inherits all the methods and variables of its superclass(es);

2. a subclass can introduce/add new methods and variables;

What does it mean?

A class inherits all the characteristics (variables and methods) of its superclass(es).

1. a subclass inherits all the methods and variables of its superclass(es);

2. a subclass can introduce/add new methods and variables;

3. a subclass can override the methods of its superclass.

What does it mean?

A class inherits all the characteristics (variables and methods) of its superclass(es).

1. a subclass inherits all the methods and variables of its superclass(es);

2. a subclass can introduce/add new methods and variables;

3. a subclass can override the methods of its superclass.

Because of 2 and 3, the subclass is a specialization of the superclass, i.e. the
superclass is more general than its subclasses.

Inheritance

Inheritance is one of the tools that help developing reusable components (classes).

Shape

Variants of this example can be found in most textbooks about object-oriented
programming.

Shape

Variants of this example can be found in most textbooks about object-oriented
programming.

Problem: A software system must be developed to represent various shapes,
such as circles and rectangles.

Shape

Variants of this example can be found in most textbooks about object-oriented
programming.

Problem: A software system must be developed to represent various shapes,
such as circles and rectangles.

All the shapes must have two instance variables, x and y, to represent the
location of each object.

Shape

Circle Rectangle

-x: double
-y: double

Shape

Shape

Furthermore, all the shapes should have the following methods:

double getX(); // Returns the value of x

double getY(); // Returns the value of y

void moveTo(double x, double y); // Move the shape to a new location

double area(); // Calculates the area of the shape

void scale(double factor); // Scales the shape by some factor

String toString(); // Returns a String representation

Shape

Furthermore, all the shapes should have the following methods:

double getX(); // Returns the value of x

double getY(); // Returns the value of y

void moveTo(double x, double y); // Move the shape to a new location

double area(); // Calculates the area of the shape

void scale(double factor); // Scales the shape by some factor

String toString(); // Returns a String representation

Keep the specification in mind as we won’t be able to implement it fully, at first.

Shape

The implementation of the first three methods would be the same for all kinds of
shapes.

Shape

Circle Rectangle

+ getX() : double
+ getY() : double
+ moveTo(x: double, y: double) : void

-x: double
-y: double

Shape

Shape

On the other hand, the calculation of the area and the implementation of the
scale method would depend on the kind of shape being dealt with.

Shape

On the other hand, the calculation of the area and the implementation of the
scale method would depend on the kind of shape being dealt with.

Finally, the method toString() requires information from both levels, general and
specific, all shapes should display their location and also their specific information,
such as the radius in the case of a circle.

Shape

public class Shape extends Object {

private double x;

private double y;

public Shape() {

x = 0;

y = 0;

}

}

Shape

public class Shape extends Object {

private double x;

private double y;

public Shape() {

x = 0;

y = 0;

}

public Shape(double x, double y) {

this.x = x;

this.y = y;

}

}

Can I do this?

Shape

public class Shape extends Object {

private double x;

private double y;

public Shape() {

x = 0;

y = 0;

}

public Shape(double x, double y) {

this.x = x;

this.y = y;

}

}

Can I do this? Yes. Several methods (or constructors) with the same name can
be added to a class, as long as their signature differ.

Shape

public class Shape extends Object {

private double x;

private double y;

public Shape() {

x = 0;

y = 0;

}

public Shape(double x, double y) {

this.x = x;

this.y = y;

}

}

Can I do this? Yes. Several methods (or constructors) with the same name can
be added to a class, as long as their signature differ. I am calling this ad hoc
polymorphism, or overloading.

Shape

public class Shape extends Object {

private double x;

private double y;

public Shape() {

x = 0;

y = 0;

}

public Shape(double x, double y) {

this.x = x;

this.y = y;

}

}

Can I do this? Yes. Several methods (or constructors) with the same name can
be added to a class, as long as their signature differ. I am calling this ad hoc
polymorphism, or overloading. Why would you want to do this?

Shape

public class Shape extends Object {

private double x;

private double y;

public double getX() {

return x;

}

public double getY() {

return y;

}

}

Adding the getters!

Shape

public class Shape extends Object {

private double x;

private double y;

public final double getX() {

return x;

}

public final double getY() {

return y;

}

}

By using the keyword final, we can prevent the descendants of this class overriding
the method.

Shape

public class Shape extends Object {

private double x;

private double y;

public final double getX() { return x; }

public final double getY() { return y; }

public final void moveTo(double x, double y) {

this.x = x;

this.y = y;

}

}

The method moveTo can be seen as a setter!

Circle

public class Circle extends Shape {

}

The above declaration defines a class Circle that extends Shape, which means
that an instance of the class Circle possesses two instance variables x and y, as
well as the following methods: getX(), getY() and moveTo(double x, double).

Circle

public class Circle extends Shape {

// Instance variable

private double radius;

}

The instance variables x and y and inherited (common to all Shapes). The
variable radius is specific to a Circle.

Private vs protected

With the current definition of the class Shape, it would not have been possible
to define the constructor of the class Circle as follows:

public Circle(double x, double y, double radius) {

this.x = x;

this.y = y;

this.radius = radius;

}

The compiler would complain saying “x has private access in Shape” (and similarly
for y).

