CSI 2101 / Winter 2008: Discrete Structures.

Propositional logic (§1.1-1.2): Review from Mat 1348

Propositional logic: Review

Mathematical Logic is a tool for working with elaborate compound statements. It includes:

- A formal language for expressing them.
- A concise notation for writing them.
- A methodology for objectively reasoning about their truth or falsity.
- It is the foundation for expressing formal proofs in all branches of mathematics.

Propositional logic: Review

Definition: A proposition (denoted p, q, r, ...) is simply:

- a statement (i.e., a declarative sentence)
- with some definite meaning, (not vague or ambiguous)
- having a truth value that's either true (T) or false (F)
- it is never both, neither, or somewhere "in between!"
- However, you might not know the actual truth value,
- and, the truth value might depend on the situation or context.

Propositional logic: Review

- "It is raining." (In a given situation.)
- "Beijing is the capital of China."
- " $1+2$ = 3 "

But, the following are NOT propositions:

- "Who's there?" (interrogative, question)
- "La la la la la." (meaningless interjection)
- "J ust do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)
- "1 + 2" (expression with a non-true/false value)

Operators / Connectives

An operator or connective combines one or more operand expressions into a larger expression. (E.g., " + " in numeric exprs.)

Formal Name	Nickname	Arity	Symbol
Negation operator	NOT	Unary	\neg
Conjunction operator	AND	Binary	\wedge
Disjunction operator	OR	Binary	\vee
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	$?$

The Negation Operator

The unary negation operator " \neg " (NOT)

The binary conjunction operator " \wedge " (AND)

ヘND

\neg and \wedge operations together are sufficient to express any Boolean truth table!

The Disjunction Operator

The binary disjunction operator " \vee " (OR).
Meaning is like "and/or" in English.

p	q	$p \vee q$
F	F	F
F	T	\mathbf{T}
T	F	\mathbf{T}
T	T	T

So, this operation is also called inclusive or, because it includes the possibility that both p and q are true.
" \neg " and " \vee " together are also universal.

Nested Propositional Expressions

- Use parentheses to group sub-expressions: "I just saw my old friend, and either he's grown or l've shrunk." $=f \wedge(g \vee s)$
- $(f \wedge g) \vee s$ would mean something different
- $f \wedge g \vee s$ would be ambiguous
- By convention, " \neg " takes precedence over both " \wedge " and " \vee ".
- $\neg \mathrm{s} \wedge \mathrm{f}$ means $(\neg \mathrm{s}) \wedge \mathrm{f}$, not $\neg(\mathrm{s} \wedge \mathrm{f})$

A Simple Exercise

$$
\begin{aligned}
& \text { Let } p=\text { "It rained last night", } \\
& q=\text { "The sprinklers came on last night," } \\
& r=\text { "The lawn was wet this morning." }
\end{aligned}
$$

Translate each of the following into English:

$r \wedge \neg p$

= "It didn't rain last night."
= "The lawn was wet this morning, and it didn't rain last night."
= "Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

The Exclusive Or Operator

Exclusive-or operator " \oplus " (XOR).
Exclusive or, because it excludes the possibility that both p and q are true.
$p=$ "I will earn an A in this course," $q=$ "I will drop this course,"
$p \oplus q=$ "I will either earn an A in this course, or I will drop it (but not both!)"
" \neg " and " \oplus " together are not universal.

Natural Language is Ambiguous

Note that English "or" can be ambiguous regarding the "both" case!
"Pat is a singer or

p	q	p "or" q
F	F	F
F	T	T
T	F	T
T	T	$?$

Need context to disambiguate the meaning! For this class, assume "or" means inclusive.

The Implication Operator

antecedent ${ }^{-}$consequent
The implication $\hat{\mathrm{p}} \rightarrow$ states that p implies q .
I.e., If p is true, then q is true; but if p is not true, then q could be either true or false.
E.g., let $p=$ "You study hard."
q = "You will get a good grade."
$p \rightarrow q=$ "If you study hard, then you will get a good grade." (else, it could go either way)

Implication Truth Table

- $p \rightarrow q$ is false only when p is true but q is not true.

- $p \rightarrow q$ does not say that p causes q !
- $p \rightarrow q$ does not require that p or q are ever true!

p	q	$p \rightarrow q$
F	F	T
F	T	T
The		
T	F	$\mathbf{F}\}$only T
T	T	False case!

- E.g. " $(1=0) \rightarrow$ pigs can fly" is TRUE!

How do we know for sure?

4-proving the equivalence of $p \rightarrow q$ and its contrapositive $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$ using truth tables:

p	q	$\neg q$	$\neg p$	$p \rightarrow q$
$\neg q \rightarrow \neg p$				
$\mathrm{~F} \rightarrow \mathrm{~F}$	$\mathrm{~T} \rightarrow$	T	T	T
$\mathrm{~F} \rightarrow \mathrm{~T}$	$\mathrm{~F} \rightarrow$	T	T	T
$\mathrm{~T} \not \mathrm{~F}$	$\mathrm{~T} \nrightarrow$	F	F	F
$\mathrm{~T} \rightarrow \mathrm{~T}$	$\mathrm{~F} \rightarrow$	F	T	T

The biconditional operator

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.

- $p \leftrightarrow q$ means that p and q have the same truth value.
- Note this truth table is the
exact opposite of \oplus 's!
Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$
- $p \leftrightarrow q$ does not imply that p and q are true, or that either of them causes the other, or that they have a common cause.

