Algorithms in Bioinformatics:
Lecture 10-11: Genome Alignment

Lucia Moura

Fall 2010

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive A

Genome Alignment

@ Complete genomes have now been sequenced. Biologists want to
know the similarities and differences between two or more related
organisms.

@ This leads to whole genome alignment problem.

@ Gene or protein comparisons (small DNA sequences) can be done
using algorithms for sequence alignment such as Smith-Waterman,
Needleman-Wunsch (seen in chapter 2/sequence similarity)

@ Special tools are needed for whole genome, since O(nm) time
complexity is prohibitive.

o We will study two methods: MUMmer and Mutation Sensitive
Alignment.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction

Genome Alignment Methods

Phases:

@ Identify potential anchors:

> short regions between two genomes which are highly similar.

» possible conserved regions between two genomes.

Example: Maximal Unique Matches (MUM) can be used as anchors.

@ lIdentify a set of co-linear anchors:

> these are likely to be a conserved region.
© Close the gaps between the anchors to get the final alignment.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer

Mutation Sensitive A

Maximal Unique Match (MUM)
Definition

Given two genomes A and B, a Maximal Unique Match (MUM) substring

is a common substring of A and B of length longer than a specified
minimum length d such that

@ it is maximal; that is, it cannot be extended on either end without
causing a mismatch;

@ it is unique in both sequences.

S = acga ctc a gctac t ggtcagetatt acttaccge e
T = actt ctc t getac ggtcagetatt ¢ acttaccge $

FIGURE 4.1: A pair of conserved sequences S and T. The underlined
regions are MUMs.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

How to find MUMs

Algorithm Suffix-tree-MUM
Require: Two genome sequences S[1..m;] and T[1..my], a threshold d
Ensure: The set of MUMs of S and T'
1: Build a generalized suffix tree for S and T'.
2: Mark all the internal nodes that have exactly two leaf children, which
represent both suffixes of S and 7T'.
3: For each marked node of depth at least d, suppose it represents the i-th
suffix S; of S and the j-th suffix 7; of T. We check whether S[i — 1] =
T[j — 1]. If not, the path label of this marked node is a MUM.

FIGURE 4.4: A suffix tree-based algorithm for computing the MUMs of
two genomes S and 7.

r two genomes § = acgat# and T S. Step 1
constructs th suffix tree for genomes S and 7.
internal nod

ly one descendant leaf representing $ and exactly
one descendant leaf representing T. Those nodes are filled with solid color.
Step 3 identifies MUMs, which correspond to those highlighted paths,

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction

MUMs and conserved regions
Note that MUMSs can cover conserved regions, but a lot of the MUMs may
be noise. Phase 2 of genome alignment tries to filter out the noisy MUMs.

Mouse Chr. [Human Chr. | # of Published Gene Pairs # of MUMs
P 15 51 96,473
i 19 192 52,394
14 3 23 58,708
14 8 38 38,818
15 12 80 88,305
15 22 9 71,613
16 16 31 66,536
16 21 64 51,009
16 22 30 61,200
ik 6 150 94,095
17 16 46 29,001
7 19 30 56,536
18 5 64 131,850
19 9 22 62,296
19 11 93 29,814

FIGURE 4.6: Mice and humans share a lot of gene pairs. The set of known
conserved genes was obtained from GenBank [217). The number of MUMs
was computed using the method in Section 4.2.1.

Lucia Moura

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Mutation Sensiti

MUMmerl (LCS)

Here we present the first version of the MUMmer method:
DELCHER, KASIF, FLEISCHMANN, PETERSON, WHITE, SALSBERGC,
Alignment of two genomes, Nucleid Acid Research 27, 2369-2376, 1999.

Method MUMmerl to align S[1..m;] and T'[1..my)]

@ Step 1: Compute all MUMs between sequences S and 7.
This can be done in O(my + ma).

@ Step 2: Label MUMs according to position in S and find Longest
Common Subsequence (LCS) of MUMs in S and 7.

This can be done in O(nlogn), where n is the number of MUMs;
n <<<mi,msa.

