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1 Short answers — 25 points

The questions below are of the type “true or false”; briefly justify your answer.
Note: You may use any result shown in class or in homework without proving it. You may
use the fact that you know particular problems are polynomial-time solvable or NP-complete.

e For all problems X € NP, X <p 3D-MATCHING. [TRUE]
Justify:
3D-MATCHING is NP-complete, and the above statement says that 3D-MATCHING
is NP-hard.

o If VERTEX-COVER € P then SAT € P. [TRUE]
Justify:

Since VERTEX-COVER is NP-complete then any problem in NP polytime
reduces to it, in particular SAT. From SAT <p VERTEX-COVER and VERTEX-
COVER € P it follows SAT € P.

e If P = NP then SHORTEST-PATH is NP-complete. [TRUE]

Any problem in P is polynomial-time reducible to any other problem in
P. If P = NP then the same would hold for N’P. Since SHORTEST-PATH
€ NP, it follows that for all X € NP, X <p SHORTEST-PATH. Therefore,
SHORTEST-PATH is NP-complete.

e It is possible that INDEPENDENT-SET € P and HAM-CYCLE ¢ P [FALSE]
Justify:
Similar to the second question. Since INDEPENDENT-SET is NP-complete
then any problem in NP polytime reduces to it, in particular HAM-CYCLE.
From HAM-CYCLE <p INDEPENDENT-SET and INDEPENDENT-SET € P it follows
Ham-cyCLE € P. Which contradicts HAM-CYCLE ¢ P.

e Let X; and X, be decision problems in NP, and assume P # NP.
If X; <p X, and X, <p X, then both X; and X, are NP-complete. [FALSE]

Justify:

We give a counterexample. Take X; and X, in P.
This implies X; <p X, and X, <p X;. In addition, since P # NP by assump-
tion, then X; and X, are not NP-complete.

.. continued
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2 Search versus Decision problem — 25 points

Recall that 3-SAT is the following decision problem:

“Given a formula ¢ which is a conjunction of k clauses over a set of variables {1, xa, ..., 2z, },
does there exist a satisfying truth assignment for ¢?”

Consider the analogous problem 3-SATSEARCH that computes a satisfying assignment
for ¢, if one exists, or outputs “¢ is unsatisfiable”, otherwise.

Show that if 3-SAT can be solved in polynomial time, then 3-SATSEARCH can be
solved in polynomial time.

Hint 1: Do this by providing an algorithm that solves 3-SATSEARCH by doing calls to the
polynomial-time algorithm that decides 3-SAT.

Justify that your algorithm runs in polynomial time. (Note, your formulas may grow in
size, and you must be careful and justify that the calls for 3-SAT have time that remain
polynomial on the size of ¢, even when using for your transformed larger formulas).

/
1,09

Hint 2 : One can force the value of a variable x; in formula ¢, by transforming ¢ into ¢ A ¢
where ¢; , is given below, and uses two extra variables y and z:

e Forcing v; = 1: ¢, = (z; VyV2) A VyVZ)A (2 VIV 2) AN(2; VTV Z)

e Forcing z; = 0: ¢j = (TiVyV2) AN (T VYVZE)A(TGVYV2) AN (T VYV Z)

Algorithm 3-SatSearchALG(¢)

Input: a fomula ¢ in conjunctive normal form with tree literals per clause,
having n-variables and k-clauses.
Output: a truth assignment to x1,2s...,x, that satisfies ¢,

or ‘‘¢ is not satisfiable’’

If (3-SAT-ALG(¢)=‘no’ ) then return ‘‘¢ is not satisfiable’’
else
¢ — ¢
for i=1 to n do
if (3-SAT-ALG(¢' A ¢;,)=‘yes’) then
¢ = O NGy w1

else
¢ — ¢ Ny i 0;
return (zy,%2,...,%,)

(continues in the next page...)

.. continued
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Justification of polynomial running time: Assume 3-SAT-ALG is a polynomial-time algo-
rithm that solves 3-SAT. The above algorithm repeats n times the loop. The loop consists of
a constant number of operations and a call to 3-SAT-ALG which runs in time polynomial
with its input. Over all the iterations, the input formula grows from ¢ (having n variables
and k clauses) to a formula with n + 2 variables and k + 4n clauses. So each formula for
which 3-SAT-ALG is called has size polynomial on the size of ¢, and this algorithm runs
in time polynomial on the size of this formula. So 3-SAT-ALG runs in time polynomial on
the size of ¢. Therefore, the above algorithm runs in polynomial time.

.. continued
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3 NP-completeness reductions — 25 points

In this question, you are asked to apply some reductions discussed in class to the examples
given. For problems X, and X shown in each part below, we have studied a reduction
algorithm that shows that X; <p X5; you should apply the algorithms discussed in class.

