EXTENDIBLE HASHING II

CSI2131 - Winter 2002 Extendible Hashing IT

Contents of today’s lecture:

e Insertions: a closer look at bucket splitting.
e Deletions in extendible hashing.

e Extendible hashing performance.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 12.4,12.5.

194

Lucia Moura

CSI2131 - Winter 2002 Extendible Hashing IT

Insertions: bucket splitting re-visited

In some cases, several splits are necessary in order to accommodate
a new key to be inserted. Let us consider one such case.
Consider the following example:

+-———- +
000 | | -——+
+-———- + +——>4———— - +
001 | | -———-- > 2,6 | Dbucket A
+-———- + +——>4———— - +
010 | | -==1
+————- + |
011 | |-——+ - +
- + +-> 1, 9 |
100 | |-———+ +-—————- +
+-———- + e +
101 | | --—--- > 5 |
+-———- + e +
110 | | -————- >bmmm +
- + +-=>| 3,7 |
111 | |-——+ - +
+-———- +

Insert key 10
Bucket A must split.

Note that A has depth 1, since one digit (namely 0) determines
whether a key should be placed in A.

Lucia Moura 195

CSI2131 - Winter 2002 Extendible Hashing IT

The first split will create a new bucket Al, so that A and Al have
now depth 2.

With depth 2, two digits will be examined to determine whether a
key goes to A (00*) or A1 (01%).

After redistribution, the structure becomes:

+-———- + e +
000 | | - === >| (empty) | bucket A
+-———- I e +
001 | | -—+
+-———- + e +
010 | | -————- > 2,6 | bucket Al
+-———- + +——>4———— - +
011 | |-——+ - +
- + +-> 1, 9 |
100 | |-———+ +-—————- +
+-———- + e +
101 | | --—--- > 5 |
+-———- + e +
110 | | -————- >bmmm +
- + +-=>| 3,7 |
111 | |-——+ - +
+-———- +

A becomes empty and Al get both keys.

After this split, the bucket pointed by 010, namely Al, is still full.
So, we must split Al.

Bucket Al has depth 2. It will split into buckets A1l and A2, both
with depth 3.

Lucia Moura 196

CSI2131 - Winter 2002 Extendible Hashing IT

After redistribution, the structure becomes:

+-———- + e +
000 | | -——--- >| (empty) |
+-———- I e +
001 | |-+ - +
+-———- + +-->| 2 | bucket Al
| | -——+ - +
010 | | - +
+-———- + +-->| 6 | bucket A2
011 | |-——+ - +
+-———- + e +
100 | | -———-- > 1, 9 |
+-———- + e +
101 | |-——+ - +
+————= + +==> 5 |
110 | |-——+ - +
+-———- + +——>4———— - +
111 | | -———-- > 3,7 |
+-———- + e +

Now the bucket pointed by 010 is not full, so that we can insert
key 10 there.

Lucia Moura 197

CSI2131 - Winter 2002 Extendible Hashing IT

After inserting key 10, the structure becomes:

+-———- + e +
000 | | -——--- >| (empty) |
+-———- I e +
001 | |-+ - +
e + +-->| 2,10 | bucket A1l
| | -——+ - +
010 | | - +
+-———- + +-->| 6 | bucket A2
011 | |-——+ - +
+-———- + e +
100 | | -———-- > 1, 9 |
+-———- + e +
101 | |-——+ - +
+————= + +==> 5 |
110 | |-——+ - +
+-———- + +——>4———— - +
111 | | -———-- > 3,7 |
+-———- + e +

Lucia Moura 198

CSI2131 - Winter 2002 Extendible Hashing IT

Insertion Algorithm

Insert (key) {

indexKey = index in the directory where key
should be placed
Let A = bucket pointed by indexKey

if (bucket A is not full) then
Insert key into bucket A
else { // bucket is full so must split
if (bucket depth is equal to directory depth) then
{ double directory size,
re-adjusting bucket pointers;
}
split bucket A;
Insert (key); // recursive call to itself

}

Lucia Moura 199

CSI2131 - Winter 2002 Extendible Hashing IT

Deletions in Extendible Hashing

When we delete a key we may be able to combine buckets.

