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Introduction to Number Theory 

Let a,b∈Z with a≠0. 
  a|b  ≡ “a divides b”  :≡   (∃ c∈Z: b=ac) 

“There is an integer c such that c times a equals b.” 

If a divides b, then we say a is a factor or a divisor
 of b, and b is a multiple of a. 

We will go through some useful  basics of number
 theory. 

Vital in many important algorithms today (hash
 functions, cryptography, digital signatures; in
 general, on-line security). 



Dr-Zaguia-CSI2101-W08 2 

Introduction to Number Theory 

Common facts: 
  a | 0  
  If a | b and a | c, then a | (b+c) 
  If a | b, then a | bc for all integers c 
  If a | b and b | c, then a | c 

Corollary:If a, b, c are integers, such that a | b and a | c, then a | mb + nc
 whenever m and n are integers. 

Division Algorithm --- Let a be an integer and d a positive integer. Then there
 are unique integers  q and r, with 0 ≤r < d, such that a = dq+r. 

r is called the remainder, d is called the divisor,  a is called the dividend, q is
 called the quotient 

It’s really just a theorem, not an algorithm… Only called an “algorithm” for historical reasons. 
  If a = 7 and d = 3, then q = 2 and r = 1, since 7 = (2)(3) + 1.  
  If a = －7 and d = 3, then q = －3 and r = 2, since －7 = (－3)(3) + 2.  
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Introduction to Number Theory 

Proof of Division Algorithm : (we’ll use the well-ordering
 property directly that states that every set of nonnegative
 integers has a least element.) 

Existence: We want to show the existence of q and r, with the
 property that a = dq+r, 0 ≤r <d 

Consider the set  of non-negative numbers of the form a - dq,
 where q is an integer. By the well-ordering property, S has a least
 element, r = a - d q0. 

r is non-negative; also, r < d. Otherwise if r≥ d, there would be a
 smaller nonnegative element in S, namely a-d(q0+1)≥0. But
 then a-d(q0+1), which is smaller than a-dq0, is an element of S,
 contradicting that  a-dq0 was the smallest element of S.  

So, it cannot be the case that r ≥ d, proving the existence of 0 ≤ r
 < d and q. 

QED 
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Introduction to Number Theory 

b) Uniqueness 
Suppose ∃ q, Q, R   0≤r, R<d  such that a= dq + r and a = dQ+ R. 

Without loss of generality we may assume that q ≤ Q. Subtracting
 both equations we have:   d (q-Q) = (R – r). So d divides (R-r);
 so, either |d| ≤ |(R –r)| or (R – r) = 0; Since 0 ≤ r, R<d then  
 –d < R - r < d  i.e.,  |R-r| < d, thus we must have R – r = 0. 

So, R = r. Substituting into the original two equations, we have dq
 = d Q (note d≠0) and thus q=Q, proving uniqueness. 
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Modular Arithmetic 

If a and b are integers and m is a positive integer, then  

“a is congruent to b modulo m”  if  m divides a-b  
(denoted: a ≡ b (mod m) ; a mod m = b mod m) 

≡ 3 
(mod 5) 

≡ 2 
(mod 5) 

≡ 1 
(mod 5) 

≡ 0 
(mod 5) 

≡ 4 
(mod 5) 0 
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As 6 divides 17-5, 17 is congruent
 to 5 modulo 6,  17 ≡ 5 (mod 6) 

Congruence classes modulo 5. 
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Modular Arithmetic 

Theorem: Let m be a positive integer.  The integers a
 and b are congruent modulo m if and only if there is
 an integer k such that a = b + km 

Theorem: Let m be a positive integer.  If a ≡ b (mod
 m) and c ≡ d (mod m), then a+c ≡ (b+d) (mod m)
 and  ac ≡ bd (mod m) 
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Hashing Functions 

  Also known as: 
  hash functions, hash codes, or just hashes. 

