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1 Short answers — 25 points

The questions below are of the type “true or false”; briefly justify your answer.
Note: You may use any result shown in class or in homework without proving it. You may
use the fact that you know particular problems are polynomial-time solvable or NP-complete.

e For all problems X € NP, X <p 3D-MATCHING. [TRUE] [FALSE]
Justify:

e If VERTEX-COVER € P then SAT € P. [TRUE] [FALSE]
Justify:

o If P = AP then SHORTEST-PATH is NP-complete. [TRUE] [FALSE]

e It is possible that INDEPENDENT-SET € P and HAM-CYCLE ¢ P. [TRUE| [FALSE]
Justify:

e Let X; and X, be decision problems in NP, and assume P # NP.
If X <p X5 and X3 <p X, then both X; and X, are NP-complete. [TRUE] [FALSE]

Justify:

.. continued
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2 Search versus Decision problem — 25 points

Recall that 3-SAT is the following decision problem:

“Given a formula ¢ which is a conjunction of k clauses over a set of variables {1, xa, ..., 2z, },
does there exist a satisfying truth assignment for ¢?”

Consider the analogous problem 3-SATSEARCH that computes a satisfying assignment
for ¢, if one exists, or outputs “¢ is unsatisfiable”, otherwise.

Show that if 3-SAT can be solved in polynomial time, then 3-SATSEARCH can be
solved in polynomial time.

Hint 1: Do this by providing an algorithm that solves 3-SATSEARCH by doing calls to the
polynomial-time algorithm that decides 3-SAT.

Justify that your algorithm runs in polynomial time. (Note, your formulas may grow in
size, and you must be careful and justify that the calls for 3-SAT have time that remain
polynomial on the size of ¢, even when using for your transformed larger formulas).

/
1,09

Hint 2 : One can force the value of a variable x; in formula ¢, by transforming ¢ into ¢ A ¢
where ¢; , is given below, and uses two extra variables y and z:

e Forcing v; = 1: ¢, = (z; VyV2) A VyVZ)A (2 VIV 2) AN(2; VTV Z)

e Forcing z; = 0: ¢j = (TiVyV2) AN (T VYVZE)A(TGVYV2) AN (T VYV Z)

Algorithm 3-SatSearchALG(¢)

Input: a fomula ¢ in conjunctive normal form with tree literals per clause,
having n-variables and k-clauses.
Output: a truth assignment to x1,2s...,x, that satisfies ¢,

or ‘‘¢ is not satisfiable’’

.. continued
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3 NP-completeness reductions — 25 points

In this question, you are asked to apply some reductions discussed in class to the examples
given. For problems X, and X shown in each part below, we have studied a reduction
algorithm that shows that X; <p X5; you should apply the algorithms discussed in class.

Part A — 10 points 3-SAT <p INDEPENDENTSET

Consider the following instance for 3-SAT: ¢ = (T7 V 23V T1) A (1 V 22 V 24).

e Give the corresponding instance for the independent set problem INDEPENDENT SET,
according to the reduction algorithm for 3-SAT <p INDEPENDENTSET. You need to
provide (G, k), where G is a graph and k is a target size for the independent set.

e Give a satisfying assignment for ¢ and show how it translate to an independent set of
the right size, by marking the independent set in the picture above.

.. continued
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Part B — 15 points 3-SAT <p DIRECTEDHAMCYCLE

Use the same instance of 3-SAT as shown in the previous part.

e Give the corresponding instance for the directed Hamiltonian cycle problem, DIRECTED-
HAMCYCLE, according to the reduction algorithm for 3-SAT <p DIRECTEDHAMCY-
CLE. You need to provide a graph.

e Show a hamiltonian cycle in the graph above, corresponding to a satisfying assignment
for ¢. You may use the same satisfying assignment as in the previous question.

.. continued
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4 CLIQUE is NP-complete — 25 points

Recall that an independent set in a graph G = (V, F) is a subset I C V such that for all
vy el {z,y} ¢ E.

A clique in a graph G' = (V', E') is a subset C' C V' such that for all z,y € C with = # y,
{z,y} € F.

Consider the following decision problems:
INDSET: Given (G, k), does G have an independent set of size at least k 7
CLIQUE: Given (G, k), does G have a clique of size at least k 7

Recall the definition of the complement of a graph below, which in plain words say that you
keep the same vertex set, but switch edges with non-edges.

The complement of a graph G = (V, E) is a graph G = (V, E’) such that for every z,y € V,
x #y, we have {x,y} € E if and only if {z,y} € E.

Part A — 10 points Let G = (V, E) be a graph, let G be its complement graph and let
S C V. Prove that S is an independent set of G if and only if S is a clique of G.

Example:

{1,2,3} is an independent set of G {1,2,3} is a clique of G

.. continued
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Part B — 15 points Prove that CLIQUE is NP-complete, by proving that:

e (5 points) CLIQUE € N'P.

e (10 points) CLIQUE is NP-hard.
Hint: Reduce from INDEPENDENTSET. You may use the result in Part A, even if you

did not prove it.

.. continued



CSI 4105 Midterm Test, February 6, 2010 Page 9 of 10

(this is a blank page)

.. continued



CSI 4105 Midterm Test, February 6, 2010 Page 10 of 10

(this is a blank page)

... End Of Midterm Test



