
Date: January 22-26, 2001 CSI 2131 Page: 1
Profs. Moura and Japkowicz Tutorial 3

Problems on Disk Drives

Given a Western Digital Caviar AC2850 Disk Drive with the following spec-
ifications :

Capacity = 850MB
Minimum seek time = 1 msec
Average seek time = 10 msec
Maximum seek time = 22 msec

Spindle speed = 4500 rpm
Average rotational delay = 6.6 msec
Maximum transfer rate = 13.3 msec/track or 2419 bytes/msec

bytes per sector = 512
tracks per cylinder = 16
sectors per track = 63
cylinders = 1654

1) Suppose that we want to store a file with 60,000 fixed-length
data records where each record requires 80 bytes and records are
not allowed to span two sectors - How many cylinders are required
for this file ?

Answer :

• Each sector can hold b512/80c = 6 records

• The file requires 60,000/6 = 10,000 sectors

• One cylinder can hold 63× 16 = 1008 sectors

• So the number of cylinders required is approximately 10,000/1008 =
9.93 cylinders.

2) How much internal fragmentation is caused by the fact that
records are not allowed to span to sectors ?

Answer :



Date: January 22-26, 2001 CSI 2131 Page: 2
Profs. Moura and Japkowicz Tutorial 3

• Each sector contains 512− 6× 80 = 32 unused bytes

• Since the file requires 10,000 sectors, then 32×10, 000 = 320,000 bytes
are lost due to internal fragmentation

3) Assume that the file could be read sector by sector sequentially.
How long would it take to read the entire 60,000 records in the
worst case ?

Answer :

• When read sequentially, a track would be read in, at most,
Maximum seek time + Maximum rotational delay + Maximum transfer
rate = 22 msec + (6.6 msec ×2 (in the worst case the disk has to make
a full rotation)) + 13.3 msec = 48.5 msec

• Since each cylinder contains 16 tracks, the file holds on 9.93 cylinders
×16 tracks/cylinder = 158.88 tracks ≈ 159 tracks

• In the worst case, the file would, therefore, be read sequentially in
159× 48.5 msec = 7711.5 msec = 7.72 seconds

4) Assume that everytime a new sector is read, its access is random
rather than sequential. How long would it take to read the entire
file in the worst case ?

Answer :

• Each sector, accessed randomly, would be read in
Maximum seek time + Maximum rotation delay + Maximum transfer
rate/sector = 22 msec + (6.6 msec ×2) + 512/2419 msec = 35.42 msec

Note that the maximum transfer rate per sector was calculated as fol-
low :
2419 bytes −→ 1 msec
512 bytes (1 sector) −→ 1× 512/2419 msec

• Since the file requires 10,000 sectors, then in the worst case, the file
would be read in
10, 000× 35.42 = 345, 200 msec = 354.2 sec ≈ 6 minutes

Note the huge difference between sequential and random access.



Date: January 22-26, 2001 CSI 2131 Page: 3
Profs. Moura and Japkowicz Tutorial 3

Problems on Tape Units

Given a 9-track tape of :

- density : 1600 bits per inch (bpi) per track
- speed : 150 inches per second (ips)
- interblock gap size : 0.5 inch

1) Suppose we want to store a file with fixed-length data records
where each record requires 80 bytes (the same file as before). How
much tape is needed if we use a blocking factor of 25 ?

Answer :

• The physical length of a data block is
b = (25× 80)/1600 = 2000/1600 = 1.25 inch

• The number of data blocks required to hold the file is
n = 60,000/25 = 2400

• The size of an interblock gap is 0.5 inch

• The space required for storing the file is :
s = n× (b+ g) = 2400× (1.25 + 0.5) =
4200 inches = 4200/12 feet = 350 feet

2) What is the tape’s effective recording density ?

Answer :

• number of bytes per block / number of inches required to store a block
= 25× 80 /1.75 = 1142.9 bytes/inch

3) What is the tape’s effective transmission rate ?

Answer :

• effective recording rate × tape speed
= 1142.9× 150 = 171, 435 bytes/sec ≈ 171.44 Kbytes/sec



Date: January 22-26, 2001 CSI 2131 Page: 4
Profs. Moura and Japkowicz Tutorial 3

C++

Operator Overloading

Definition : Operator overloading is the syntactic possibility C++ offers to
redefine the actions of an operator in a given context.

