
Introduction MUMmer Mutation Sensitive Alignment

Algorithms in Bioinformatics:
Lecture 10-11: Genome Alignment

Lucia Moura

Fall 2010

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Genome Alignment

Complete genomes have now been sequenced. Biologists want to
know the similarities and differences between two or more related
organisms.

This leads to whole genome alignment problem.

Gene or protein comparisons (small DNA sequences) can be done
using algorithms for sequence alignment such as Smith-Waterman,
Needleman-Wunsch (seen in chapter 2/sequence similarity)

Special tools are needed for whole genome, since O(nm) time
complexity is prohibitive.

We will study two methods: MUMmer and Mutation Sensitive
Alignment.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Genome Alignment Methods
Phases:

1 Identify potential anchors:
I short regions between two genomes which are highly similar.
I possible conserved regions between two genomes.

Example: Maximal Unique Matches (MUM) can be used as anchors.
2 Identify a set of co-linear anchors:

I these are likely to be a conserved region.
3 Close the gaps between the anchors to get the final alignment.MUM — Maximum Unique Pairs

Given 2 sequences S1 and S2 ∈ A∗ and l > 0, a maximal unique
match is a string u such that:

� |u| ≥ l

� u occurs exactly once in S1 and exactly once in S2

� ∀ a ∈ A, nor au or ua occurs simultaneously in S1 and S2.

Marcel Turcotte (turcotte@site.uottawa.ca) CSI 5126. Algorithms in bioinformatics

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Maximal Unique Match (MUM)

Definition

Given two genomes A and B, a Maximal Unique Match (MUM) substring
is a common substring of A and B of length longer than a specified
minimum length d such that

it is maximal; that is, it cannot be extended on either end without
causing a mismatch;

it is unique in both sequences.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

How to find MUMs

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

MUMs and conserved regions
Note that MUMs can cover conserved regions, but a lot of the MUMs may
be noise. Phase 2 of genome alignment tries to filter out the noisy MUMs.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

MUMmer1 (LCS)

Here we present the first version of the MUMmer method:
Delcher, Kasif, Fleischmann, Peterson, White, Salsberg,
Alignment of two genomes, Nucleid Acid Research 27, 2369–2376, 1999.

Method MUMmer1 to align S[1..m1] and T [1..m2]
Step 1: Compute all MUMs between sequences S and T .
This can be done in O(m1 +m2).
Step 2: Label MUMs according to position in S and find Longest
Common Subsequence (LCS) of MUMs in S and T .
This can be done in O(n log n), where n is the number of MUMs;
n <<< m1,m2.

Step 3: Complete the alignment. Employ one of several algorithms
for closing the gaps/interruptions in the MUM alignment.
Time complexity depends on the algorithm used.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Step 2- Longest Common Subsequence problem
Motivation: “It has been observed that two closely related species preserve
the ordering of most of the conserved genes.” (p 92)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Step 2- Longest Common Subsequence (LCS) Algorithms

Two algorithms for finding LCS of two permutations (since MUMs are
unique):

dynamic programming: O(n2)
sparsified dynamic programming using binary search trees: O(n log n)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

LCS of permutations by dynamic programming

Let A[1..n] and B[1..n] be two strings which are permutations of
{1, 2, . . . , n}.
Define δ(i) be be the index of B such that A[i] = B[δ(i)].
Let Vi[j] be the length of the longest common subsequence of A[1..i] and
B[1..j].

Vi[0] = 0
V0[j] = 0
Vi[j] = Vi−1[j], if j < δ(i)

= 1 + Vi−1[δ(i)− 1], if j ≥ δ(i)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

What is special about this dynamic programming table?

Note that Vi[0] ≤ Vi[1] ≤ . . . ≤ Vi[n].
We can store V7[0..9] = 012333445 more compactly as:

(1, 1), (2, 2), (3, 3), (7, 4), (9, 5), where (j, v) corresponds to an index j where

there is a change to value v in the row.
Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

LCS of permutations by O(n log n) sparsified dynamic
programming
The idea is to update the rows of the matrix, given that each row of the
matrix is stored in an optimized way.

Lemma

Let j′ be the smallest integer greater than δ(i) such that
Vi−1[δ(i)− 1] + 1 < Vi−1[j′]. So, for 1 ≤ j ≤ n, we have

Vi[j] = Vi−1[δ(i)− 1] + 1, if δ(i) ≤ j ≤ j′ − 1
= Vi−1[j], otherwise

This suggests the following update to create row Vi from Vi−1:

1 Delete all tuples (j, Vi−1[j]) in Vi−1 where j ≥ δ(i) and
Vi−1[j] ≤ Vi−1[δ(i)− 1] + 1.

2 Insert (δ(i), Vi−1[δ(i)− 1] + 1).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Algorithm

Analysis: The tuples are kept in a binary search tree, so that insertions, deletions
and searches take O(log n) time. At each iteration i we delete αi tuples and
insert one. Thus we can construct Vn in O((α1 + α2 + . . .+ αn + n) log n).
Since we insert n-tuples and each tuple can be deleted at most once, we have
α1 + α2 + . . .+ αn ≤ n.

So the running time is O(n log n).
Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

MUMmer2 and MUMmer3
These new improvements appeared in Delcher, Phillippy, Carlton, Salzberg (2002)
and Kurtz, Phillippy, Delcher, Smoot, Shumway, Antonescu, Salzberg (2004).

Reducing memory usage: reduction in suffix tree memory usage (2: 20
bytes/base; 3: 16 bytes/base).