  Two major uses: 
  Indexing hash tables 

  Data structures which support O(1)-time access. 
  Creating short unique IDs for long documents. 

  Used in digital signatures – the short ID can be signed,
 rather than the long document. 
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Hash Functions   

  Example:  Consider  a record that is identified by the SSN (9 digits)
 of the customer. 

  How can we assign   a memory location to a record so that later
 on it’s easy to locate and retrieve such a record? 

  Solution to this problem  a good hashing function. 
  Records are identified using a key (k), which uniquely identifies

 each record.  
  If you compute the hash of the same data at different times, you

 should get the same answer – if not then the data has been
 modified. 
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Hash Function Requirements 

  A hash function h: A→B is a map from a set A to a smaller set B  
(i.e., |A| ≥ |B|). 

  An effective hash function should have the following properties: 
  It should cover (be onto) its codomain B. 
  It should be efficient to calculate. 
  The cardinality of each pre-image of an element of B should be about

 the same. 
  ∀b1,b2∈B: |h−1(b1)| ≈ |h−1(b2)| 
  That is, elements of B should be generated with roughly uniform

 probability. 
  Ideally, the map should appear random, so that clearly “similar”

 elements of A are not likely to map to the same (or similar) elements
 of B. 
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Hash Function Requirements 

Why are these important? 
  To make computations fast and efficient. 
  So that any message can be hashed. 
  To prevent a message being replaced with

 another with the same hash value. 
  To prevent the sender claiming to have

 sent x2 when in fact the message was x1. 
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Hash Function Requirements 

  Furthermore, for a cryptographically secure hash function: 

  Given an element b∈B, the problem of finding an a∈A such that
 h(a)=b should have average-case time complexity of Ω(|B|c) for
 some c>0. 

  This ensures that it would take exponential time in the length of
 an ID for an opponent to “fake” a different document having the
 same ID. 
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A Simple Hash Using mod 

  Let the domain and codomain be the sets of all natural numbers
 below certain bounds: 
        A = {a∈N | a < alim},  B = {b∈N | b < blim} 

  Then an acceptable (although not great!) hash function from A to B
 (when alim≥blim) is     h(a) = a mod blim. 

  It has the following desirable hash function properties: 
  It covers or is onto its codomain B (its range is B). 
  When alim ≫ blim, then each b∈B has a preimage of about the

 same size, 
  Specifically, |h−1(b)| = alim/blim or alim/blim. 
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A Simple Hash Using mod 

  However, it has the following limitations: 

  It is not very random. Why not? 

  It is definitely not cryptographically secure. 
  Given a b, it is easy to generate a’s that map to it. How? 

We know that for any n∈N,  h(b + n blim) = b. 

For example, if all a’s encountered happen to have the 
same residue mod blim, they will all map to the same b! 
(see also “spiral view”) 
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Hash Function: Collision 

  Because a hash function is not one-to-one (there are
 more possible keys than memory locations) more
 than one record  may be assigned to the same
 location  we call this situation a collision. 

  What to do when a collision happens? 
  One possible way of solving a collision is to assign

 the first free location following the occupied memory
 location assigned by the hashing function. 

  There are other ways… for example chaining (At each
 spot in the hash table, keep a linked list of keys
 sharing this hash value, and do a sequential search
 to find the one we need. ) 
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Digital Signature Application 

  Many digital signature systems use a cryptographically secure (but
 public) hash function h which maps arbitrarily long documents down to
 fixed-length (e.g., 1,024-bit) “fingerprint” strings. 

  Document signing procedure: 

  Signature verification procedure: 
– Given a document a and signature c, quickly find a’s hash b = h(a). 
– Compute b′ = f −1(c).  (Possible if f’s inverse f −1 is made public (but not f ).) 
– Compare b to b′; if they are equal then the signature is valid. 

