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CSI 2101 / Predicate logic (§1.3-1.4):

Motivation
Predicates
Quantifiers

universal quantifier, existential quantifier, other quantifiers
domain of a quantifier
binding variable by a quantifier

Quantified expressions
equivalence of quantified expressions
negating quantified expressions
translating into/from English 
nested quantifiers
order of quantifiers
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Motivation

Predicate logic is an extension of 
propositional logic that permits concisely 
reasoning about whole classes of entities.
Propositional logic (recall) treats simple 
propositions (sentences) as atomic entities.
In contrast, predicate logic distinguishes the 
subject of a sentence from its predicate.

Topic #3 – Predicate Logic
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Applications of Predicate Logic

It is the formal notation for writing perfectly 
clear, concise, and unambiguous 
mathematical definitions, axioms, and 
theorems (more on subsequent lectures) for 
any branch of mathematics.

Predicate logic with function symbols, the “=” operator, 
and a few proof-building rules is sufficient for 
defining any conceivable mathematical system, and 
for proving anything that can be proved within that 
system!
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Other Applications

Predicate logic is the foundation of the
field of mathematical logic, which 
culminated in Gödel’s incompleteness 
theorem, which revealed the ultimate 
limits of mathematical thought: 

Given any finitely describable, consistent 
proof procedure, there will always remain some
true statements that will never be proven
by that procedure.

Topic #3 – Predicate Logic
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Practical Applications of Predicate Logic

It is the basis for clearly expressed formal 
specifications for any complex system.
It is basis for automatic theorem provers and 
many other Artificial Intelligence systems.

E.g. automatic program verification systems.
Predicate-logic like statements are supported 
by some of the more sophisticated database 
query engines and container class libraries

these are types of programming tools.

Topic #3 – Predicate Logic
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Subjects and Predicates

In the sentence “The dog is sleeping”:
The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.
The phrase “is sleeping” denotes the predicate- a 
property that is true of the subject.

In predicate logic, a predicate is modeled as a 
function P(·) from objects to propositions.

P(x) = “x is sleeping” (where x is any object).

Topic #3 – Predicate Logic



Dr. Nejib Zaguia - Winter 2008 7

More About Predicates

Convention:  Lowercase variables x, y, z... denote 
objects/entities; uppercase variables P, Q, R… denote 
propositional functions (predicates).
Keep in mind that the result of applying a predicate P
to an object x is the proposition P(x).  But the 
predicate P itself (e.g. P=“is sleeping”) is not a 
proposition (not a complete sentence).

E.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”

Topic #3 – Predicate Logic
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Propositional Functions

Predicate logic generalizes the grammatical 
notion of a predicate to also include 
propositional functions of any number of 
arguments, each of which may take any
grammatical role that a noun can take.

E.g. let P(x,y,z) = “x gave y the grade z”, 
then if x=“Mike”, y=“Mary”, z=“A”, then 

P(x,y,z) = “Mike gave Mary the grade A.”

Topic #3 – Predicate Logic



Predicates

The predicate can have several variables:

• Friends(X,Y): X and Y are friends

• Parents(X,Y,Z): X is a child of Y and Z

• SumsTo7(x, y):  x+y=7

• P(x,y,z): x > y2+z3-5 

So, what are the truth values of:

• SumsTo7(4,5) 

•P(27, 2, 3)

• WillPassCSI2101(Daniel Sousa)



Predicates in computing

The predicates are very useful in capturing the properties the variable 
values must satisfy before/during/after executing a code segment

Consider the code segment
temp = x;
x = y;
y = temp;

Precondition – what holds before the code segment:

• Q(x, y): x = a, y = b for some values a and b

Postcondition – what holds after the code segment:

• R(x,y):  x = b, y = a

• also can be expressed as Q(y, x)

To verify that the postcondition holds, we must start from the assumption 
that the precondition holds and go over every stop of the code ad examine 
what it does to see whether the postcondition is really true.



Predicates in computing

Consider the code segment

if P(x, y) {
temp = x;
x = y;
y = temp;

}

where P(x, y) is “x>y”

Precondition – what holds before the code segment:

• Q(x, y): x = a, y = b for some values a and b

Postcondition – what holds after the code segment:

• ???!
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Universes of Discourse (U.D.s)

The power of distinguishing objects from 
predicates is that it lets you state things 
about many objects at once.
E.g., let P(x)=“x+1>x”.  We can then say,
“For any number x, P(x) is true” instead of
(0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...
The collection of values that a variable x can 
take is called x’s universe of discourse.
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Quantifier Expressions

Quantifiers provide a notation that allows us 
to quantify (count) how many objects in the 
univ. of disc. satisfy a given predicate.
“∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u.d., P holds.
“∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d. 
(that is, 1 or more) such that P(x) is true.