Alternative algorithm for finding MUMs: only the reference genome is stored
in the suffix tree and a second is used as query. This reduces memory
requirement and reduces time for using several query sequences.

Clustering MUMs: [improve coverage]

MUMmer2 has a module that takes into account possible rearrangements
between genomes. The system outputs a series of separate, independent
alignment regions, corresponding to clusters of MUMs.

Extending the definition of MUMs: [improve coverage]

MUMmer3 allows 3 variations of MUMs (unique in both strings, unique in
neither string, unique in the reference string only).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Mutation Sensitive Alignment (MSA)
Main motivation:

When genomes are closely related, they can be transformed via a few
reversals or transpositions.
MSA looks for subsequences of the two MUM sequences that differ by at
most k reversals, transpositions, or reversed transpositions.
This algorithm appeared in:
H. L. Chan, T. W. Lam, W. K. Sung, Prudence W. H. Wong, S. M.

Yiu and X. Fan, The mutated subsequence problem and locating conserved

genes, Bioinformatics 21 (2005): 2271–2278.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Maximum weight common subsequence (MWCS) of MUMs

Let A and B be permutations of the n MUMs on two genomes.

Each MUM is assigned a weight, normally equal to its length.

The weight of a common subsequence of A and B is the sum of the
weights of the MUMs that form the subsequence.

The maximum weight common subsequence (MWCS) is a common
subsequence of A and B with maximum weight.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

k-similar subsequence problem

Definition

Let k be a non-negative integer. Let X be a subsequence of A and Y be a
subsequence of B. (X,Y) is said to be a pair of k-similar subsequences if
X can be transformed into Y by performing k
transposition/reversal/transposed-reversal operations on k disjoint
sub-sequences in X.

The k-similar subsequence problem: find a k-similar subsequence of A
and B which maximizes the total weight.
Chan et al. 2005 say the problem is believed to be NP-complete (the textbook

says it is NP-complete, but the reference is incorrect).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Idea of the Heuristic Algorithm for k-similar subsequence
problem

Step 1: Find the MWCS between A and B (the backbone).
Adapt algorithm for LCS (page 13 of this notes) to account for
weights. This takes O(n log n) time.

Step 2: For every interval A[i..j] compute the score Score(i, j) of
inserting such a subsequence into the backbone.

Step 3: Find k intervals A[i1..j1], . . . , A[ik..jk] that are mutually
disjoint and maximize the total score.

Step 4: Refine the k intervals so that
B[δ(i1)..δ(j1)], . . . , B[δ(ik)..δ(jk)] are also mutually disjoint.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Step 2 - For every interval A[i..j] compute the score Score(i, j) of inserting

such a subsequence into the backbone:

Score(i, j) =weight of the MWCS(A[i..j], B[δ(i)..δ(j)])
− total weight of characters in the backbone that fall into A[i..j] or
B[δ(i)..δ(j)]

This step is dominated by computing each MWCS for all
1 ≤ i < j ≤ n.

Doing O(n2) MWCSs, each taking O(n log n) would take O(n3 log n).

This can be done in O(n2 log n) using the following algorithm.

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Step 3 - Find k intervals A[i1..j1], . . . , A[ik..jk] that are mutually disjoint and

maximize the total score.

Solve it by dynamic programming.

For 0 ≤ c ≤ k and j ≤ n, let Opt(c, j)= maximum sum of scores of c
intervals in A[1..j].

Opt(c, j) = max { Opt(c, j − 1),
max
1≤i≤j

[Opt(c− 1, i− 1) + Score(i, j)]}

This can be computed using a table with kn entries, each computed in
O(n). So the running time of step 3 is O(kn2).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Step 4 - Refine the k intervals so that B[δ(i1)..δ(j1)], . . . , B[δ(ik)..δ(jk)] are

also mutually disjoint.

This is done via a greedy heuristic:

while there are no overlapping intervals:

Pick arbitrary overlapping intervals δ(i)..δ(j) and δ(i)..δ(j).

Consider all possible ways of reducing i..j and i′..j′ so that above
intervals do not overlap and score is maximized.

The original paper claims to do this step in O(kn2), while the textbook
says O(k2).

All steps together yield running time O(n2(log n+ k)).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Summary of MSA

Given two genomes S[1..m1] and T [1..m2] and a non-negative k, the MSA
algorithm gives an approximate/heuristic solution to the maximum weight
k-similar subsequence problem.

1 Find all MUMs of S and T , and let A and B be the ordering of the
MUMs on the two genomes. [time O(m1 +m2)]

2 Run the heuristic algorithm to approximate the maximum weight
k-similar subsequences of A and B. [time O(n2(log n+ k))]

Total running time: O(m1 +m2 + n2(log n+ k)).

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Experimental results

human/mouse genome:
coverage=percentage of published genes discovered - is good
preciseness= percentage of results that match some published gene - only 30%!

Two possibilities: lots of conserved regions that are not genes, or lots of unknown

genes.
Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

Introduction MUMmer Mutation Sensitive Alignment

Genome Alignment Summary

We have seen MUMmer algorithms and MSA algorithm.

For other methods for genome alignment, see survey:

P. Chain, S. Kurtz, E. Ohlebusch, T. Slezak,
An Applications-focused Review of Comparative Genomics Tools:
Capabilities, Limitations and Future Challenges, Briefings in Bioinformatics
4(2): 105-123 (2003)

Algorithms in Bioinformatics: Lecture 10-11: Genome Alignment Lucia Moura

	Introduction
	MUMmer
	Mutation Sensitive Alignment

