
Date: January 11-12, 2001 CSI 2131 Page: 1
Prof. Lucia Moura Lecture 3

Managing Files of Records

Last Time

Fundamental File Processing Operations

Today

• Field and record organization (textbook: Section 4.1)

• Sequential search and direct access (textbook: Section 5.1)

• Seeking (textbook: Section 2.5)

Reference: Folk, Zoellick and Riccardi. Sections 4.1, 5.1, 2.5.

So far we have looked at a file as a stream of bytes.

Consider the program seen in the last lecture :

// listcpp.cpp

#include <fstream.h>

main() {

char ch;

fstream infile;

infile.open("A.txt",ios:in);

infile.unsetf(ios::skipws); // include white space in read

infile >> ch;

while (! infile.fail()) {

cout << ch;

infile >> ch;

}

infile.close();

}

Date: January 11-12, 2001 CSI 2131 Page: 2
Prof. Lucia Moura Lecture 3

Consider the file example: A.txt

87358CARROLLALICE IN WONDERLAND <nl>

03818FOLK FILE STRUCTURES <nl>

79733KNUTH THE ART OF COMPUTER PROGR<nl>

86683KNUTH SURREAL NUMBERS <nl>

18395TOLKIENTHE HOBITT <nl>

(above we are representing the invisible newline character by <nl>)

Every stream has an associated file position.

• When we do infile.open("A.txt",ios::in) the file position is set
at the beginning.

• The first infile >> ch; will read 8 into ch and increment the file
position.

• The next infile >> ch; will read 7 into ch and increment the file
position.

• The 38th infile >> ch; will read the newline character (referred to
as ’\n’ in C++) into ch and increment the file position.

• The 39th infile >> ch; will read 0 into ch and increment the file
position, and so on.

A file can been seen as

1. a stream of bytes (as we have seen above); or

2. a collection of records with fields (as we will discuss next ...).

Date: January 11-12, 2001 CSI 2131 Page: 3
Prof. Lucia Moura Lecture 3

Field and Record Organization

Definitions :

Record = a collection of related fields.

Field = the smallest logically meaningful unit of information in a file.

Key = a subset of the fields in a record used to identify
(uniquely, usually) the record.

In our sample file of books :

Each line of the file (corresponding to a book) is a record.

Fields in each record: ISBN Number, Author Name and Book Title.

Primary Key: a key that uniquely identifies a record.

ISBN Number

Secondary Keys: other keys that may be used for search

Author Name
Book Title
Author Name + Book Title (probably unique)

Note that in general not every field is a key (keys correspond to fields, or
combination of fields, that may be used in a search).

Date: January 11-12, 2001 CSI 2131 Page: 4
Prof. Lucia Moura Lecture 3

Field Structures

1. Fixed-length fields
Like in our file of books (field lengths are 5, 7, and 25).

2. Field beginning with length indicator :

058735907CARROLL19ALICE IN WONDERLAND

050381804FOLK15FILE STRUCTURES

3. Place delimiter at the end of fields :

87359|CARROLL|ALICE IN WONDERLAND|

03818|FOLK|FILE STRUCTURES|

4. Store field as keyword = value :

ISBN=87359|AU=CARROLL|TI=ALICE IN WONDERLAND|

ISBN=03818|AU=FOLK|TI=FILE STRUCTURES|

Although the delimiter may not always be necessary here, it is conve-
nient for separating a key value from the next keyword.

Type Advantages Disadvantages
Fixed Easy to Read/Store Waste space with padding
Length
Based

Easy to jump ahead to the
end of the field

Long fields require more
than 1 byte (when maxi-
mum size is > 256)

Delimited
Fields

May waste less space than
with length-based

Have to check every byte of
field against the delimiter

Keyword Fields are self describing,
allows for missing fields.
Ex: Tags in HTML files

Waste space with keywords

Date: January 11-12, 2001 CSI 2131 Page: 5
Prof. Lucia Moura Lecture 3

Record Structures

1. Fixed-length records.
It can be used with fixed-length records, but can also be combined with
any of the other variable length field structures, in which case we use
padding to reach the specified length.

Examples:
87359|CARR0LL|ALICE IN WONDERLAND

03818|FOLK|FILE STRUCTURES

058735907CARROLL19ALICE IN WONDERLAND

050381804FOLK15FILE STRUCTURES

2. Fixed number of fields
It can be combined with length-based or delimited field.

3. Record beginning with length indicator.
Example:
3387359|CARROLL|ALICE IN WONDERLAND

2603818|FOLK|FILE STRUCTURES

4. Use an index to keep track of addresses

The index keeps the byte offset for each record; this allows us to search
the index (which have fixed length records) in order to discover the
beginning of the record.

5. Place a delimiter at the end of the record.
The end-of-line character is a common delimiter, since it makes the file
readable at our console.

Summary :

Type Advantages Disadvantages
Fixed Length Record Easy to jump to the

i-th record
Waste space with
padding

Variable Length Record Saves space when
record sizes are
diverse

Cannot jump to the
i-th record, unless
through an index file

Date: January 11-12, 2001 CSI 2131 Page: 6
Prof. Lucia Moura Lecture 3

Sequential Search and Direct Access

Search for a record matching a given key.

• Sequential Search
Look at records sequentially until matching record is found.
Time is in O(n) for n records.

Example when appropriate :
Pattern matching, file with few records.

• Direct Access
Being able to seek directly to the begging of the record.
Time is in O(1) for n records.

Possible when we know the Relative Record Number (RRN):
First record has RRN 0, the next has RRN 1, etc.

Direct Access by RRN

Requires records of fixed length.

RRN = 30 (31st record)
record length = 101 bytes

So, byte offset = 3030

Now, how to go directly to byte 3030 in a file ?

By seeking ...

Date: January 11-12, 2001 CSI 2131 Page: 7
Prof. Lucia Moura Lecture 3

Seeking

General seek function :

Seek(Source_File, Offset)

Example :

Seek(infile, 3030)

Moves to byte 3030 in file.

In C style :

int fseek(FILE *stream, long int offset, int whence);

fseek(infile,0L,0); // moves to the beginning of the file

fseek(infile,0L,2); // moves to the end of the file

fseek(infile,-10L,1); // moves back 10 bytes from the

// current position

In C++ :

Object of class fstream has two file pointers :

• seekg = moves the get pointer.

• seekp = moves the put pointer.

The previous examples in C style become:

infile.seekg(0,ios::beg);

infile.seekg(0,ios::end);

infile.seekg(-10,ios::cur);

