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CSI 2101 / Rules of Inference (§1.5)

Introduction
what is a proof?

Valid arguments in Propositional Logic
equivalence of quantified expressions

Rules of Inference in Propositional Logic
the rules
using rules of inference to build arguments
common fallacies

Rules of Inference for Quantified Statements
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Proof?

In mathematics, a proof is a correct (well-
reasoned, logically valid) and complete (clear, 
detailed) argument that rigorously & undeniably 
establishes the truth of a mathematical statement.

Why must the argument be correct & 
complete?

Correctness prevents us from fooling ourselves.
Completeness allows anyone to verify the result.
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Proof?

Applications of Proofs
An exercise in clear communication of logical 
arguments in any area of study.
The fundamental activity of mathematics is the 
discovery and elucidation, through proofs, of 
interesting new theorems.
Theorem-proving has applications in program 
verification, computer security, automated reasoning 
systems, etc.
Proving a theorem allows us to rely upon on its 
correctness even in the most critical scenarios.
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Terminology

Theorem: A statement that has been proven to be true.
Axioms, postulates, hypotheses, premises: Assumptions 
(often unproven) defining the structures about which 
we are reasoning.
Rules of inference: Patterns of logically valid deductions 
from hypotheses to conclusions. 
Lemma: A minor theorem used as a stepping-stone to 
proving a major theorem.
Corollary: A minor theorem proved as an easy 
consequence of a major theorem.
Conjecture: A statement whose truth value has not 
been proven.  (A conjecture may be widely believed to 
be true, regardless.)
Theory: The set of all theorems that can be proven 
from a given set of axioms.
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Graphical Visualization

…

Various TheoremsVarious Theorems
The AxiomsThe Axioms
of the Theoryof the Theory

A Particular TheoryA Particular Theory

A proofA proof
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How to prove something?

Consider the statements:

• If you did not sleep last night,  you will sleep during the lecture.

• You did not sleep last night

We can conclude that you will sleep during the lecture.

Let P be “you did not sleep last night”

and Q be “you will sleep during the lecture”

The form of our argument is:

which reflects tautology:     
((p→q) ∧ p) → q

P  → Q
P
----------
Q
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Rules of Inference

Any valid argument form can be used

• there are infinitely many of them, based on different tautologies

• validity of an argument form can be verified e.g. using truth tables

There are simple, commonly used and useful argument forms

• when writing proofs for humans, it is good to use well known 
argument forms

• so that the reader can follow

• complex argument forms can be derived from simpler ones

Although the original idea was to have a mechanical approach to proofs
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Rules of Inference

An Inference Rule is 
A pattern establishing that if we know that a set of 
antecedent statements of certain forms are all 
true, then we can validly deduce that a certain 
related consequent statement is true. 

antecedent 1
antecedent 2 …
∴ consequent           “∴” means “therefore”

Each valid logical inference rule corresponds to an implication that is a 
tautology. 
Corresponding tautology: ((ante. 1) ∧ (ante. 2) ∧ …) → consequent
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Some Inference Rules

p Rule of Addition
∴ p∨q

p∧q Rule of Simplification
∴ p

p Rule of Conjunction
q

∴ p∧q
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Modus Ponens & Tollens

p Rule of modus ponens
p→q (a.k.a. law of detachment)
∴q

¬q
p→q Rule of modus tollens
∴¬p

“the mode of affirming”

“the mode of denying”
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Syllogism & Resolution Inference Rules

p→q
q→r

∴p→r
p ∨ q
¬p

∴ q

Rule of hypothetical syllogism

Rule of disjunctive syllogism

Rule of Resolution
p ∨ q

¬p ∨ r 
∴q ∨ r
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Formal Proofs

A formal proof of a conclusion C, given 
premises p1, p2,…,pn consists of a sequence 
of steps, each of which applies some 
inference rule to premises or previously-
proven statements (antecedents) to yield a 
new true statement (the consequent).

A proof demonstrates that if the premises are 
true, then the conclusion is true.
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Formal Proof Example

Suppose we have the following premises:
“It is not sunny and it is cold.”
“We will swim only if it is sunny.”
“If we do not swim, then we will canoe.”
“If we canoe, then we will be home 
early.”
Given these premises, prove the theorem
“We will be home early” using inference 
rules.
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Proof Example cont.

Let us adopt the following abbreviations:
sunny = “It is sunny”; 
cold = “It is cold”; 
swim = “We will swim”; 
canoe = “We will canoe”; 
early = “We will be home early”.

Then, the premises can be written as:
(1) ¬sunny ∧ cold (2) swim → sunny
(3) ¬swim → canoe (4) canoe → early
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Proof Example cont.