Note that if h were not cryptographically secure, then an opponent could easily 
forge a different document a′ that hashes to the same value b, and thereby attach 
someone’s digital signature to a different document than they actually signed, and 
fool the verifier! 

– Given a document a to sign, quickly compute its hash b = h(a). 
– Compute a certain function c = f(b) that is known only to the signer 

• This step is generally slow, so we don’t want to apply it to the whole 
document. 

– Deliver the original document together with the digital signature c. 

What if h was not cryptographically secure? 
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Pseudorandom numbers 

Computers cannot generate truly random numbers –
 that’s why we call them pseudo-random numbers! 

  Linear Congruential Method: Algorithm for
 generating pseudorandom numbers. 

  Choose 4 integers 
  Seed x0: starting value 
  Modulus m: number of possible values 
  Multiplier a: such that 2 ≤ a < m  
  Increment c: between 0 and m-1 

  In order to generate a sequence of pseudorandom 
 numbers, {xn | 0≤ xn <m}, apply the formula: 
    xn+1 = (axn + c) mod m 
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  Formula: xn+1 = (axn + c) mod m 
  Let x0 = 3, m = 9, a = 7, and c = 4 

  x1 = 7x0+4 = 7*3+4 = 25 mod 9 = 7 
  x2 = 7x1+4 = 7*7+4 = 53 mod 9 = 8 
  x3 = 7x2+4 = 7*8+4 = 60 mod 9 = 6 
  x4 = 7x3+4 = 7*6+4 = 46 mod 9 = 1 
  x5 = 7x4+4 = 7*1+4 = 46 mod 9 = 2 
  x6 = 7x5+4 = 7*2+4 = 46 mod 9 = 0 
  x7 = 7x6+4 = 7*0+4 = 46 mod 9 = 4 
  x8 = 7x7+4 = 7*4+4 = 46 mod 9 = 5 

Pseudorandom numbers 
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Pseudorandom numbers 

Formula: xn+1 = (axn + c) mod m 
  Let x0 = 3, m = 9, a = 7, and c = 4 

This sequence generates: 
3, 7, 8, 6, 1, 2, 0, 4, 5, 3 , 7, 8, 6, 1, 2, 0, 4, 5, 3 
  Note that it repeats! 
  But it selects all the possible numbers before

 doing so 

  The common algorithms today use m = 232-1 
  You have to choose 4 billion numbers before it repeats 

  Multiplier 75 = 16,807 and increment c=0 (pure multiplicative 
 generator) 
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Cryptology 
(secret messages) 

  The Caesar cipher: Julius Caesar used the following
 procedure  to encrypt messages 

  A function f to encrypt a letter is defined as:  
f(p) = (p+3) mod 26 
  Where p is a letter (0 is A, 1 is B, 25 is Z, etc.) 

  Decryption: f-1(p) = (p-3) mod 26 

  This is called a substitution cipher 
  You are substituting one letter with another 
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The Caesar cipher 

  Encrypt “go cavaliers” 
  Translate to numbers: g = 6, o = 14, etc. 

  Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18 
  Apply the cipher to each number: f(6) = 9, f(14) = 17, etc. 

  Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21 
  Convert the numbers back to letters 9 = j, 17 = r, etc. 

  Full sequence: jr wfdydolhuv 

  Decrypt “jr wfdydolhuv” 
  Translate to numbers: j = 9, r = 17, etc.  

  Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21 
  Apply the cipher to each number: f-1(9) = 6, f-1(17) = 14, etc. 

  Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18 
  Convert the numbers back to letters 6 = g, 14 = 0, etc.  