Why to use overloading ?

C++ operators do not, generally, apply to class objects : they only apply to
pre-defined types. For example, the equality operator “==” does not accept
strings of characters as operands - This means that instead of having the
possibility to write :
if (a==b) ... (a and b are strings)
one needs to write more complicated expressions such a
if (strcmp(a.string,b.string) == 0) ... or
if (compstr(a,b) == 0) ...

Operator overloading, however, allows “==” to be redefined for strings and,
expressions such as if (a==b) to be written.

Example

Let "rat" be the class of rational numbers, i.e., fractions with numerator
and denominator, both of which being integer.

class rat

{

int z; // numerator

int n; // denominator

public :

rat(int zr=0,int nr=1): z(zr),n(nr) {} // constructor

void show()

{

if ((long)z*n<0) // negative fraction

cout << "-"; // prints the - sign

if (z*n == 0) // the fraction has value 0

cout << 0;



Date: January 22-26, 2001 CSI 2131 Page: 5
Profs. Moura and Japkowicz Tutorial 3

else // prints the fraction, otherwise

cout << (z>0 ? z:-z) << "/" << (n>0 ? n:-n);

}

};

Notes

1. In the constructor ":z(zr),n(nr)" corresponds to the initialization
list, equivalent to

{

z = zr;

n = nr;

}

in the body of the constructor

2. cout << (z>0 ? z:-z) <==> if (z>0)

cout << z;

else

cout << -z;

Overloading the ++ operator

rat rat::operator++() // prefix version

{

z += n; // adds 1 to z/n

return(*this); // returns the copy of

} // the modified object

rat rat::operator++(int) // suffix version

{

rat tmp=*this; // saves the old value

// of the object

z += n; // adds 1 to z/n



Date: January 22-26, 2001 CSI 2131 Page: 6
Profs. Moura and Japkowicz Tutorial 3

return(tmp); // returns the copy of the

} // non-modified object

Usage

rat a1(3,5), a2(3,5), b;

b = ++a1; // calls the prefix version of operator ++

// a1 is increased before being assigned

// to b which receives value 8/5

b = a2++; // calls the suffix version of operator ++

// b receives the value of object a2

// before a2 is increased, i.e., b

// receives value 3/5

Note : In the suffix version, the “int” formal parameter is present to indi-
cate that “++” comes after the object rather than before - that is its only
function.

Example

cout << "a\tb\n";

b = ++a1;

a1.show();

cout << "\t";

b.show();

cout << "\n";

b = a2++;

a2.show();

cout << "\t";

b.show();

will print :

a b

8/5 8/5

8/5 3/5



Date: January 22-26, 2001 CSI 2131 Page: 7
Profs. Moura and Japkowicz Tutorial 3

Overloading of the “put to” operator <<

Let the class "Person" be defined in person.h as :

class Person

{

public :

// constructors and destructor

Person();

Person(char const *n, char const *a, char const *p);

~Person();

// interface functions

void setname(char const *n);

void setaddress(char const *a);

void setphone(char const *p);

char const *getname(void) const;

char const *getaddress(void) const;

char const *getphone(void) const;

private :

// data fields

char *name;

char *address;

char *phone;

};

Note : The getname, getaddress and getphone functions are const mem-
ber functions which is why the const keyword occurs after the parameter
list - const member functions do not alter the data fields of its object, but
only inspects them.

If we want to call the following code fragment,

Person kr("Ken Ross","unknown",unknown");

cout << "Name,address and phone number of person kr:\n" << kr << "\n");

Then we need to overload << so that it can take kr as an argument.



Date: January 22-26, 2001 CSI 2131 Page: 8
Profs. Moura and Japkowicz Tutorial 3

The statement cout << kr invokes the operator << and its two operands : an
ostream & and a Person &. The proposed action is defined in a class-less
operator function operator <<() expecting 2 arguments :

//declaration in, say, person.h

ostream &operator<<(ostream &, Person const &);

// definition in some source file

ostream &operator<<(ostream &stream, Person const &pers)

{

return

(

stream << "Name: " << pers.getname()

<< "Address: " << pers.getaddress()

<< "Phone: " << pers.getphone()

);

}

}