Step Proved by
1. ¬sunny ∧ cold Premise #1.
2. ¬sunny Simplification of 1.
3. swim→sunny Premise #2.
4. ¬swim Modus tollens on 2,3.
5. ¬swim→canoe Premise #3.
6. canoe Modus ponens on 4,5.
7. canoe→early Premise #4.
8. early Modus ponens on 6,7.
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Exercises

Which rules of inference are used in:

•It is snowing or it is raining. It is not snowing, therefore it is raining.

•If there is snow I will go snowboarding. If I go snowboarding, I will 
skip the class. There is snow, therefore I will skip the class.

•I am rich or I have to work. I am not rich or I like playing hockey. 
Therefore I have to work or I like playing hockey .

•I you are blonde then you are smart. You are smart therefore you
are blonde.

S ∨ R
¬S

∴ R

B→S
S

∴B

R ∨ W
¬R ∨ H

W ∨ H

S→B
B→K
S
∴K

WRONG
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Using rules of inference to build arguments

Show that:  “If it does not rain or if is not foggy, then the sailing 
race will be held and the lifesaving demonstration will go on. If 
the sailing race is held, then the trophy will be awarded. The 
trophy was not awarded.” implies “It rained”

# Proposition Rule
1 (¬R∨¬F) → (S∧L) hypothesis
2 S → T hypothesis
3 ¬T hypothesis
4 ¬S modus tollens 2 & 3
5 ¬S ∨ ¬L addition to 4
6 R ∧ F modus tollens 1 & 5
7 R simplification of 6
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Examples

What can be concluded from:
“I am either clever or lucky. I am not lucky. If I am 
lucky I will win the lottery.”

“All rodents gnaw their food. Mice are rodents. 
Rabbits do not gnaw their food. Bats are not 
rodents.”

C ∨ L
¬L
L→T
∴ ???

R → G
M → R
B → ¬ G
T → ¬ R
∴ ???

R “rodent”
G “Gnaw their food”
B “Rabit”
M  “Mousse”
T  “Bat”
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Resolution

The rule 
p ∨q
¬p∨r
-------
∴ q∨r

is called resolution and is used in computer (automatic) theorem 
proving/reasoning

• also basis of logical programming languages like Prolog

If all hypotheses and the conclusion are expressed as clauses 
(disjunction of variables or their negations), we can use resolution 
as the only rule of inference.
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Resolution

Express as a (list of) clause(s):

• p∨(q∧r)

• ¬(p∨q)

• p → q

• ¬(p↔q)

Use the rule of resolution to show that 

(p∨q)∧(¬p∨q)∧(p∨¬q)∧(¬p∨¬q) is not certifiable

(p∨q)∧(p∨r)

(¬p) ∧ (q)

(¬p∨q)

¬((¬p∨q)∧(¬q∨p))
= ¬(¬p∨q) ∨ ¬(¬q∨p)
= (p ∧¬q) ∨ (¬ p∧q)
= ((p ∧¬q) ∨ (¬ p)) ∧ ((p ∧¬q) ∨ q)) 
= (¬q ∨ ¬ p) ∧ (p ∨ q)

(q ∧ ¬q) = F
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Rules of Inference for Quantified 
Statements

(∀x) P(x)
∴P(c) 

Universal Instantiation

P(c) for an arbitrary  c
∴(∀x) P(x)

Universal Generalization

∃(x) P(x)
∴ P(c) for some element   c

Existential Instantiation

P(c) for some element  c
∴ ∃(x) P(x)

Existential Generalization



Dr. Zaguia-CSI2101-W08 2222

Review

Commonly used argument forms of propositional logic

• modus ponens, modus tollens, hypothetical syllogism (transitivity 
of implication), disjunctive syllogism, addition, simplification, 
conjunction, resolution

Rules of inference for quantified statements

• universal instantiation, universal generalization

• existential instantiation, existential generalization

Resolution and logical programming

• have everything expressed as clauses

• it is enough to use only resolution



Dr. Zaguia-CSI2101-W08 2323

Combining Rules of Inference

∀x (P(x) → Q(x))
P(a)
-------- Universal modus ponens

∴ Q(a)

∀x (P(x) → Q(x))
¬Q(a)
-------- Universal modus tollens

∴ ¬P(a)

# Statement Rule

1 ∀x (P(x) → Q(x)) hypothesis

2 P(a) hypothesis
3 P(a) → Q(a) universal instantiation

4 Q(a) modus ponens 2 & 3
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Examples/exercises

Use rules of inference to show that if 

∀x (P(x) ∨ Q(x))

∀x(¬Q(x) ∨ S(x))

