University of Ottawa CSI 4105 – Midterm Test Instructor: Lucia Moura

> February 6, 2010 10:00 am Duration: 1:50 hs

> > Closed book

Last na	me:		

First name: _____

Student number: _____

There are 4 questions and 100 marks total.

This exam paper should have 10 pages, including this cover page.

1 - Short answers	/ 25
2 – Search versus Decision problem	/ 25
3 - NP-completeness reductions	/ 25
4 – CLIQUE is NP-complete	/ 25
Total	/ 100

1 Short answers -25 points

The questions below are of the type "true or false"; briefly justify your answer. Note: You may use any result shown in class or in homework without proving it. You may use the fact that you know particular problems are polynomial-time solvable or NP-complete.

- For all problems $X \in \mathcal{NP}$, $X \leq_P 3D$ -MATCHING. [TRUE] [FALSE] Justify:
- If VERTEX-COVER $\in \mathcal{P}$ then SAT $\in \mathcal{P}$. [TRUE] [FALSE] Justify:
- If $\mathcal{P} = \mathcal{N}\mathcal{P}$ then SHORTEST-PATH is NP-complete. [TRUE] [FALSE]

- It is possible that INDEPENDENT-SET $\in \mathcal{P}$ and HAM-CYCLE $\notin \mathcal{P}$. [TRUE] [FALSE] Justify:
- Let X_1 and X_2 be decision problems in \mathcal{NP} , and assume $\mathcal{P} \neq \mathcal{NP}$.

If $X_1 \leq_P X_2$ and $X_2 \leq_P X_1$, then both X_1 and X_2 are NP-complete. [TRUE] [FALSE] Justify:

2 Search versus Decision problem — 25 points

Recall that 3-SAT is the following decision problem:

"Given a formula ϕ which is a conjunction of k clauses over a set of variables $\{x_1, x_2, \ldots, x_n\}$, does there exist a satisfying truth assignment for ϕ ?"

Consider the analogous problem 3-SATSEARCH that computes a satisfying assignment for ϕ , if one exists, or outputs " ϕ is unsatisfiable", otherwise.

Show that if 3-SAT can be solved in polynomial time, then 3-SATSEARCH can be solved in polynomial time.

Hint 1: Do this by providing an algorithm that solves 3-SATSEARCH by doing calls to the polynomial-time algorithm that decides 3-SAT.

Justify that your algorithm runs in polynomial time. (Note, your formulas may grow in size, and you must be careful and justify that the calls for 3-SAT have time that remain polynomial on the size of ϕ , even when using for your transformed larger formulas).

Hint 2 : One can force the value of a variable x_i in formula ϕ , by transforming ϕ into $\phi \wedge \phi'_{i,v}$, where $\phi'_{i,v}$ is given below, and uses two extra variables y and z:

- Forcing $x_i = 1$: $\phi'_{i,1} = (x_i \lor y \lor z) \land (x_i \lor y \lor \overline{z}) \land (x_i \lor \overline{y} \lor z) \land (x_i \lor \overline{y} \lor \overline{z})$
- Forcing $x_i = 0$: $\phi'_{i,0} = (\overline{x_i} \lor y \lor z) \land (\overline{x_i} \lor y \lor \overline{z}) \land (\overline{x_i} \lor \overline{y} \lor z) \land (\overline{x_i} \lor \overline{y} \lor \overline{z})$

```
Algorithm 3-SatSearchALG(\phi)
```

Input:	a fomula ϕ in conjunctive normal form with tree literals per clause,				
	having n -variables and k -clauses.				

```
Output: a truth assignment to x_1, x_2 \dots, x_n that satisfies \phi, or ''\phi is not satisfiable''
```

(page left blank if more space is needed)

3 NP-completeness reductions — 25 points

In this question, you are asked to apply some reductions discussed in class to the examples given. For problems X_2 and X_2 shown in each part below, we have studied a reduction algorithm that shows that $X_1 \leq_P X_2$; you should apply the algorithms discussed in class.

Part A — 10 points 3-Sat \leq_P IndependentSet

Consider the following instance for 3-SAT: $\phi = (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_4).$

• Give the corresponding instance for the independent set problem INDEPENDENT SET, according to the reduction algorithm for 3-SAT \leq_P INDEPENDENTSET. You need to provide (G, k), where G is a graph and k is a target size for the independent set.

• Give a satisfying assignment for ϕ and show how it translate to an independent set of the right size, by marking the independent set in the picture above.

Part B — 15 points 3-SAT \leq_P DIRECTEDHAMCYCLE

Use the same instance of 3-SAT as shown in the previous part.

• Give the corresponding instance for the directed Hamiltonian cycle problem, DIRECTED-HAMCYCLE, according to the reduction algorithm for 3-SAT \leq_P DIRECTEDHAMCY-CLE. You need to provide a graph.

• Show a hamiltonian cycle in the graph above, corresponding to a satisfying assignment for ϕ . You may use the same satisfying assignment as in the previous question.

4 CLIQUE is NP-complete — 25 points

Recall that an **independent set** in a graph G = (V, E) is a subset $I \subseteq V$ such that for all $x, y \in I, \{x, y\} \notin E$.

A clique in a graph G' = (V', E') is a subset $C \subseteq V'$ such that for all $x, y \in C$ with $x \neq y$, $\{x, y\} \in E'$.

Consider the following decision problems:

INDSET: Given (G, k), does G have an independent set of size at least k?

CLIQUE: Given (G, k), does G have a clique of size at least k?

Recall the definition of the complement of a graph below, which in plain words say that you keep the same vertex set, but switch edges with non-edges.

The **complement** of a graph G = (V, E) is a graph $\overline{G} = (V, E')$ such that for every $x, y \in V$, $x \neq y$, we have $\{x, y\} \in E'$ if and only if $\{x, y\} \notin E$.

Part A — 10 points Let G = (V, E) be a graph, let \overline{G} be its complement graph and let $S \subseteq V$. Prove that S is an independent set of G if and only if S is a clique of \overline{G} .

ple:		
	$\{1,2,3\}$ is an independent set of G	$\{1,2,3\}$ is a clique of \overline{G}

Example:

Part B — 15 points Prove that CLIQUE is NP-complete, by proving that:

- (5 points) CLIQUE $\in \mathcal{NP}$.
- (10 points) CLIQUE is NP-hard.
 Hint: Reduce from INDEPENDENTSET. You may use the result in Part A, even if you did not prove it.

(this is a blank page)

(this is a blank page)