

Propositional logic (§1.1-1.2): Review from Mat 1348

Dr. Nejib Zaguia - Winter 2008

Mathematical Logic is a tool for working with elaborate *compound* statements. It includes:

- A formal language for expressing them.
- A concise notation for writing them.
- A methodology for objectively reasoning about their truth or falsity.
- It is the foundation for expressing formal proofs in all branches of mathematics.

Definition: A *proposition* (denoted *p*, *q*, *r*, ...) is simply:

- a statement (i.e., a declarative sentence)
 - with some definite meaning, (not vague or ambiguous)
- having a truth value that's either true (T) or false (F)
 - it is **never** both, neither, or somewhere "in between!"
 - However, you might not *know* the actual truth value,
 - and, the truth value might *depend* on the situation or context.

- "It is raining." (In a given situation.)
- "Beijing is the capital of China."
- "1 + 2 = 3"

But, the following are **NOT** propositions:

- "Who's there?" (interrogative, question)
- "La la la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)
- "1 + 2" (expression with a non-true/false value)

Operators / Connectives

An *operator* or *connective* combines one or more *operand* expressions into a larger expression. (*E.g.*, "+" in numeric exprs.)

Formal Name	<u>Nickname</u>	<u>Arity</u>	<u>Symbol</u>
Negation operator	NOT	Unary	Г
Conjunction operator	AND	Binary	\wedge
Disjunction operator	OR	Binary	\checkmark
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	?

The Negation Operator

¬ and ∧ operations together are sufficient to express any Boolean truth table!

Dr. Nejib Zaguia - Winter 2008

The Disjunction Operator

The binary *disjunction operator* " \vee " (*OR*). Meaning is like "and/or" in English. $\begin{array}{c|c}
p & q & p \lor q \\
\hline F & F & F \\
\hline F & T & T \\
T & F & T \\
\hline T & T & T \\
\hline So, this operation is also called$ *inclusive or*, because it**includes**the possibility that both*p*and*q*are true.

" \neg " and " \lor " together are also universal.

- Use parentheses to group sub-expressions: "I just saw my old friend, and either <u>he's</u> grown or <u>I've shrunk</u>." = $f \land (g \lor s)$
 - $(f \land g) \lor s$ would mean something different
 - $f \land g \lor s$ would be ambiguous
- By convention, "¬" takes precedence over both "∧" and "∨".

• $\neg s \wedge f$ means $(\neg s) \wedge f$, **not** $\neg (s \wedge f)$

A Simple Exercise

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

Translate each of the following into English:

 $\neg p$

= "It didn't rain last night."

- $r \wedge \neg p$
- $\neg r \lor p \lor q =$
- = "The lawn was wet this morning, and it didn't rain last night."
 - "Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

The Exclusive Or Operator

 $p \oplus q$

F

Т

Т

F

F

Т

F

T

Exclusive-or operator " \oplus " (XOR).

p*Exclusive or*, because it **excludes** the F possibility that both p and q are true. F p = "I will earn an A in this course," Т q ="I will drop this course," $p \oplus q =$ "I will either earn an A in this course, or I will drop it (but not both!)"

" \neg " and " \oplus " together are **not** universal.

Note that English "or" can be ambiguous regarding the "both" case! "Pat is a singer or Pat is a writer." - \checkmark F F F"Pat is a man or Pat is a man or Pat is a woman." - \bigoplus T F TT T TT T T

Need context to disambiguate the meaning! For this class, assume "or" means <u>inclusive</u>.

antecedent consequent The implication $p \rightarrow q$ states that p implies q. *I.e.*, If p is true, then q is true; but if p is not true, then q could be either true or false. *E.g.*, let p = "You study hard." q = "You will get a good grade." $p \rightarrow q =$ "If you study hard, then you will get a good grade." (else, it could go either way)

Implication Truth Table

- $p \rightarrow q$ is **false** <u>only</u> when *p* is true but *q* is **not** true.
- $p \rightarrow q$ does **not** say that p causes q!
- p → q does not require that p or q <u>are ever true</u>!
- p \boldsymbol{Q} F F Т F Т Т The TF only F False Т Т Т case!
- E.g. " $(1=0) \rightarrow pigs can fly"$ is TRUE!

Proving the equivalence of $p \rightarrow q$ and its contrapositive $\neg q \rightarrow \neg p$ using truth tables: q۱Ŋ F→ F $T \rightarrow$ Т Т F→ T T Τ F **T**≁ F T 🥕 F F H' $T \rightarrow T$ F Т $F \rightarrow$

The biconditional operator

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.

- p ↔ q means that p and q have the same truth value.
- Note this truth table is the exact **opposite** of \oplus 's! Thus, $p \leftrightarrow q$ means $\neg (p \oplus q)$

p ↔ q does not imply that p and q are true, or that either of them causes the other, or that they have a common cause.