After the bucket combination, the directory may or may not be
collapsed.

Combination and collapsing is a recursive process.

Lucia Moura 200

CSI2131 - Winter 2002 Extendible Hashing IT

Bucket combination

A bucket may have a buddy bucket, that is a bucket that may
be combined to it.

In the following example, which of the following buckets is such
that when deleting a key from it, the bucket can be combined to
another bucket?

bucket size = 2 records

e +

000 | | => bucket 1 (1 record)
e +

001 | | -> bucket 2 (2 records)
e +

010 | |-+
i + +--> bucket 3 (1 record)

011 | |-+
e +

100 | | => bucket 4 (1 record)
e +

101 | | => bucket 5 (2 record)
e +

110 | | => bucket 6 (2 record)
e +

111 | | => bucket 7 (2 record)
e +

Answer: buckets 1&2, buckets 4&5
Why not buckets 3, 6, 7 7

Lucia Moura 201

CSI2131 - Winter 2002 Extendible Hashing IT

Buddy buckets

One bucket can only be combined with its buddy bucket.

A bucket and its buddy bucket must be distinct buckets pointed to
by sibling nodes in the directory trie.

The index of the buddy bucket is obtained by switching the last
bit of the bucket’s index.

How to test if the bucket pointed out by index 1 has a buddy
bucket?

1= 101

swap the last bit of 1: 1Swap = 100

if (directoryl[i] != directory[iSwap]) then
bucket pointed by direct[iSwap]
1s the buddy bucket

else there i1s no buddy bucket.

Lucia Moura 202

CSI2131 - Winter 2002 Extendible Hashing IT

Directory collapsing

We can collapse a directory if every pair of “sibling” indexes point
to the same bucket.

Check if we can collapse a directory as follows:

canColapse = false;
if (directory size is larger than 1) then {
canColapse = true;
for i=0 to (size/2 -1) do
if (directory[2#*i] != directory[2*i+1]
then { canColapse = false;
exit for;

}
}

If canColapse is true then we can collapse the directory in the
following way:

e Create a new directory with half the size

e Copy the pointers from positions 0 to 0, 2 to 1, ..., (size-2) to
(size/2 -1).

Lucia Moura

203

CSI2131 - Winter 2002 Extendible Hashing IT

Deletion Algorithm

Delete (key):
1. Search for key.
2. If key not found, stop.

3. If key was found then remove key from its bucket b , in the

following way:

¢ physically remove key from bucket b

e run tryCombine (b) in order to try to combine buckets and

shrink directory.

Description of tryCombine (b):

if (b has a buddy bucket c) then
if (b.numkeys + c.numkeys) <= maxkeys {
combine buckets b and ¢ into bucket b.
try to collapse the directory;
if (directory was collapsed) then
tryCombine (b) ;

204

Lucia Moura

CSI2131 - Winter 2002 Extendible Hashing IT

Deletion Example

Delete 5 from the following structure:

+o———- +
000 | | -——+
+o———- + +——>4———— - +
001 | | -———-- > 2, 6 |
+o———- + +——>4———— - +
010 | | -==1
+————- + |
011 | |-——+ - +
- + +-> 1, 9 |
100 | |-———+ +-—————- +
+o———- + to—————- +
101 | | --—--- > 5 |
+o———- + to—————- +
110 | | -————- >t————m—m +
+————— + +=-=>| (empty) |
111 | |-——+ - +
+o———- +

Lucia Moura 205

CSI2131 - Winter 2002 Extendible Hashing IT

Search for 5 and physically remove it from its bucket b:

000

001

010

011

100

101

110

111

+-———- +

| |-—-+

+-———- + =Dt +

| | ------ >| 2, 6 |

+-———- + =Dt +

| -1

+————- + |

| | -——+ - +

+-———- + +->] 1, 9 | <<<<< buddy bucket c
| | -——+ +-—————— +

+-———- + +-—————- +

| | = >| (empty) | <<<< bucket b
+-———- + +-—————- +

| | === St —- +

+————— + +=-=>| (empty) |

| | -——+ - +

+-———- +

Run tryCombine (b).