  Full sequence: “go cavaliers” 
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Rot13 encoding 

A Caesar cipher, but translates letters by 13 instead of 3 
  Then, apply the same function to decrypt it, as

 13+13=26     (Rot13 stands for “rotate by 13”) 

  Example: 
>echo Hello World | rot13 
Uryyb Jbeyq 
> echo Uryyb Jbeyq | rot13 
Hello World 
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Fundamental Theorem of Arithmetic 

A positive integer p is prime if the only positive factors
 of p are 1 and p. (If there are other factors, it is composite,
 note that 1 is not prime! It’s not composite either – it’s in its
 own class) 

Fundamental Theorem of Arithmetic: 
Every positive integer greater than 1 can be uniquely

 written as a prime or as the product of two or more
 primes where the prime factors are written in order
 of non-decreasing size 

primes are the building blocks of the natural numbers. 
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Fundamental Theorem of Arithmetic 

Proof of Fundamental theorem of arithmetic: (use Strong Induction) 
Show that if n is an integer greater than 1, then n can be written

 as the product of primes.  
  Base case – P(2)  2 can be written as 2 (the product of itself) 

  Inductive Hypothesis  - Assume P(j) is true for ∀ 2 ≤j ≤k, j
 integer and prove that P(k+1) is true. 

a) If k+1 is prime then it’s the product of itself, thus P(k+1) true; 
b) If k+1  is a composite number and it can be written as the

 product of two positive integers a and b, with 2 ≤a ≤ b ≤ k+1.
 By the inductive hypothesis, a and b can be written as the
 product of primes, and so does k+1 ,  

Missing Uniqueness proof, it needs more knowledge, 
soon… 



Dr-Zaguia-CSI2101-W08 24 

Fundamental Theorem of Arithmetic 

Theorem: If n is a composite integer, then n has a prime
 divisor less than or equal to the square root of n 

Proof: 
Since n is composite, it has a factor a such that 1<a<n. Thus, n = ab, where

 a and b are positive integers greater than 1.  
Either a≤√n or b≤√n  (Otherwise, ab > √n*√n > n. Contradiction.) Thus, n

 has a divisor not exceeding √n. This divisor is either prime or a
 composite. If the latter, then it has a prime factor (by the FTA). In either
 case, n has a prime factor less than √n   ● 

  E.g., show that 113 is prime.  

  Solution 
  The only prime factors less than √113 = 10.63 are 2, 3, 5, and 7 
  None of these divide 113 evenly 
  Thus, by the fundamental theorem of arithmetic, 113 must be prime 
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Mersenne  numbers 
Mersenne  number: any number of the form 2n-1 

Mersenne prime: any prime of the form 2p-1, where p is also a prime. 

  Example: 25-1 = 31 is a Mersenne prime 
  But 211-1 = 2047 is not a prime (23*89) 

If M is a Mersenne prime, then M(M+1)/2 is a perfect number 
  A perfect number equals the sum of its divisors 
  Example: 23-1 = 7 is a Mersenne prime, thus 7*8/2 = 28 is a perfect number 

  28 = 1+2+4+7+14 
  Example: 25-1 = 31 is a Mersenne prime, thus 31*32/2 = 496 is a perfect number 

496 = 2*2*2*2*31  1+2+4+8+16+31+62+124+248 = 496 

The largest primes found are Mersenne primes. 
  Since, 2p-1 grows fast, and there is an extremely efficient test – Lucas-Lehmer test – for

 determining if a Mersenne prime is prime 
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GCD and LCM of Two Integers 
The greatest common divisor of two integers a and b is the

 largest integer d such that d | a and d | b,  denoted by
 gcd(a,b) 

Two numbers are relatively prime if they don’t have any
 common factors (other than 1), that is gcd (a,b) = 1 

The least common multiple of the positive integers a and b is the
 smallest positive integer that is divisible by both a and b.
 Denoted by lcm (a, b). 

The gcd and the lcm are computed by the following formulas: 

Given two numbers a and b, rewrite them as: 
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GCD and LCM of Two Integers 

Theorem: Let a and b be positive integers.   
  Then  a*b = gcd(a,b) * lcm (a, b). 