@ Step 3: Complete the alignment. Employ one of several algorithms
for closing the gaps/interruptions in the MUM alignment.
Time complexity depends on the algorithm used.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Step 2- Longest Common Subsequence problem

Motivation: “It has been observed that two closely related species preserve
the ordering of most of the conserved genes.” (p 92)

Mouse Chromosome 16

21, 22..23 24525326 27; 28,29 ;303
@ e e @ 00 0 0 0 0 0

oo
L 1)
]
]
]
L IS
]
®
L}
]
]

Lot v 3o0deids 46,4623 8
e @ @0 0 0 0 0

....C............O.....‘....‘O.
1§22 "33 586 "7t 8 9 0TI 1814 15 16717 18 19 20" 21790 23 24 95726 2728 30 ¥

Human Chromosome 16

FIGURE 4.7: There are 31 conserved gene pairs found between mouse
chromosome 16 and human chromosome 16. The genes are labeled according
to their positions in the chromosomes. The figure shows that the ordering of
30 conserved gene pairs (out of 31 gene pairs) is preserved. (See color insert
after page 270.)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Step 2- Longest Common Subsequence (LCS) Algorithms

9
]

Genome S == 123456789
Genome T = 245831697
Genome S 123456739
Genome T ——zﬁ— —4— 5 £ 7 245831697

FIGURE 4.8: Example of an LCS.

Two algorithms for finding LCS of two permutations (since MUMs are
unique):

e dynamic programming: O(n?)

e sparsified dynamic programming using binary search trees: O(nlogn)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

LCS of permutations by dynamic programming

Let A[1..n] and B[1..n] be two strings which are permutations of
{1,2,...,n}.

Define §(i) be be the index of B such that Afi] = B[6(7)].

Let V;[j] be the length of the longest common subsequence of A[l..i] and
BJ[1..5].

Vil0] = 0
Volil = 0
Vilil = Vialjl, if j < 4(3)

— LV -1, i j > 5(3)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

What is special about this dynamic programming table?

Qe OO el Ol]®

NINININININ|(m|mjO|O|N
WIWWWWIN|=|m|lO|lO|lW

QIR |IBD|BR|WININ|m|~|O|
aala|A|WININ|= |2 |O|O

olo|~N[lofa[safw[nv][aTo]<
Eadea s | oa g o G Sl sinesy B HE S
NN RN EEES
NESERIE NN EEE
NSNS IR NN E R
INESES NN NI NN E R

o

FIGURE 4.9: The dynamic programming table V when A[l.9] =
123456789 and B[1..9] = 245831697.

Note that V;[0] < V;[1] < ... < Vi[n].

We can store V7[0..9] = 012333445 more compactly as:
(1,1),(2,2),(3,3),(7,4),(9,5), where (j,v) corresponds to an index j where
there is a change to value v in the row.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction

Mutation Sensitive Alignment

LCS of permutations by O(nlogn) sparsified dynamic
programming

The idea is to update the rows of the matrix, given that each row of the
matrix is stored in an optimized way.

Lemma
Let j' be the smallest integer greater than 6(i) such that
Vic1[6(i) = 1] + 1 < Vi_1[j']. So, for 1 < j < n, we have
Vilil = Vialo() -1 +1, if 0() <j<j -1
= Vi_iljl, otherwise

This suggests the following update to create row V; from V;_y:

@ Delete all tuples (7, Vi—1[j]) in Vi—1 where j > () and
Viealj] < Viea[6(6) — 1] + 1.

@ Insert (6(z), Vi—1[0(i) — 1] +1).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Algorithm

Algorithm Suffs-tree-MUM L.CS
Require: A[l..n] and B[1..n]
Ensure: The LCS between A and B

1. Construct a binary search tree 7; which contains one tuple (6(1),1).

2. for i =2 ton do

g =% 5

1 Delete all tuples (j, Vi_1[j]) from T; where j > d(i) and Vieilf] <

Viea[0(3) = 1]+ 15

5. Insert (V) into Ti.

6: end for (£()Vi-1 C8()~-1]+1)
FIGURE 4.10: ‘An O(nlogn)-time algorithm for computing the length of
-he longest common subsequence (LCS) between A and B.

Analysis: The tuples are kept in a binary search tree, so that insertions, deletions
and searches take O(logn) time. At each iteration i we delete o; tuples and
insert one. Thus we can construct V,, in O((a1 + a2 + ... + oy, + 1) logn).
Since we insert n-tuples and each tuple can be deleted at most once, we have
ar+as+...F+a, <n.