∀x (R(x) → ¬S(x) and

∃x ¬P(x) are true, then also 

∃x ¬R(x) is true
∀x (P(x) ∨ Q(x)) and ∀x(¬Q(x) ∨ S(x)) implies
∀x(P(x) ∨ S(x))
∀x (R(x) → ¬S(x) is equivalent to 
∀x(¬ S(x)∨ ¬ R(x))

Therefore ∀x(P(x) ∨ ¬R(x))
Since ∃x ¬P(x) is true. Thus ¬P(a) for some a in 
the domain. Since P(a) ∨ ¬R(a) must be true.
Conclusion ¬R(a) is true and so ∃x ¬R(x) is true
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Examples/exercises

What is wrong in this argument, “proving” that 

• ∃xP(x) ∧∃xQ(x) implies ∃x(P(x)∧Q(x))

1. ∃xP(x) ∧ ∃xQ(x)            premise

2. ∃xP(x)                           simplification from 1.

3. P(c)                               universal instantiation from 2.

4. ∃xQ(x)                          simplification from 1.

5. Q(c)                              universal instantiation from 4

6. P(c)∧Q(c)                      conjunction from 3. and 5.

7. ∃x (P(x) ∧Q(x))             existential generalization

c????
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Examples/exercises

Is the following argument valid?

If Superman were able and willing to prevent evil, he would do so.

Is Superman were unable to prevent evil, he would be impotent; if 
he were unwilling to prevent evil, he would be malevolent.

Superman does not prevent evil.

If Superman exists, he is neither impotent nor malevolent.

Therefore, Superman does not exist. A ∧ W → P
¬A → I
¬W → M
¬P
E → ¬ I ∧ ¬ M
¬ E

From A ∧ W → P and ¬P we deduce ¬(A∧W) .
¬A ∨ ¬W  (1)

¬ A → I thus A ∨ I      (2)
¬ W → M thus   W∨ M    (3)
(4)=(1)&(2) I ∨ ¬W
(1) & (4) ¬A ∨ I   ,,,,,,,,,
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OK so what is a proof?

Formal proof

• sequence of statements, ending in conclusion

• statements preceding the conclusion are called premises 

• each statement is either an axiom, or is derived from previous 
premises using a rule of inference

Informal proof

• formal proofs are too tedious to read

• humans don’t need that much detail, obvious/easy steps are 
skipped/grouped together 

• some axioms may be skipped (implicitly assumed)

• we will now talk about how to write informal proofs

• which are still formal and precise enough



Dr. Zaguia-CSI2101-W08 28

Terminology

Theorem: A statement that has been proven to be true.
Axioms, postulates, hypotheses, premises: Assumptions 
(often unproven) defining the structures about which 
we are reasoning.
Rules of inference: Patterns of logically valid deductions 
from hypotheses to conclusions. 
Lemma: A minor theorem used as a stepping-stone to 
proving a major theorem.
Corollary: A minor theorem proved as an easy 
consequence of a major theorem.
Conjecture: A statement whose truth value has not 
been proven.  (A conjecture may be widely believed to 
be true, regardless.)
Theory: The set of all theorems that can be proven 
from a given set of axioms.
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OK so how to prove a theorem?

Depends on how the theorem looks like

• A simple case – proving existential statements ∃ x P(x):

There is an even integer that can be written in two ways as a sum of two 
prime numbers

How to prove this proposition?

• find such x and the four prime numbers   “10 = 5+5 = 3+7” DONE

For every integer x there is another integer y such that y > x. ∀x ∃ y:  y>x

•Enough to show how to find such y for every integer x:

• just take y = x+1

Both are  constructive proofs of existence

There exist also non-constructive proofs

• but constructive are more useful
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Proving by Counterexample

Another simple case 

disproving the negation of existential statements:¬∃ x P(x)

disproving universal statements

• by giving an counterexample 

Examples:

Disprove:  For all real numbers a and b, if a2 = b2 then a = b

Disprove: There are no integers x such that x2 = x.

These are constructive proofs

• yes, you can also have non-constructive ones
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How to disprove an existential theorem?

By proving the negation, which is a universal statement.

Example: Disprove: There is a positive integer such that n2+3n+2 is prime

We are going to prove: For every positive integer n, n2+3n+2 is not prime.

Proof: 

Suppose n is any positive integer. We can factor n2+3n+2 to obtain n2+3n+2 
= (n+1)(n+2). 

Since n ≥1 therefore   n+1>1 and n+2>1. Both n+1 and n+2 are integers, 
because they are sums of integers. 

As n2+3n+2 is a product of two integers larger than 1, it cannot be prime.
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How to prove a universal theorem?