Finding GCDs by comparing prime factorizations is not necessarily a good algorithm
 (can be difficult to find prime factors are! And, no fast algorithm for factoring is
 known. (except …)      

Euclid: For all integers a, b, gcd(a, b)=gcd((a mod b), b). 
Sort a,b so that a>b, and then (given b>1) (a mod b) < a, so problem is simplified. 

lcm(10, 25) = 50 
What is lcm (95256, 432)? 

  95256 = 233572, 432=2433 

  lcm (233572, 2433) = 2max(3,4)3max(5,3)7max(2,0)= 24 35 72 = 190512 
What is gcd (95256, 432)? 

  gcd (233572, 2433) = 2min(3,4)3min(5,3)7min(2,0)= 23 33 70 = 216 
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GCD and LCM of Two Integers 

Theorem: Let a =bq+r, where a,b,q,and r are integers.
 Then gcd(a,b) = gcd(b,r) 

Proof: Suppose a and b are the natural numbers whose gcd has to
 be determined. And suppose the remainder of the division of a
 by b is r. Therefore a = qb + r where q is the quotient of the
 division. 

  Any common divisor of a and b is also a divisor of r. To see why
 this is true, consider that r can be written as r = a － qb. Now,
 if there is a common divisor d of a and b such that a = sd and
 b = td, then r = (s－qt)d. Since all these numbers, including 
s－qt, are whole numbers, it can be seen that r is divisible by d. 

  The above analysis is true for any divisor d; thus, the greatest
 common divisor of a and b is also the greatest common divisor
 of b and r.  
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GCD and LCM of Two Integers 

Before we get to two Additional Applications: 
1 - Performing arithmetic with large numbers 
2 - Public Key System 

We require additional key results in Number Theory 
  Theorem:  

  ∀a,b integers, a,b >0:    ∃s,t:  gcd(a,b) = sa + tb 

  Lemma 1: 
  ∀a,b,c>0:  gcd(a,b)=1 and a | bc, then a|c 

  Lemma 2: 
  If p is prime and p|a1a2…an (integers ai), then ∃i: p|ai. 

  Theorem 2: 
  If ac ≡ bc (mod m) and gcd(c,m)=1, then a ≡ b (mod m). 
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GCD and LCM of Two Integers 

Theorem 1: ∀a≥ b≥ 0  ∃s,t:  gcd(a,b) = sa + tb 
Proof: By induction over the value of the larger argument a. 

Base case: If b=0 or a=b then gcd(a,b)= b and thus gcd(a,b) = sa
 + tb where s = 1, t = 0. Therefore Theorem true for base case. 

Inductive step: From Euclid theorem, we know that if c = a mod b,
 (i.e. a = kb +c for some integer k,  and thus c = a − kb.) then 
 gcd(a,b) = gcd(b,c).  

Since b<a and c<b, then by the strong inductive hypothesis, we
 can deduce that ∃uv: gcd(b,c) = ub +vc.    

Substituting for c=a − kb, we obtain ub+v(a−kb), which we can
 regroup to get va + (u−vk)b.   

So, for s = v, and let t = u −vk, we have gcd(a,b) = sa + tb. This
 finishes the induction step. 
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GCD and LCM of Two Integers 

Lemma 2:  If p is a prime and  p|a1…an then ∃i: p|ai. 

Proof: We use strong induction on the value n. 
Base case: n=1 Obviously the lemma is true, since p|a1 implies p|a1.   
Inductive case: Suppose the lemma is true for all n<k and suppose

 p|a1…ak+1.  If p|m where m=a1…ak then bu induction p divides
 one of the ai’s for i=1, …k, and we are done.   

Otherwise, we have p|mak+1 but ¬(p|m).  Since m is not a multiple
 of p, and p has no factors, m has no common factors with p,
 thus gcd(m,p)=1.  So, by applying lemma 1, p|ak+1. This end the
 proof of the inductive step ■ 
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the Fundamental Theorem of Arithmetic:
 Uniqueness 

“The prime factorization of any number n is unique.” 