Part A — 10 points 3-SAT <p INDEPENDENTSET

Consider the following instance for 3-SAT: ¢ = (T7 V 23V T1) A (1 V 22 V x4).

e Give the corresponding instance for the independent set problem INDEPENDENT SET,
according to the reduction algorithm for 3-SAT <p INDEPENDENTSET. You need to
provide (G, k), where G is a graph and k is a target size for the independent set.

k=2

Will avoid having to draw...

graph description: 6 vertices, 8 edges

triangle with vertices 1, 2, 3 with labels 7|, 3, T4
triangle with vertices 4, 5, 6 vertices with labels x, x5, 24.
extra edges connecting {z,,77} and {z4, 74}

One possible independent set coming from the truth assignment below is
vertices 1 and 6, corresponding to 77 in the irst triangle and x4 in the second
triangle.

e Give a satisfying assignment for ¢ and show how it translate to an independent set of
the right size, by marking the independent set in the picture above.

r1=0,290 = 1,23 = 1,24 = 1; independent set of size 2 above.

.. continued
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Part B — 15 points 3-SAT <p DIRECTEDHAMCYCLE

Use the same instance of 3-SAT as shown in the previous part.

e Give the corresponding instance for the directed Hamiltonian cycle problem, DIRECTED-
HAMCYCLE, according to the reduction algorithm for 3-SAT <p DIRECTEDHAMCY-
CLE. You need to provide a graph.

This is a bit tedious to draw in the computer...

In summary, we need 4 paths with 9 vertices each.
In each path, vertices 3,4 are reserved for clause 1; and 6,7 is reserved for
clause 2.

Follow construction in the textbook to connect 2 clause nodes to these
paths, and add edges that connect the paths and add vertices s and ¢ ac-
cordingly.

My hamiltonian cycle, corresponding to the truth assignment in the previ-
ous page, in summary follows the order: s, P, from right to left picking up
clause C;, P, from left to right, P; from left to write, P, from left to right
picking up clause 2, t, s.

e Show a hamiltonian cycle in the graph above, corresponding to a satisfying assignment
for ¢. You may use the same satisfying assignment as in the previous question.

.. continued
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4 CLIQUE is NP-complete — 25 points

Recall that an independent set in a graph G = (V, F) is a subset I C V such that for all
vy el {z,y} ¢ E.

A clique in a graph G' = (V', E') is a subset C' C V' such that for all z,y € C with = # y,
{z,y} € F.

Consider the following decision problems:
INDSET: Given (G, k), does G have an independent set of size at least k 7
CLIQUE: Given (G, k), does G have a clique of size at least k 7

Recall the definition of the complement of a graph below, which in plain words say that you
keep the same vertex set, but switch edges with non-edges.

The complement of a graph G = (V, E) is a graph G = (V, E’) such that for every z,y € V,
x #y, we have {x,y} € E if and only if {z,y} € E.

Part A — 10 points Let G = (V, E) be a graph, let G be its complement graph and let
S C V. Prove that S is an independent set of G if and only if S is a clique of G.

Example:

{1,2,3} is an independent set of G {1,2,3} is a clique of G

Proof:

(=) Let S be an independent set of G. Then, for all z,y € S we have {z,y} ¢ E.
Then, for all z,y € S we have {z,y} € E'. Therefore, S is a clique in G.

(<) Let S be a clique of GG. Then, for all z,y € S we have {z,y} € E’. Then, for
all z,y € S we have {z,y} ¢ E. Therefore, S is an independent set in G.

.. continued
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Part B — 15 points Prove that CLIQUE is NP-complete, by proving that:

e (5 points) CLIQUE € N'P.

We can build an efficient certifier for CLIQUE, whose inputs are (G, k) and
a set of vertices S. The certifier checks that |S| > k and that for all z,y €
S,z # y, we have {z,y} € E(G). The certifier contains at most n integers
smaller than or equal to n, so its size is polynomial on the size of (G, k).
This algorithm runs in time O(n?).

e (10 points) CLIQUE is NP-hard.
Hint: Reduce from INDEPENDENTSET. You may use the result in Part A, even if you
did not prove it.

— The reduction algorithm description for INDEPENDENT-SET <p Clique:
The reduction algorithm takes as input (G, k), calculates G and returns
(G, k). To calculate GG, we go over every pair of distinct vertices z, y: if
x and y are not connected by an edge in G, we make them connected
by an edge in G.

— The polynomial time of the reduction algorithm:
This runs in polynomial time, since we can calculate the complement

of G in O(n?).

— The fact that yes-instances map to yes-instances and no-instances map
to no-instances:
If there exists S an independent set of G of size k then by part A, S is
a clique of G of size k.
If there exists no independent set of size k in (G, then for any set of
vertices S with |S| = k, there exist a pair of vertices z,y with = # y such
that {x,y} is an edge, which implies {z,y} is not an edge in G and S is
not a clique on G. Thus, there exists no clique of size k in G.
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