CSI2131, Winter 2001

Assignment 3
Due on Monday, March 26, 11:00am

1 Written Problem : External Sorting

Consider the algorithm for merging as a way of sorting large files on disk of
Section 8.5 of the textbook, and assume that you are given a file with the
following description:

File Description

File Size = 50,000 KBytes
Number of Records = 500,000
Record Size = 100 bytes

and a system with the following description:

System Description

Memory available as work area = 500 KBytes
Number of Output Buffers = 2
Size of the Output Buffers = 100 KBytes/each

(In addition, memory is available for holding the program, the operating
system, and the necessary low-level data structures, variables, etc. used by
the program)

As described in Section 8.5, the I/O operations can be divided into 4 steps:

Step 1: Reading Records into Memory for Sorting and Forming Runs
Step 2: Writing Sorted Runs to Disk
Step 3: Reading Sorted Runs into Memory for Merging

Step 4: Writing Sorted File to Disk



Please answer the following questions:

1. In how many “runs” does the data file need to be divided for using this
algorithm?

2. How many records from each “run” will be held in memory simultane-
ously during Step 37

3. How many seeks are necessary for each of the four steps listed above?
Indicate the number of seek for each step separately.

2 Programming Problem: Co-Sequential Pro-
cessing for Merging Large Files

A large first year CSI course is divided into 4 sections, A, B, C and D of
100 students each. Each section has its own database recording the student
number, the expected year of graduation, and the grade obtained in the
course. The lists are ordered by student number. The professor would like
to

e Merge the four sections into a single database also ordered by student
number.

e Compute the average grade per year of graduation (irrespective of the
student’s section).

You are required to provide the software necessary for merging the lists and
computing these statistics, noting that these two tasks have to be performed
in the course of a single co-sequential process. In other words, the statistics
should be gathered during the merging process.

In more detail, you are asked to implement the K-way Merge Algorithm
described in Section 8.3.1 of the Textbook. Despite the fact that only 4 lists
of 100 students are given here, your algorithm should work for any number
K of lists of any size (each list does not necessarily have the same size).



The student records have the following structure:

Field Name Type and length of field Note
Student Number 7 characters (numeric) Unique Key
Year of graduation 2 characters (numeric)

Final Grade 3 characters (numeric)

The fields within a record are not separated, but each record is separated
by a newline character.

We assume that the system description is the following:

System Description
Number of Student Records that can fit

simultaneously in the work area 40 records

Size of the Output Buffer (we use
only one in this application)

60 records

Given the system’s description, it is clear that the lists cannot fit into
memory and must be kept in secondary storage (Note: This numbers are
obviously not realistic; the numbers were scaled down for simplicity. The
same method can be used for merging files with sizes exceeding more realis-
tic figures of available memory!).

Specific requirements are listed below:

e Input Buffers
As in Step 3 of Problem 1, you are required to read as many records as
possible at a time (in the case of the files provided, your program will
read 10 records from each list, so that at any given time the program
is holding 40 records in main memory). That is, your program must
include buffers containing 10 records per input file.

e Output Buffer
As in Step 4 of Problem 1, your program will manage an output buffer
(60 records in this case), so that records are only written to the file
when the buffer is full or when the cosequential processing is finalized.

3



e Cosequential processing and merging algorithm made general

Try to make your co-sequential processing as general as possible. Your
K-way merge should be general for any number of lists or any sizes of
lists (the sizes don’t have to be known a priori). The size of the work
area (40) and the size of the output buffer (60) can be constants defined
in your program (easily modifiable if these numbers were to change).
But not so general ...
You are not required to be as general as the book is, so that it is OK if
your cosequential processing only works for the given type of records.
Your program may also have a constant (set before the program reads
the files) that stores the smallest graduating year in the files (2001 for
the given files); this may facilitate your statistics gathering.

e Design issues
The gathering of statistics can be done when an item is “processed”
by the co-sequential processing. Buffering and statistics gathering can
be elegantly hiden from the main merging algorithm. Buffering can
be handled by two classes (one for input buffering and one for output
buffering). Statistics gathering can be handled by a method responsible
for processing an item.

¢ Resulting merged file, output report and standards
Your program should write the merged list to a file named mergedlist.txt
and write a report of statistics to a file named statistics.txt con-
taining the following information:

— the first 15 records of mergedlist.txt;
— the statistics themselves:

x The average grade of students graduating in year 2001 is:
x The average grade of students graduating in year 2002 is:

*x etc...

The file statistics.txt should be printed and handed in together
with your listings.

Do not prompt the user for file names. Your “main” program
can open the 4 input files and the output file; the “merge” method can



receive the logical file names from the main program (i.e. an array of
input files, the number of input files and the output file).

Further details about the format of your program are included in the
standards published in the web page. File names for the various parts
of the program are specified there.

Documentation

Write lots of comments in your code explaining what you are doing.
Since you have some relative freedom in how to design your program
and various classes, you should write some introductory comments in
your program, explaining what is being done and where. Right at the
beginning of the main program file, please, include a note on the status
of your program: if it compiles, if it runs successfully, which features
were implemented and which ones were not implemented, known bugs
or cases the program does not handle, if any. There will be discounts,
of course, if the parts of the program don’t work, but declaired errors
will be looked at with more sympathy by the TAs; this will greatly
facilitate marking!