Theorem: If p1…ps = q1…qt are equal products of two non decreasing
 sequences of primes, then s=t and pi = qi for all i. 

Proof:   
We proceed with a proof by contradiction. We assume that p1…ps = q1…qt  

 however there i such that for every j, pi ≠ qj. In fact, and without loss
 of generality we may assume that all primes in common have already
 been divided out, and thus may assume that ∀ij: pi ≠ qj.  

But since p1…ps = q1…qt, we clearly have p1|q1…qt. According to Lemma 2,
 ∃j: p1|qj.  Since qj is prime, it has no divisors other than itself and 1,
 so it must be that pi=qj. This contradicts the assumption ∀ij: pi ≠ qj. 
 The only resolution is that after the common primes are divided out,
 both lists of primes were  empty, so we couldn’t pick out p1. In other
 words, the two lists must have been identical to begin with!  

(primes are the building blocks of numbers) 

The “other” part of proving the Fundamental Theorem of Arithmetic. 
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GCD and LCM of Two Integers 

Theorem 2: If ac ≡ bc (mod m) and gcd(c,m)=1, then a ≡ b (mod m). 

Proof:  Since ac ≡ bc (mod m), this means m | ac−bc.  Factoring the
 right side, we get m | c(a − b). Since gcd(c,m)=1 (c and m are
 relative prime), lemma 1 implies that m | a−b,  in other words, a ≡
 b (mod m).  
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An Application of Theorem 2 

Suppose we have a pure-multiplicative pseudo-random number
 generator {xn} using a multiplier a that is relatively prime to the
 modulus m. 

Then the transition function that maps from xn to xn+1 is bijective.
 Because if xn+1 = axn mod m = axn

′ mod m, then xn=xn′ (by
 theorem 2). This in turn implies that the sequence of numbers
 generated cannot repeat until the original number is re
-encountered. And this means that on average, we will visit a
 large fraction of the numbers in the range 0 to m−1 before we
 begin to repeat! 

  Intuitively, because the chance of hitting the first number in the
 sequence is 1/m, so it will take Θ(m) tries on average to get to it. 

  Thus, the multiplier a ought to be chosen relatively prime to the
 modulus, to avoid repeating too soon. 
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GCD and LCM of Two Integers 

  A congruence of the form ax ≡ b (mod m) is called a linear congruence. 
  Solving the congruence is to find the x’s that satisfy it. 

  An inverse of a, modulo m is any integer a′ such that  a′a ≡ 1 (mod m). 
  If we can find such an a′, notice that we can then solve ax ≡ b. Enough

 to multiply both sides by a′, giving a′ax ≡ a′b,  
 thus 1·x ≡ a′b, therefore x ≡ a′b (mod m). 

Theorem 3:  If gcd(a,m)=1 and m>1, then a has a unique (modulo m) inverse a′. 

Proof:  
By theorem 1, ∃st: sa+tm = 1, so sa+tm ≡ 1 (mod m).   Since tm

 ≡ 0 (mod m), sa ≡ 1 (mod m).  Thus s is an inverse of a (mod
 m). Theorem 2 guarantees that if ra ≡ sa ≡ 1 then r≡s. Thus
 this inverse is unique mod m. (All inverses of a are in the same
 congruence class as s.) 
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Pseudoprimes 

  Ancient Chinese mathematicians noticed that whenever n is
 prime, 2n−1≡1 (mod n). 
  Then some also claimed that the converse was true. 

  It turns out that the converse is not true! 
  If 2n−1≡1 (mod n), it doesn’t follow that n is prime. 

  341=11·31 do it is not prime, but 2340 ≡ 1 (mod 341).  
(not so easy to find the counter example) 

  Composites n with this property are called pseudoprimes. 
  More generally, if bn−1 ≡ 1 (mod n) and n is composite, then n

 is called a pseudoprime to the base b. 