Topic #3 – Predicate Logic
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The Universal Quantifier ∀

Example: 
Let the u.d. of x be parking spaces at UO.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), 
∀x P(x), is the proposition:

“All parking spaces at UO are full.”
i.e., “Every parking space at UO is full.”
i.e., “For each parking space at UO, that space is full.”

Topic #3 – Predicate Logic
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The Existential Quantifier ∃

Example: 
Let the u.d. of x be parking spaces at UO.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), 
∃x P(x), is the proposition:

“Some parking space at UO is full.”
“There is a parking space at UO that is full.”
“At least one parking space at UO is full.”

Topic #3 – Predicate Logic
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Free and Bound Variables

An expression like P(x) is said to have a 
free variable x (meaning, x is undefined).

A quantifier (either ∀ or ∃) operates on an 
expression having one or more free 
variables, and binds one or more of those 
variables, to produce an expression 
having one or more bound variables.

Topic #3 – Predicate Logic
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Example of Binding

P(x,y) has 2 free variables, x and y.
∀x P(x,y) has 1 free variable, and one bound 
variable.  [Which is which?]
“P(x), where x=3” is another way to bind x.
An expression with zero free variables is a 
bona-fide (actual) proposition.
An expression with one or more free variables 
is still only a predicate: e.g. let Q(y) = ∀x
P(x,y)

Topic #3 – Predicate Logic
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Nesting of Quantifiers

Example: Let the u.d. of x & y be people.
Let L(x,y)=“x likes y” (a predicate w. 2 f.v.’s)
Then ∃y L(x,y) = “There is someone whom x

likes.” (A predicate w. 1 free variable, x)
Then ∀x (∃y L(x,y)) =

“Everyone has someone whom they like.”
(A __________ with ___ free variables.)

Topic #3 – Predicate Logic
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Review: Predicate Logic (§1.3)

Objects x, y, z, …
Predicates P, Q, R, … are functions mapping 
objects x to propositions P(x).
Multi-argument predicates P(x, y).
Quantifiers: [∀x P(x)] :≡ “For all x’s, P(x).”
[∃x P(x)] :≡ “There is an x such that P(x).”
Universes of discourse, bound & free vars.
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Quantifier Exercise

If R(x,y)=“x relies upon y,” express the 
following in unambiguous English:

∀x(∃y R(x,y))=
∃y(∀x R(x,y))=
∃x(∀y R(x,y))=
∀y(∃x R(x,y))=
∀x(∀y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom 
everyone relies upon (including himself)!
There’s some needy person who relies 
upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody, 
(including themselves)!

Topic #3 – Predicate Logic
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Natural language is ambiguous!

“Everybody likes somebody.”
For everybody, there is somebody they like,

∀x ∃y Likes(x,y)
or, there is somebody (a popular person) whom 
everyone likes?

∃y ∀x Likes(x,y)
“Somebody likes everybody.”

Same problem: Depends on context, emphasis.

[Probably more likely.]

Topic #3 – Predicate Logic
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Still More Conventions

Sometimes the universe of discourse is 
restricted within the quantification, e.g.,

∀x>0 P(x) is shorthand for
“For all x that are greater than zero, P(x).”
=∀x (x>0 → P(x))
∃x>0 P(x) is shorthand for
“There is an x greater than zero such that 
P(x).”
=∃x (x>0 ∧ P(x))

Topic #3 – Predicate Logic
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More to Know About Binding

∀x ∃x P(x) - x is not a free variable in 
∃x P(x), therefore the ∀x binding isn’t used.
(∀x P(x)) ∧ Q(x) - The variable x is outside of 
the scope of the ∀x quantifier, and is 
therefore free.  Not a complete proposition!
(∀x P(x)) ∧ (∃x Q(x)) – This is legal, because 
there are 2 different x’s!

Topic #3 – Predicate Logic
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Quantifier Equivalence Laws

Definitions of quantifiers: If u.d.=a,b,c,…
∀x P(x) ⇔ P(a) ∧ P(b) ∧ P(c) ∧ …
∃x P(x) ⇔ P(a) ∨ P(b) ∨ P(c) ∨ …
From those, we can prove the laws:
∀x P(x) ⇔ ¬∃x ¬P(x)
∃x P(x) ⇔ ¬∀x ¬P(x)
Which propositional equivalence laws can 
be used to prove this?  

Topic #3 – Predicate Logic
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More Equivalence Laws

∀x ∀y P(x,y) ⇔ ∀y ∀x P(x,y)
∃x ∃y P(x,y) ⇔ ∃y ∃x P(x,y)
∀x (P(x) ∧ Q(x)) ⇔ (∀x P(x)) ∧ (∀x Q(x))
∃x (P(x) ∨ Q(x)) ⇔ (∃x P(x)) ∨ (∃x Q(x))
Exercise: See if you can prove these yourself.