Private vs protected

With the current definition of the class Shape, it would not have been possible
to define the constructor of the class Circle as follows:

public Circle(double x, double y, double radius) {

this.x = x;

this.y = y;

this.radius = radius;

}

The compiler would complain saying “x has private access in Shape” (and similarly
for y).

This is because an attribute declared private in the parent class cannot be accessed
within the child class.

Private vs protected

With the current definition of the class Shape, it would not have been possible
to define the constructor of the class Circle as follows:

public Circle(double x, double y, double radius) {

this.x = x;

this.y = y;

this.radius = radius;

}

The compiler would complain saying “x has private access in Shape” (and similarly
for y).

This is because an attribute declared private in the parent class cannot be accessed
within the child class.

Private vs protected

To circumvent this and implement the constructor as above, the definition of
Shape should be modified so that x and y would be declared protected:

public class Shape extends Object {

protected double x;

protected double y;

...

}

Private vs protected

To circumvent this and implement the constructor as above, the definition of
Shape should be modified so that x and y would be declared protected:

public class Shape extends Object {

protected double x;

protected double y;

...

}

Private vs protected

When possible, it is preferable to maintain the visibility private.

Private vs protected

When possible, it is preferable to maintain the visibility private.

Private instance variables and final instance methods go hand in hand.

Private vs protected

When possible, it is preferable to maintain the visibility private.

Private instance variables and final instance methods go hand in hand.

The declaration of an instance variable private prevents the subclasses from
accessing the variable.

Private vs protected

When possible, it is preferable to maintain the visibility private.

Private instance variables and final instance methods go hand in hand.

The declaration of an instance variable private prevents the subclasses from
accessing the variable.

The declaration of a method final prevents subclasses from overriding the method.

Private vs protected

When possible, it is preferable to maintain the visibility private.

Private instance variables and final instance methods go hand in hand.

The declaration of an instance variable private prevents the subclasses from
accessing the variable.

The declaration of a method final prevents subclasses from overriding the method.

Private vs protected

By declaring the instance variables private and the access/mutator instance
methods final you ensure that all the modifications to the instance variables are
“concentrated” in the class where they were first declared.

Circle

public class Circle extends Shape {

private double radius;

// Constructors

public Circle() {

super();

radius = 0;

}

public Circle(double x, double y, double radius) {

super(x, y);

this.radius = radius;

}

}

super()

The statement super(. . .) is an explicit call to the constructor of the
immediate superclass.

super()

The statement super(. . .) is an explicit call to the constructor of the
immediate superclass.

• This particular construction can only appear in a constructor;

super()

The statement super(. . .) is an explicit call to the constructor of the
immediate superclass.

• This particular construction can only appear in a constructor;

• Can only be the first statement of the constructor;

super()

The statement super(. . .) is an explicit call to the constructor of the
immediate superclass.

• This particular construction can only appear in a constructor;

• Can only be the first statement of the constructor;

• The super() will be automatically inserted for you unless you insert a super(
...) yourself!?

super()

• The super() will be automatically inserted for you unless you insert a super(
...) yourself!?

super()

• The super() will be automatically inserted for you unless you insert a super(
...) yourself!?

If the first statement of a constructor is not an explicit call super(. . .), Java
inserts a call super(), which means that the superclass has to have a constructor
of arity 0, or else a compile time error will occur.

super()

• The super() will be automatically inserted for you unless you insert a super(
...) yourself!?

If the first statement of a constructor is not an explicit call super(. . .), Java
inserts a call super(), which means that the superclass has to have a constructor
of arity 0, or else a compile time error will occur. Remember, the default
constructor, the one with arity 0, is no longer present if a constructor has been
defined.

super()

“If a constructor body does not begin with an explicit constructor invocation
(. . .), then the constructor body is implicitly assumed by the compiler to
begin with a superclass constructor invocation ”super();”, an invocation of the
constructor of its direct superclass that takes no arguments.”

⇒ Gosling et al. (2000) The Java Language Specification.

Circle

public class Circle extends Shape {

private double radius;

// Access method

public double getRadius() {

return radius;

}

}

Rectangle

public class Rectangle extends Shape {

private double width;

private double height;

public Rectangle() {

super();

width = 0;

height = 0;

}

public Rectangle(double x, double y, double width, double height) {

super(x, y);

this.width = width;

this.height = height;

}

Rectangle

public class Rectangle extends Shape {

private double width;

private double height;

// ...

public double getWidth() {

return width;

}

public double getHeight() {

return height;

}

}

Rectangle

public class Rectangle extends Shape {

private double width;

private double height;

// ...

public void flip() {

double tmp = width;

width = height;

height = tmp;

}

}

Circle d = new Circle(100, 200, 10);

System.out.println(d.getRadius());

Circle c = new Circle();

System.out.println(c.getX());

d.scale(2);

System.out.println (d);

Rectangle r = new Rectangle();

System.out.println(r.getWith());

Rectangle s = new Rectangle(50, 50, 10, 15);

System.out.println(s.getY());

s.flip();

System.out.println(s.getY());

Summary

Inheritance allows to reuse code. The methods getX(), getY() and moveTo()
were only defined in the class Shape.

Fixing a bug or making an improvement in the superclass will fix or improve all
the subclasses.