If converse was true, what would be a good test for primality? 
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Fermat’s Little Theorem 

Fermat generalized the ancient observation that 2p−1≡1 (mod p) for
 primes p to the following more general theorem: 

Theorem: (Fermat’s Little Theorem.)  
  If p is prime and a is an  integer not divisible by p, then 

    ap−1 ≡ 1 (mod p). 
  Furthermore, for every integer a 

  ap ≡ a (mod p).   
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Carmichael numbers 

These are sort of the “ultimate pseudoprimes.” 
A Carmichael number is a composite n such that  a n−1 ≡ 1 (mod n)

 for all a relatively prime to n. 

The smallest few are 561, 1105, 1729, 2465, 2821, 6601, 8911,
 10585, 15841, 29341. 

These numbers are important since they fool the Fermat 
primality test: They are “Fermat liars”.  

The Miller-Rabin (’76 / ’80) randomized primality testing algorithm 
eliminates problems with Carmichael problems. 
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Carmichael numbers have at least three prime factors. 

The first Carmichael numbers with k=3, 4, 5, … prime factors 

Carmichael numbers 



Dr-Zaguia-CSI2101-W08 40 

RSA and Public-key Cryptography 

Alice and Bob have never met but they would like to  
exchange a message. Eve would like to eavesdrop. 

They could come up with a good 
encryption algorithm and exchange the 
encryption key – but how to do it without 
Eve getting it? (If Eve gets it, all security 
is lost.) 

CS folks found the solution: 
public key encryption. Quite remarkable. 
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Public Key Encryption: RSA 

RSA – Public Key Cryptosystem (why RSA?) 
Uses  modular arithmetic and large primes  Its security comes from the computational difficulty  
of factoring large numbers.  
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Public Key Encryption: RSA 

RSA stands for its inventors Rivest, Shamir, Adleman 

Normal cryptography: 

•  communicating parties both need to know a secret key k 

•  sender encodes the message m using the key k and gets 
the     ciphertext c = f(m,k) 

•  the receiver decodes the ciphertext using the key k and 
recovers the original message m  = g(c,k) 

Problem: How to securely distribute the key k 

•  for security reasons, we don’t want to use the same k 
everywhere/for long time 
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Public Key Encryption: RSA 

RSA brings the idea of public key cryptography 

•  the receiver publishes (lets everybody know) its public key k 

•  everybody can send an encoded message c to the receiver: 
c=f(m,k) 

•  f is a known encoding function 

•  only the receiver that know the secret key k’ can decode the 
ciphertext using m = g(c, k’) 

•  the decoding function g is also known, just k’ is not 
publicly known 

So how does it works?  What are the keys  k and k’ and 
the functions f() and g()? 
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Public Key Encryption: RSA 

Let p and q be two really large primes (each of several hundred digits) 

The public key is a pair (n,e) where  

 n = pq, and e is relatively prime to (p-1)(q-1) 

The encoding function is f(m,k) = me mod n 

•  assumes you message is represented by an integer m<n 

•  every message m can be split into integers m1, m2, … and 
encode those integers separately 

The secret (private) key is the number d which is an inverse of e 
modulo (p-1)(q-1) 

The decoding function is g(c, d) = cd mod n 

The basic idea is that from the knowledge of n it is very difficult 
(exponential in the number of digits) to figure p and q, and therefore 
very difficult to figure d. 
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Public Key Encryption: RSA 

Hmm, how come that we actually recover the original message? 