What propositional equivalences did you 
use?

Topic #3 – Predicate Logic
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Review: Predicate Logic (§1.3)

Objects x, y, z, …
Predicates P, Q, R, … are functions 
mapping objects x to propositions P(x).
Multi-argument predicates P(x, y).
Quantifiers: (∀x P(x)) =“For all x’s, P(x).”
(∃x P(x))=“There is an x such that P(x).”

Topic #3 – Predicate Logic
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More Notational Conventions

Quantifiers bind as loosely as needed:
parenthesize ∀x P(x) ∧ Q(x)
Consecutive quantifiers of the same type can 
be combined: ∀x ∀y ∀z P(x,y,z) ⇔
∀x,y,z P(x,y,z)    or even    ∀xyz P(x,y,z)
All quantified expressions can be reduced
to the canonical alternating form 
∀x1∃x2∀x3∃x4… P(x1, x2, x3, x4, …)

(              )

Topic #3 – Predicate Logic
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Defining New Quantifiers

As per their name, quantifiers can be used to 
express that a predicate is true of any given 
quantity (number) of objects.

Define ∃!x P(x) to mean “P(x) is true of exactly 
one x in the universe of discourse.”

∃!x P(x) ⇔ ∃x (P(x) ∧ ¬∃y (P(y) ∧ y≠ x))
“There is an x such that P(x), where there is 
no y such that P(y) and y is other than x.”

Topic #3 – Predicate Logic
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Some Number Theory Examples

Let u.d. = the natural numbers 0, 1, 2, …
“A number x is even, E(x), if and only if it is 
equal to 2 times some other number.”
∀x (E(x) ↔ (∃y  x=2y))
“A number is prime, P(x), iff it’s greater than 1 
and it isn’t the product of any two non-unity 
numbers.”
∀x (P(x) ↔ (x>1 ∧ ¬∃yz x=yz ∧ y≠1 ∧ z≠1))
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Goldbach’s Conjecture (unproven)

Using E(x) and P(x) from previous slide,
∀E(x>2): ∃P(p),P(q): p+q = x

or, with more explicit notation:
∀x [x>2 ∧ E(x)] →

∃p ∃q P(p) ∧ P(q) ∧ p+q = x.
“Every even number greater than 2 

is the sum of two primes.”
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Calculus Example

One way of precisely defining the 
calculus concept of a limit, using 
quantifiers:( )
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Deduction Example

Definitions:
s :≡ Socrates (ancient Greek philosopher);

H(x) :≡ “x is human”;
M(x) :≡ “x is mortal”.

Premises:
H(s)              Socrates is human.
∀x H(x)→M(x)      All humans are mortal.
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Deduction Example Continued

Some valid conclusions you can draw:
H(s)→M(s)      [Instantiate universal.]
If Socrates is human then he is mortal.
¬H(s) ∨ M(s)              Socrates is inhuman or mortal.
H(s) ∧ (¬H(s) ∨ M(s))  
Socrates is human, and also either inhuman or mortal.
(H(s) ∧ ¬H(s)) ∨ (H(s) ∧ M(s)) [Apply distributive Law.]
F ∨ (H(s) ∧ M(s))             [Trivial contradiction.]
H(s) ∧ M(s)                      [Use identity law.]
M(s)                              Socrates is mortal.
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Another Example

Definitions:  
H(x) :≡ “x is human”; M(x) :≡ “x is mortal”;
G(x) :≡ “x is a god”

Premises:
∀x H(x) → M(x) (“Humans are mortal”) and
∀x G(x) → ¬M(x) (“Gods are immortal”).

Show that ¬∃x (H(x) ∧ G(x))
(“No human is a god.”)
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The Derivation

∀x H(x)→M(x) and ∀x G(x)→¬M(x).
∀x ¬M(x)→¬H(x)   [Contrapositive.]
∀x [G(x)→¬M(x)] ∧ [¬M(x)→¬H(x)]
∀x G(x)→¬H(x)       [Transitivity of →.]
∀x ¬G(x) ∨ ¬H(x)    [Definition of →.]
∀x ¬(G(x) ∧ H(x))     [DeMorgan’s law.]
¬∃x G(x) ∧ H(x)       [An equivalence law.]
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End of §1.3-1.4, Predicate Logic

From these sections you should have 
learned:

Predicate logic notation & conventions
Conversions: predicate logic ↔ clear 
English
Meaning of quantifiers, equivalences
Simple reasoning with quantifiers
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