Boolean Operations Summary

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	_	\wedge	$\mathbf{\vee}$	\oplus	\rightarrow	\leftrightarrow
Boolean algebra:	\overline{p}	pq	+	\oplus		
C/C++/Java (wordwise):	!	&&		! =		==
C/C++/Java (bitwise):	~	Ś		~		
Logic gates:	->>-		\rightarrow	\rightarrow		

Two syntactically (*i.e.*, textually) different compound propositions may be the *semantically* identical (*i.e.*, have the same meaning). We call them *equivalent*. Learn:

- Various equivalence rules or laws.
- How to prove equivalences using symbolic derivations.

A *tautology* is a compound proposition that is true no matter what the truth values of its atomic propositions are! *Ex.* $p \lor \neg p$ [What is its truth table?] A contradiction is a compound proposition that is **false** no matter what! *Ex.* $p \land \neg p$ [Truth table?] Other compound props. are *contingencies*.

Logical Equivalence

Compound proposition *p* is *logically equivalent* to compound proposition *q*, written $p \Leftrightarrow q$, **IFF** the compound proposition $p \leftrightarrow q$ is a tautology. THAT IS:

IFF *p* and *q* contain the same truth values as each other in <u>all</u> rows of their truth tables.

Proving Equivalence via Truth Tables

Equivalence Laws

- These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.
- They provide a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it.

- $p \land \mathsf{T} \Leftrightarrow p \qquad p \lor \mathsf{F} \Leftrightarrow p$ Identity:
- Domination: $p \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$
- Idempotent: $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$
- Double negation: $\neg \neg \rho \Leftrightarrow \rho$
- Commutative: $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$

• Associative: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

More Equivalence Laws

 Distributive: p∨(q∧r) ⇔ (p∨q)∧(p∨r) p∧(q∨r) ⇔ (p∧q)∨(p∧r)

 De Morgan's: ¬(p∧q) ⇔ ¬p ∨ ¬q ¬(p∨q) ⇔ ¬p ∧ ¬q

• Trivial tautology/contradiction: $p \lor \neg p \Leftrightarrow \mathsf{T}$ $p \land \neg p \Leftrightarrow \mathsf{F}$

Using equivalences, we can *define* operators in terms of other operators.

- Exclusive or: $p \oplus q \Leftrightarrow (p \lor q) \land \neg (p \land q)$ $p \oplus q \Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$
- Implies: $p \rightarrow q \Leftrightarrow \neg p \lor q$
- Biconditional: $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \Leftrightarrow \neg (p \oplus q)$

An Example Problem

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r.$ $(p \land \neg q) \rightarrow (p \oplus r)$ [Expand definition of \rightarrow] $\Leftrightarrow \textcircled{0}(p \land \neg q) \textcircled{1}(p \oplus r)$ [Expand defn. of \oplus] $\Leftrightarrow \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$ [DeMorgan's Law] $\Leftrightarrow (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$

cont.

Example Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor \text{ commutes}]$ $\Leftrightarrow (q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r)) [\lor \text{ associative}]$ $\Leftrightarrow q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r))) [\text{distrib.} \lor \text{ over } \land]$ $\Leftrightarrow q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r))) [\text{assoc.}]$ $\Leftrightarrow q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r))) [\text{trivail taut.}]$ $\Leftrightarrow q \lor ((\mathbf{T} \lor r) \land (\neg p \lor \neg (p \land r))) [\text{domination}]$ $\Leftrightarrow q \lor (\mathbf{T} \land (\neg p \lor \neg (p \land r))) [\text{identity}]$ $\Leftrightarrow q \lor (\neg p \lor \neg (p \land r)) \Leftrightarrow cont.$

End of Long Example

 $q \lor (\neg p \lor \neg (p \land r))$ [DeMorgan's] $\Leftrightarrow q \lor (\neg p \lor (\neg p \lor \neg r))$ $\Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)$ [Assoc.] [Idempotent] $\Leftrightarrow q \lor (\neg p \lor \neg r)$ $\Leftrightarrow (q \lor \neg p) \lor \neg r$ [Assoc.] [Commut.] $\Leftrightarrow \neg p \lor q \lor \neg r$ Q.E.D. (quod erat demonstrandum) (Which was to be shown.)

Dr. Nejib Zaguia - Winter 2008

- Atomic propositions: *p*, *q*, *r*, ...
- Boolean operators: $\neg \land \lor \oplus \rightarrow \leftrightarrow$
- Compound propositions: $s := (p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \Leftrightarrow \neg (p \rightarrow q)$
- Proving equivalences using:
 - Truth tables.
 - Symbolic derivations. $p \Leftrightarrow q \Leftrightarrow r \dots$