We want to show that g(f(m, k), k’) = m 

g(f(m,k), k’) = (me mod n)d mod n = med mod n  

By choice of e and d, we have ed ≡ 1 mod (p-1)(q-1), ie ed = 1+k(p-1)
(q-1) for some k 

Let us assume that gcd(m,p) = gcd(m,q) = 1 

•  that can be checked by the encoding algorithm and handled separately 
if not true 

Then, by Fermat’s Little Theorem mp-1 ≡1 (mod p) and mq-1 ≡ 1 (mod q)  

We get med ≡ m1+k(p-1)(q-1) ≡ m*(mp-1)k(q-1) ≡ m*1k(q-1) ≡ m (mod p) 

Analogously, we get med ≡ m (mod q) 

Since p and q are relatively prime, by the Chinese Remainder Theorem we 
get med ≡ m (mod pq) 
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Public Key Encryption: RSA 

  In private key cryptosystems, the same secret “key” string is used to both encode
 and decode messages. 
  This raises the problem of how to securely communicate the key strings. 

  In public key cryptosystems, instead there are two complementary keys. 
  One key decrypts the messages that the other one encrypts. 

  This means that one key (the public key) can be made public, while the other (the
 private key) can be kept secret from everyone. 
  Messages to the owner can be encrypted by anyone using the public key, but

 can only be decrypted by the owner using the private key. 
  Or, the owner can encrypt a message with the private key, and then anyone

 can decrypt it, and know that only the owner could have encrypted it. 
  This is the basis of digital signature systems. 

  The most famous public-key cryptosystem is RSA. 
  It is based entirely on number theory 
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Public Key Encryption: RSA 

  The private key consists of:  
  A pair p, q of large random prime numbers, and  
   d, an inverse of e modulo (p−1)(q−1), but not e

 itself. 
  The public key consists of:  

  The product n = pq (but not p and q), and  
  An exponent e that is relatively prime to (p−1)(q−1). 

  To encrypt a message encoded as an integer M < n: 
  Compute C = Me mod n. 

  To decrypt the encoded message C, 
  Compute M = Cd mod n. 

The security of RSA is based on the assumption that factoring n,
 and so discovering p and q is computationally infeasible. 
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Public Key Encryption: RSA 

  Set up: secret in red/public in green 
  Bob generates two large primes p and q (e.g. 200 digits long!) 
  Bob computes n=pq, and e relatively prime to (p-1)(q-1) 
  Bob computes d, the inverse of e modulo (p-1)(q-1). 
  Bob publishes n and e in a directory as his public key. 
  (Bob keeps d, p and q secret) 
  Encode:  
  Alice wants to send message M to Bob. 
  Alice computes: C = Me (mod n), and sends C to Bob. 
  Decode: 
  Bob uses the cipher text C and secret key d and computes 
  M= Cd  (mod n) 
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Public Key Encryption: RSA 

Bob chooses:  p=43;q=59; e =13 (note:gcd(e,(p-1),(q-1))=gcd(13,42×58)=1) 
Bob calculates: n=43x59=2537 and d = 937, inverse of 13 mod (42×58=2436) 
                                              (de=937x13=12181= 5x2436 + 1 = 1 mod 2436) 
Bob publishes: n=2537, e=13. 

Alice wants to send message “STOP” to Bob using RSA. 
S  18 T 19 O 14 P15  i.e, 1819 1415, grouped into blocks of 4 
Original message = 1819 1415 
Each block is encrypted using C = Me (mod n) 
181913 mod 2537 = 2081  
145113 mod 2537 = 2182 
Encrypted message = 2081 2182 

Bob computes 2081937 mod 2537 = 1819  S T 
                     2182937 mod 2537 = 1415  O P 
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Public Key Encryption: RSA 

Susan wants to send the message HELP 
07 H; 04  E; 11 L; 15  P 
Plain message is 0704 1115 
Susan computes: 070413 mod 2537= 0981 and 111513 mod 2537= 0461  

Susan sends cypher text: 0981 0461 

Bob decodes: 
  0981937 mod 2537= 0704 and 0461937 mod 2537 = 1115 
  So the decoded  message is  0704 1115 

0704 HE 
1115 LP 

Still using the same public keys published by Bob – see previous example 
n=2537, e=13,  while Bob keeps d=937 secret 


