CSI2131 - Winter 2004 Lecture 2: Fund 1 File Processing O;

A C++ program for doing the same task:

// listcpp.cpp
#include <fstream>// to use fstream class
using namespace std; // to use standard C++ library

main() {
char ch;
fstream infile;

infile.open("A.txt",ios:in);
infile.unsetf(ios: :skipws);
// set flag so it doesn’t skip white space

infile >> ch;

while (! infile.fail()) <
cout << ch ;
infile >> ch ;

CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

[Physical Files and Logical Files|

physical file: a collection of bytes stored on a disk or tape

logical file: a “channel” (like a telephone line) that connects the
program to a physical file

- The program (application) sends (or receives) bytes to (from) a
file through the logical file. The program knows nothing about
where the bytes go (came from).

- The operating system is responsible for associating a logical file in
a program to a physical file in disk or tape. Writing to or reading
from a file in a program is done through the operating system.
Note that from the program point of view, input devices
(keyboard) and output devices (console, printer, etc) are treated as

files - places where bytes come from or are sent to.

There may be thousands of physical files on a disk, but a program
only have about 20 logical files open at the same time.

The physical file has a name, for instance myfile.txt

The logical file has a logical name used for referring to the file

inside the program. This logical name is a variable inside the
program, for instance outfile

Lucia Moura 13

infile.close();
Lucia Moura 12
CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

In C programming language, this variable is declared as follows:
FILE * outfile;

In C++ the logical name is the name of an object of the class
fstream:

fstream outfile;

In both languages, the logical name outfile will be associated to
the physical file myfile.txt at the time of opening the file as
we will see next.

Lucia Moura 1

CS12131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

Opening Files

Opening a file makes it ready for use by the program.
Two options for opening a file :

e open an existing file
e create a new file

When we open a file we are positioned at the beginning of the file.

How to do it in C:
FILE * outfile;
outfile = fopen("myfile.txt", "w");
The first argument indicates the physical name of the file.
The second one determines the “mode”, i.e. the way, the file is
opened. The mode can be:

e "r": open an existing file for input (reading);

"w": create a new file, or truncate existing one, for output;

e "a": open a new file, or append an existing one, for ouput;

"r+": open an existing file for input and output;

"w+": create a new file, or truncate an existing one, for input and
output;

"a+": create a new file, or append an existing one, for input and
output;

e "rb", "wb", "ab","r+b","w+b","a+b": same as above but
the file is open in binary mode.

Lucia Moura 15

CSI2131 - Winter 2004 Lecture 2: Fund 1 File Processing O;

How to do it in C++:
fstream outfile;
outfile.open("myfile.txt",ios::out);
The second argument is an integer indicating the mode.
Its value is set as a “bitwise or” (operator |) of constants defined
in the class ios:

e ios::in open for input;

e ios::out open for output;

e ios::app seek to the end of file before each write;

e ios::ate initially position at the end of file;

e ios::trunc always create a new file (truncate if exists);

e ios::binary open in binary mode (rather than text mode).

C: r W a

C++:|in out |trunc or out | out | app

C: r+ Wt a+

C++: | out|in | out|in|trunc out|inlapp

All obtions above, if followed by b in C, would have |binary.
Exercise: Open a physical file "myfile.txt" associating it to
the logical file "afile" and with the following capabilities:
1. input and output (appending mode):
afile.open("myfile.txt",
ios::inlios::out|ios: :app);

2. create a new file, or truncate existing one, for output:

Lucia Moura 16

CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

This is like “hanging up” the line connected to a file.

After closing a file, the logical name is free to be associated to
another physical file.

Closing a file used for output guarantees that everything has been

written to the physical file.

We will see later that bytes are not sent directly to the physical file
one by one; they are first stored in a buffer to be written later as a
block of data. When the file is closed the leftover from the buffer is
flushed to the file.

Files are usually closed automatically by the operating system at
the end of program’s execution.
It’s better to close the file to prevent data loss in case the program
does not terminate normally.
nC:

fclose(outfile);
In C++:

outfile.close();

Lucia Moura 7

CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

Read data from a file and place it in a variable inside the program.

A generic Read function (not specific to any programming
language):

Read(Source_file, Destination_addr, Size)

Source file: logical name of a file which has been opened
Destination addr: first address of the memory block were data
should be stored

Size: number of bytes to be read

In C (or in C++ using C streams):

char c; // a character
char a[100]; // an array with 100 characters
FILE * infile;

infile = fopen("myfile.txt","r");
fread(&c,1,1,infile); /* reads one character */
fread(a,1,10,infile); /* reads 10 characters */
fread:
1st argument: destination address (address of variable c)
2nd argument: element size in bytes (a char occupies 1 byte)
3rd argument: number of elements
4th argument: logical file name

Lucia Moura 18

CS12131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

In C, read and write operations to files are supported by various
functions: fread, fget, fwrite, fput, fscanf, fprinf.