Since b contains 0 keys and buddy bucket ¢ contains 2 keys,

buckets b and ¢ can be combined...

Lucia Moura 206

CSI2131 - Winter 2002 Extendible Hashing IT

After combining ¢ and b we get:

+-———- +
000 | | -——+
+-———- L e +
001 | | -———-- > 2, 6 |
+-———- L e +
010 | | -==1
+————- + |
011 | | -——+
+-———- +
100 | | -————- >4—mmmm e +
o= + | 1, 9 | b = buckets b,c combined
101 | | -————- >4—mmmm e +
+-———- +
110 | | -————- >4—mmmm e +
+————— + +=-=>| (empty) |
111 | |-——+ - +
+-———- +

The directory can be collapsed...

Lucia Moura 207

CSI2131 - Winter 2002 Extendible Hashing IT

The collapsed directory:

+————= + +——————= +
00 | |-—=+-->] 2, 6 |
+————- + | +——————- +
01 | |-+
+————= + +——————= +
10 | | - === > 1, 9 | bucket b
+————= + +——————= +
11 | | —————- D +
o= + | (empty) | buddy bucket c
+——————= +

The recursive call to tryCombine (b) now combines b and its

buddy bucket c:

e + fm———— +
00 | |-—=+-->] 2, 6 |
+————- + | +——————- +
01 | |-t
e + fm———— +
10 | | -——+-->| 1, 9 | b = buckets b, ¢ combined
+————- + | +——————- +
R IR
e +

The directory can be collapsed again...

Lucia Moura 208

CSI2131 - Winter 2002 Extendible Hashing IT

The collapsed directory:

t————- + t———— +
0 | |-——=+-->| 2, 6 | buddy bucket c
t————- + t———— +
1 | | ——+ +——————- +
- + +-——>| 1, 9 | bucket b
t———— +

The next recursive call to tryCombine (b) would detect that b
cannot be combined with its buddy bucket c.

The deletion operation has been completed.

Lucia Moura 209

CSI2131 - Winter 2002 Extendible Hashing IT

Extendible Hashing Performance

Time Performance (Worst Case):

operation | directory kept in main memory | directory kept in disk

search 1 disk access 2 disk accesses

insertion
d= dir O(logd) disk accesses O(d) disk accesses
size after
insertion

deletion
d= dir O(logd) disk accesses O(d) disk accesses

size before

deletion

The great advantage of extended hashing is that its search time is
truly O(1), independently from the file size.

In ordinary hashing, this complexity depends on the packing
density, which could change after many insertions.

Lucia Moura

210

CSI2131 - Winter 2002 Extendible Hashing IT

Space Performance:

1. Space Utilization for Buckets

Here we describe results found by Fagin, Nievergelt, Pippinger
and Strong (1979).

Experiments and algorithm analysis by these authors have
shown that the packing density for extendible hashing (space
utilization for buckets) fluctuates between 0.53 and 0.93.

They have also shown that, if:

r = number of records
b = block size

N = average number of buckets

Then,

Therefore,

packing density = ;' ~ [n2 ~ 0.69.

So, we expect the average bucket utilization to be 69%.

Lucia Moura 211

CSI2131 - Winter 2002 Extendible Hashing IT

2. Space Utilization for the Directory

Given 7 keys spread over some buckets, what is the expected

size of the directory, assuming random keys are inserted into the
table?

Flajolet (1983) addressed this problem by doing a careful
analysis, in order to estimate the directory size.

The following table shows his findings:

b 5 10 20 ... 200
T

103 150K 030K 010K 0.00 K
10* 2560 K 480K 1.70K 0.00 K
10° 42410 K 6820 K 16.80 K 1.00 K
106 6.90 M 1.02M 0.26 M 8.10 K

107 11211 M 1264 M 225 M 0.13 M
1 K=10% 1 m = 10° (From Flajolet 1983)

Lucia Moura 212