Boolean Operations Summary

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	T	F	F	F	T	T
F	T	T	F	T	T	T	F
T	F	F	F	T	T	F	F
T	T	F	T	T	F	T	T

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	\neg	\wedge	\vee	\oplus	\rightarrow	\leftrightarrow
Boolean algebra:	\bar{p}	$p q$	+	\oplus		
C/C++/Java (wordwise):	$!$	$\& \&$		$!=$		$==$
C/C++/Java (bitwise):	\sim	$\&$		\wedge		
Logic gates:	$-\perp--$	-	\llcorner	$-\gg$		

Propositional Equivalence (§1.2)

Two syntactically (i.e., textually) different compound propositions may be the semantically identical (i.e., have the same meaning). We call them equivalent. Learn:

- Various equivalence rules or laws.
- How to prove equivalences using symbolic derivations.

Tautologies and Contradictions

A tautology is a compound proposition that is true no matter what the truth values of its atomic propositions are!
Ex. $p \vee \neg p \quad$ [What is its truth table?]
A contradiction is a compound proposition that is false no matter what!
Ex. p $\wedge \neg p$ [Truth table?]
Other compound props. are contingencies.

Logical Equivalence

Compound proposition p is logically equivalent to compound proposition q, written $p \Leftrightarrow q$, I FF the compound proposition $p \leftrightarrow q$ is a tautology.
THAT IS:
I FF p and q contain the same truth values as each other in all rows of their truth tables.

Proving Equivalence via Truth Tables

Ex. Prove that $p \vee q \Leftrightarrow \neg(\neg p \wedge \neg q)$.
$\left.\begin{array}{c|c|c|c|c|c}p q & p \vee q & \neg p & \neg q & \neg p \wedge \neg q & \neg(\neg p \wedge \neg q) \\ \hline \mathrm{F} \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \\ \mathrm{F} \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \\ \mathrm{T} & \mathrm{T} \\ \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \\ \mathrm{T} \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \mathrm{T}\end{array}\right)$

Equivalence Laws

- These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.
- They provide a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it.

Equivalence Laws - Examples

- Identity:

- Domination:
- Idempotent:

- Double negation:

- Commutative:
- Associative:

More Equivalence Laws

- Distributive:

- De Morgan's:

- Trivial tautology/contradiction:

Defining Operators via Equivalences

Using equivalences, we can define operators in terms of other operators.

- Exclusive or: $p \oplus q \Leftrightarrow(p \vee q) \wedge \neg(p \wedge q)$ $p \oplus q \Leftrightarrow(p \wedge \neg q) \vee(q \wedge \neg p)$
- Implies:

- Biconditional: $p \leftrightarrow q \Leftrightarrow(p \rightarrow q) \wedge(q \rightarrow p)$ $p \leftrightarrow q \Leftrightarrow \neg(p \oplus q)$

An Example Problem

- Check using a symbolic derivation whether $(p \wedge \neg q) \rightarrow(p \oplus r) \Leftrightarrow \neg p \vee q \vee \neg r$.
$(p \wedge \neg q) \rightarrow(p \oplus r) \quad$ [Expand definition of \rightarrow]
$\Leftrightarrow \neg(p \wedge \neg q) \underline{(p} \oplus r)$ [Expand defn. of \oplus]
$\Leftrightarrow \neg(p \wedge \neg q) \vee((p \vee r) \wedge \neg(p \wedge r))$
[DeMorgan's Law]
$\Leftrightarrow(\neg p \vee q) \vee((p \vee r) \wedge \neg(p \wedge r))$
cont.

Example Continued...

$(\neg p \vee q) \vee((p \vee r) \wedge \neg(p \wedge r)) \Leftrightarrow[\vee$ commutes $]$
$\Leftrightarrow(q \vee \neg p) \vee((p \vee r) \wedge \neg(p \wedge r))[\vee$ associative $]$
$\Leftrightarrow q \vee(\neg p \vee((p \vee r) \wedge \neg(p \wedge r)))$ [distrib. \vee over \wedge]
$\Leftrightarrow q \vee(((\neg p \vee(p \vee r)) \wedge(\neg p \vee \neg(p \wedge r)))$ [assoc.]
$\Leftrightarrow q \vee(((\neg p \vee p) \vee r) \wedge(\neg p \vee \neg(p \wedge r)))$ [trivail taut.] $\Leftrightarrow q \vee((\mathbf{T} \vee r) \wedge(\neg p \vee \neg(p \wedge r)))$ [domination]
$\Leftrightarrow q \vee(\mathbf{T} \wedge(\neg p \vee \neg(p \wedge r)))$ [identity]
$\Leftrightarrow q \vee(\neg p \vee \neg(p \wedge r)) \Leftrightarrow$ cont.

End of Long Example

$q \vee(\neg p \vee \neg(p \wedge r))$
[DeMorgan's] $\Leftrightarrow q \vee(\neg p \vee(\neg p \vee \neg r))$
[Assoc.] $\Leftrightarrow q \vee((\neg p \vee \neg p) \vee \neg r)$
[Idempotent] $\Leftrightarrow q \vee(\neg p \vee \neg r)$
[Assoc.] $\Leftrightarrow(q \vee \neg p) \vee \neg r$
[Commut.] $\Leftrightarrow \neg p \vee q \vee \neg r$
Q.E.D. (quod erat demonstrandum)
(Which was to be shown.)

Review: Propositional Logic
 (§§1.1-1.2)

- Atomic propositions:
- Boolean operators:
- Compound propositions:
- Equivalences:
- Proving equivalences using:
- Truth tables.
- Symbolic derivations. $p \Leftrightarrow q \Leftrightarrow r$...