So the running time is O(nlogn).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Introduction Mutation Sensitive Ali

MUMmer2 and MUMmer3

These new improvements appeared in Delcher, Phillippy, Carlton, Salzberg (2002)
and Kurtz, Phillippy, Delcher, Smoot, Shumway, Antonescu, Salzberg (2004).

@ Reducing memory usage: reduction in suffix tree memory usage (2: 20
bytes/base; 3: 16 bytes/base).

@ Alternative algorithm for finding MUMs: only the reference genome is stored
in the suffix tree and a second is used as query. This reduces memory
requirement and reduces time for using several query sequences.

@ Clustering MUMs: oo o [improve coverage]
MUMmer2 has a module that takes into account possible rearrangements
between genomes. The system outputs a series of separate, independent
alignment regions, corresponding to clusters of MUMs.

@ Extending the definition of MUMs: [improve coverage]

MUMmer3 allows 3 variations of MUMs (unique in both strings, unique in
neither string, unique in the reference string only).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Mutation Sensitive Alignment (MSA)

Main motivation:

Mouse Chromosome 16

& s DRPEVAE

Human Chromosome 3

When genomes are closely related, they can be transformed via a few
reversals or transpositions.

MSA looks for subsequences of the two MUM sequences that differ by at
most k reversals, transpositions, or reversed transpositions.

This algorithm appeared in:

H. L. Cuan, T. W. Lam, W. K. SunG, PRUDENCE W. H. WoNgG, S. M.
Yiu AND X. FAN, The mutated subsequence problem and locating conserved
genes, Bioinformatics 21 (2005): 2271-2278.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Mutation Sensitive Alignment

Maximum weight common subsequence (MWCS) of MUMs

@ Let A and B be permutations of the n MUMs on two genomes.
@ Each MUM is assigned a weight, normally equal to its length.

@ The weight of a common subsequence of A and B is the sum of the
weights of the MUMs that form the subsequence.

@ The maximum weight common subsequence (MWCS) is a common
subsequence of A and B with maximum weight.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

k-similar subsequence problem

Definition

Let k£ be a non-negative integer. Let X be a subsequence of A and Y be a
subsequence of B. (X,Y) is said to be a pair of k-similar subsequences if
X can be transformed into Y by performing &
transposition /reversal /transposed-reversal operations on k disjoint
sub-sequences in X.

FIGURE 4.13: An example pair of 2-similar subsequences,

The k-similar subsequence problem: find a k-similar subsequence of A
and B which maximizes the total weight.

Chan et al. 2005 say the problem is believed to be NP-complete (the textbook
says it is NP-complete, but the reference is incorrect).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Mutation Sensitive Alignment

|dea of the Heuristic Algorithm for k-similar subsequence
problem

@ Step 1: Find the MWCS between A and B (the backbone).
Adapt algorithm for LCS (page 13 of this notes) to account for
weights. This takes O(nlogn) time.

@ Step 2: For every interval Ali..j] compute the score Score(i,j) of
inserting such a subsequence into the backbone.

e Step 3: Find k intervals Afi;..j1], ..., Alik..ji] that are mutually
disjoint and maximize the total score.

o Step 4: Refine the £ intervals so that
B[(i1)..0(j1)], - - -, B[6(ig).-0(jx)] are also mutually disjoint.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Mutation Sensitive Alignment

Step 2 - For every interval Ali..j] compute the score Score(i, j) of inserting

such a subsequence into the backbone:

Score(i, j) =weight of the MWCS(A[i..j], B[(7)..0(4)])
— total weight of characters in the backbone that fall into Afi..j] or
B[6()--6(7)]

@ This step is dominated by computing each MWCS for all
1<i<ji<n.

e Doing O(n?) MWCSs, each taking O(nlogn) would take O(n3logn).

e This can be done in O(n?logn) using the following algorithm.

|, for i=1ton do . . ‘

Find the MWCS for Afi..n] and B[6(i)..n] in O(ntlog n) time. .
. Find the MWCS for Afi..n] and reverse of B[L.(S('L)l in O(nlogn) 'tun‘e.
| Retrieve MWCS(A[i..5], B[6(i)--0(j)]) in O(logn) time for every j =1
t end for

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Mutation Sensitive Alignment

Step 3 - Find & intervals Afiy..j1],. .

., Alig..jr] that are mutually disjoint and
maximize the total score.