In C++:

char c;
char a[100];
fstream infile;
infile.open("myfile.txt",ios::in);
infile >> c; // reads one character
infile.read(&c,1);

// alternative way of reading one character
infile.read(a,10); // reads 10 bytes

Note that in the C++ version, the operator >> communicates the
same info at a higher level. Since c is a char variable, it’s implicit
that only 1 byte is to be transferred.

C++ fstream also provide the read method, corresponding to
freadin C.

Lucia Moura 9

CSI2131 - Winter 2004 Lecture 3: Managing Files of Records

|Contents of today’s lecture:\

o Field and record organization (textbook: Section 4.1)
o Sequential search and direct access (textbook: Section 5.1)
o Seeking (textbook: Section 2.5)

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 4.1, 5.1, 2.5.

Lucia Moura 24

CSI2131 - Winter 2004 Lecture 3: Managing Files of Records

|Files as Streams of Bytes|

So far we have looked at a file as a stream of bytes.
Consider the program seen in the last lecture :

#include <fstream>
using namespace std;
main() {
char ch;
fstream infile;
infile.open("A.txt",ios:in);
infile.unsetf (ios: :skipws);
// set flag so it doesn’t skip white space
infile >> ch;
while (! infile.fail()) {
cout << ch;
infile >> ch;

}
infile.close();
}

Consider the file example: A.txt
87358CARROLLALICE IN WONDERLAND <nl>
03818FOLK FILE STRUCTURES <nl>
79733KNUTH THE ART OF COMPUTER PROGR<nl>
86683KNUTH SURREAL NUMBERS <nl>
18395TOLKIENTHE HOBITT <nl>

(above we are representing the invisible newline character by <nl1>)

Lucia Moura 2%

CSI2131 - Winter 2004 Lecture 3: Managing Files of Records

Every stream has an associated file position.

e When we do infile.open("A.txt",ios::in) the file
position is set at the beginning,.

o The first infile >> ch; will read 8 into ch and increment the
file position.

e The next infile >> ch; will read 7 into ch and increment
the file position.

e The 38th infile >> ch; will read the newline character
(referred to as ’\n’ in C++) into ch and increment the file
position.

e The 39th infile >> ch; will read 0 into ch and increment
the file position, and so on.

A file can been seen as
1. a stream of bytes (as we have seen above); or

2. a collection of records with fields (as we will discuss next ...).

Lucia Moura 26

CS12131 - Winter 2004 Lecture 3: Managing Files of Records

|Field and Record Organization

Definitions :

Record = a collection of related fields.

Field = the smallest logically meaningful unit of information
in a file.

Key = a subset of the fields in a record used to identify

(uniquely, usually) the record.

In our sample file “A.txt” containing information about books:
Each line of the file (corresponding to a book) is a record.
Fields in each record: ISBN Number, Author Name and Book
Title.

Primary Key: a key that uniquely identifies a record.
Example of primary key in the book file:

Secondary Keys: other keys that may be used for search
Example of secondary keys in the book file:

Note that in general not every field is a key (keys correspond to
fields, or combination of fields, that may be used in a search).

Lucia Moura 2

CSI2131 - Winter 2004 Lecture 3: Managing Files of Records

Consider the following sample program:

#include <fstream>

using namespace std;

int main() {
fstream myfile;
myfile.open("test.txt",ios::in|ios::outlios::trunc

|ios: :binary) ;

myfile<<"Hello,world.\nHello, again.";
myfile.seekp(12,ios: :beg);
myfile<<’X’<<’X’;
myfile.seekp(3,ios::cur);
myfile<<’Y’;
myfile.seekp(-2,ios::end);
myfile<<’Z’;
myfile.close();
return 0;

}

Show "test.txt" after the program is executed:

Remove ios: :binary from the specification of the opening mode.
Show test.txt after the programn is executed under DOS:

Lucia Moura 36

LECTURE 4: SECONDARY STORAGE
DEVICES - MAGNETIC DISKS

CS12131 - Winter 2004 Lecture 4: Secondary Storage Devices - Magnetic Disks

|Contents of today’s lecture:‘

e Secondary storage devices
o Organization of disks

o Organizing tracks by sector
o Organizing tracks by blocks
o Nondata overhead

e The cost of a disk access

o Disk as a bottleneck

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 3.1.

Lucia Moura 38

CSI2131 - Winter 2004 Lecture 4: Secondary Storage Devices - Magnetic Disks

ISecondary Storage Devices|

Since secondary storage is different from main memory we have to
understand how it works in order to do good file designs.

Two major types of storage devices:

e Direct Access Storage Devices (DASDs)
- Magnetic Disks
Hard Disks (high capacity, low cost per bit)
Floppy Disks (low capacity, slow, cheap)
- Optical Disks
CD-ROM = Compact Disc, read-only memory
(Read-only/write once, holds a lot of data, cheap reproduction)
o Serial Devices

- Magnetic tapes (very fast sequential access)

Lucia Moura 39

