
Date: April 2-3, 2001 CSI 2131 Page: 1
Prof. Lucia Moura Lecture 23

Hashing: Lecture III

References: Chapters 11.6 - 11.7

Hashing with Buckets

This is a variation of hashed files in which more than one record/key is stored
per hash address.

bucket = block of records corresponding to one address in the hash table.

The hash function gives the Bucket Address.

Example: for a bucket holding 3 records, if we insert the following keys:

key Home Address
KING 33
LAND 33
MARX 33
NUTT 33

Keys ‘KING’, ‘LAND’ and ‘MARX’ will be placed in their home address and
key ‘NUTT’ will be an overflow record.

Effects of Buckets on Performance

We should slightly change some formulas:

packing density =
r

b ·N

We will compare the following two alternatives:

1. Storing 750 data records into a hashed file with 1,000 addresses, each
holding 1 record.

2. Storing 750 data records into a hashed file with 500 bucket addresses,
each bucket holding 2 records.



Date: April 2-3, 2001 CSI 2131 Page: 2
Prof. Lucia Moura Lecture 23

• In both cases the packing density is 0.75 or 75%.

• In the first case r/N=0.75.
In the second case r/N=1.50.

Estimating the probabilities as defined in last lecture:

p(0) p(1) p(2) p(3) p(4)
1) r/N=0.75 (b=1) 0.472 0.354 0.133 0.033 0.006
2) r/N=1.50 (b=2) 0.223 0.335 0.251 0.126 0.047

Calculating the number of overflow records in each case:

1. b=1 (r/N=0.75):
Number of overflow records =
= N · [1 · p(2) + 2 · p(3) + 3 · p(4) + . . .]
= r −N [p(1) + p(2) + p(3) + . . .] (formula derived last class)
= r −N · (1− p(0))
= 750− 1000 · (1− 0.472) = 750− 528 = 222.
This is about 29.6% overflow.

2. b=2 (r/N=1.5):
Number of overflow records =
= N · [1 · p(3) + 2 · p(4) + 3 · p(5) + . . .]
= r −N · p(1)− 2 ·N · [p(2) + p(3) + . . .] (similar formula for b=2)
= r −N · [p(1) + 2[1− p(0)− p(1)]
= r −N · [2− 2 · p(0)− p(1)]
= 750− 500 · [2− 2 · (0.223)− 0.335] = 140.5 ∼= 140.
This is about 18.7% overflow.

Refer to table 11.4 page 495 of the book to see the percentage of collisions
for different packing densities and different bucket sizes.

For the previous example, the data is:

Bucket Size
Packing Density % 1 2 5 10 100

75% 29.6% 18.7% 8.6% 4.0% 0.0%



Date: April 2-3, 2001 CSI 2131 Page: 3
Prof. Lucia Moura Lecture 23

Implementation Issues:

1. Bucket structure
A Bucket should contain a counter that keeps track of the number of
records stored in it. Empty slots in a bucket may be marked ‘//.../’.

Ex: Bucket of size 3 holding 2 records:

2 JONES /////////. . .// ARNSWORTH

2. Initializing a file for hashing:
- Decide on the Logical Size (number of available addresses) and on
the number of buckets per address.
- Create a file of empty buckets before storing records. An empty bucket
will look like:

0 /////////. . .// /////////. . .// /////////. . .//

3. Loading a hash file:
When inserting a key, remember to:
- Wrap around when searching for available bucket.
- Be careful with infinite loops when hash file is full.

Making Deletions

Deletions in a hashed file have to be made with care.

Example:
Record ADAMS JONES MORRIS SMITH
Home Address 5 6 6 5

Hashed File using Progressive Overflow:

...
...

4 //////////
5 ADAMS
6 JONES
7 MORRIS
8 SMITH
...

...



Date: April 2-3, 2001 CSI 2131 Page: 4
Prof. Lucia Moura Lecture 23

• Delete ‘MORRIS’

If ‘MORRIS’ is simply erased, a search for ‘SMITH’ would be unsuc-
cessful:

...
...

4 ////////// ← empty slot
5 ADAMS
6 JONES
7 ////////// ← empty slot (WRONG: can’t find ‘SMITH’ !!!)
8 SMITH
...

...

Search for ‘SMITH’ would go to home address (position 5) and when
reached 7 it would conclude ‘SMITH’ is not in the file; which is wrong!!

Idea: use TOMBSTONES, i.e. replace deleted records with a
marker indicating that a record once lived there:

...
...

4 //////////
5 ADAMS
6 JONES
7 ###### ← tombstone (CORRECT: will find ‘SMITH’)
8 SMITH
...

...

A search must continue when it finds a tombstone, but can stop when-
ever an empty slot is found. A search for ‘SMITH’ will continue when
if finds the tombstone in position 7 of the above table.

Note: Only insert a tombstone when the next record is occupied or
is a tombstone. If the next record is an empty slot, we may mark the
deleted record as empty. Why ?

Insertions should be modified to work with tombstones: if either an
empty slot or a tombstone is reached, place the new record there.



Date: April 2-3, 2001 CSI 2131 Page: 5
Prof. Lucia Moura Lecture 23

Effects of Deletions and Additions on Performance

The presence of too many tombstones increases search length.

Solutions to the problem of deteriorating average search lengths:

1. Deletion algorithm may try to move records that follow a tomb-
stone backwards towards its home address.

2. Complete reorganization: re-hashing.

3. Use a different type of collision resolution technique.