Solve it by dynamic programming.
For 0 < ¢ <k and j <n, let Opt(c,j)= maximum sum of scores of ¢
intervals in A[l..7].
Opt(c,j) =max { Opt(c,j—1),
max [Opt(c —1,i — 1) + Score(i,)]}

This can be computed using a table with kn entries, each computed in
O(n). So the running time of step 3 is O(kn?).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Mutation Sensitive Alignment

Step 4 - Refine the k intervals so that B[S(i1)..6(j1)], .., B[6(i)..6(jx)] are

also mutually disjoint.

This is done via a greedy heuristic:

while there are no overlapping intervals:
@ Pick arbitrary overlapping intervals 6(7)..6(j) and §(4)..0(7).

o Consider all possible ways of reducing i..j and i’..j’ so that above
intervals do not overlap and score is maximized.

The original paper claims to do this step in O(kn?), while the textbook
says O(k?).

All steps together yield running time O(n?(logn + k)).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Mutation Sensitive Alignment

Summary of MSA

Given two genomes S[1..m1] and T[1..m2] and a non-negative k, the MSA

algorithm gives an approximate/heuristic solution to the maximum weight
k-similar subsequence problem.

@ Find all MUMs of S and T, and let A and B be the ordering of the
MUMs on the two genomes. [time O(mq + my)]

@ Run the heuristic algorithm to approximate the maximum weight
k-similar subsequences of A and B. [time O(n?(logn + k))]

Total running time: O(my + mao + n?(logn + k)).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Mutation Sensitive Alignment

Experimental results

Coverage Preciseness

Exp. No. | MUMmer | MSA MUMmer | MSA

il 76.50% 92.20% | 21.70% 22.70%
2 71.40% 91.70% | 21.30% 25.10%
3 87.00% 100.00% | 24.80% 25.50%
4 76.30% 94.70% | 27.40% 26.70%
5 92.50% 96.30% | 32.50% 32.00%
6 72.20% 95.80% | 31.20% 32.90%
id 67.70% 87.10% | 13.50% 17.80%
8 78.10% 90.60% | 37-20% 36.70%
9 80.00% 86.70% | 40.70% 49.70%
10 82.00% 92.00% | 30.90% 32.10%
il 65.20% 89.10% | 30.50% 36.00%
2 60.00% 80.00% | 27.50% 41.90%
13 89.10% 95.30% | 18.20% 18.40%
14 72.70% 86.40% | 10.40% 12.60%
15 78.50% 01.40% | 30.00% 29.70%
average | 16.60% 91.30% | 26.50% 29.30%

JVIGURE 4.15: Performance comparison between MUMmer3 and MSA.
human/mouse genome:

cove.rage:percentage of published genes discovered - is good
preciseness= percentage of results that match some published gene - only 30%!

Two possibilities: lots of conserved regions that are not genes, or lots of unknown
genes.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

Mutation Sensitive Alignment

Coverage Preciseness
Exp. No. [MUMmer [MSA | MUMmer | MSA
1 100% 100% | 44% 91%
2 58% 80% | 80% 85%
3 58% 69% | 64% 80%
4 83% 95% [91% 94%
5 61% 68% | 70% 85%
6 59% 73% | 78% 87%
7. 58% 69% | 47% 79%
8 83% 94% | 86% 94%
9 63% 69% |65% 86%
10 75% 85% | 75% 85%
11 53% 68% | 77% 83%
12 75% 8% | 711% 93%
13 60% 67% |52% 89%
14 74% 75% | 656% 90%
15! 52% 63% | 66% 82%
16 61% 85% |83% 89%
il 58% 74% |83% 84%
18 61% %% | 76% 86%
average | 66% 8% | 71% 8%

FIGURE 4.17: Experimental result on Baculbviridae.

Lucia Moura

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Mutation Sensitive Alignment

Genome Alignment Summary

We have seen MUMmer algorithms and MSA algorithm.
For other methods for genome alignment, see survey:

P. CHaIN, S. Kurtz, E. OHLEBUSCH, T. SLEZAK,
An Applications-focused Review of Comparative Genomics Tools:

Capabilities, Limitations and Future Challenges, Briefings in Bioinformatics
4(2): 105-123 (2003)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment

Lucia Moura

	Introduction
	MUMmer
	Mutation Sensitive Alignment