Most theorems are universal of the form ∀x P(x) → Q(x) 

by exhaustion

• if the domain is finite

• or the number of x for which P(x) holds is finite

Example: ∀x x is even integer such that 4≤x≤16, x can be written as 
a sum of two prime numbers

• 4=2+2, 6=3+3, 8=3+5, 10=5+5, 12 = 5+7, 14 = 7+7, 16 = 3+13

Exhaustion does not work when the domain is infinite, or even very 
large

• you don’t want to prove that the multiplication circuit in the 
CPU is correct for every input by going over all possible inputs
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How to prove a universal theorem?

Most theorems are universal of the form ∀x P(x) → Q(x) 

How to prove that?

• generalizing from the generic particular

• Let x be a particular, but arbitrarily chosen element from the 
domain, show that if x satisfies P then it also must satisfy Q

• the showing is done as discussed in the last lecture

• using definitions, previously established results and rules of 
inference

• it is important to use only properties that apply to all elements 
of the domain

This way (assume P(x) and derive Q(x) of proving a statement is called a 
direct proof
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Example 1: Direct Proof

Theorem: If n is odd integer, then n2 is odd.

Definition: The integer is even if there exists an integer k such that n = 2k, 
and n is odd if there exists an integer k such that n = 2k+1. An integer 
is even or odd; and no integer is both even and odd.

Theorem:  ∀(n) P(n) → Q(n), 
where P(n) is “n is an odd integer” and Q(n)  is   “n2 is odd.”

We will show P(n) → Q(n)
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Theorem:  If n is odd integer, then n2 is odd.

Proof:
Let  p --- “n is odd integer”; q --- “n2 is odd”; 
we want to show that p → q.

Assume p, i.e.,  n is odd. By definition n = 2k + 1, where 
k is some integer.

Therefore n2 = (2k + 1)2 = 4k2 + 4k + 1 
= 2 (2k2 + 2k ) + 1, which is by definition 

an odd number (k’ = (2k2 + 2k ) ). 

QED

Example 1: Direct Proof
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Example 2: Direct Proof

Theorem: The sum of two even integers is even.

• Starting point: let m and n be arbitrary even integers

•To show: n+m is even

Proof:

Let m and n be arbitrary even integers. Then, by definition of 
even, m=2r and n=2s for some integers r and s. Then

m+n = 2r+2s (by substitution)

= 2(r+s) (by factoring out 2)

Let k = r+s. Since r and s are integers, therefore also k is an 
integer. Hence, m+n = 2k, where k is an integer. If follows by 
definition of even that m+n is even.
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Directions for writing proofs

• be clean and complete

• state the theorem to be proven

• clearly mark the beginning of the proof (i.e. Proof:)

• make the proof self-contained: introduce/identify all variables

• “Let m and n be arbitrary even numbers”

• “… for some integers r and s”

• write in full sentences  “Then m+n = 2r+2s = 2(r+s).”

• give a reason for each assertion

• by hypothesis, by definition of even, by substitution

• use the connecting little words to make the logic of the argument clear

• The, Thus, Hence, Therefore, Observe that, Note that, Let
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Examples/exercises

Theorem: The square of an even number is 
divisible by 4.

Theorem: The product of any three consecutive 
integers is divisible by 6.
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Very Basics of Number Theory

Definition: An integer n is even iff  ∃ integer k such that  n = 2k

Definition: An integer n is odd iff  ∃ integer k such that  n = 2k+1

Definition: Let k and n be integers. We say that k divides n (and write 
k | n) if and only if there exists an integer a such that n = ka.

Definition: An integer n is prime if and only if n>1 and for all positive 
integers r and s, if n = rs, then r=1 or s = 1.

Definition: A real number r is rational if and only if ∃ integers a and b
such that r= a/b and b ≠ 0.

So, which of these numbers are rational?

• 7/13 0.3 3.142857

• 3.142857142857142857142857142857…

• 3/4+5/7
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Examples/exercises

Theorem: The square of an even number is divisible by 4.
Proof:

Let n be arbitrary even integer. Then, by definition of even, m=2r for 
some integers r. Then n2 = (2r)2= 4r2. Therefore and by definition n2 
is divisible by 4.
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Examples/exercises

Theorem: The product of any three consecutive integers is divisible by 6.

I knew how to prove this, because I had some knowledge of number 
theory.

Definition: Let k and n be integers. We say that k divides n (and write k | n) 
if and only if there exists an integer a such that n = ka.

Lemma 1: ∀ integers k,n,a: k | n → k | an

Lemma2: Out of k consecutive integers, exactly one is divisible by k. 

Lemma 3: ∀x: 2| x ∧ 3| x  → 6| x 

(a special case of a more general theorem) ∀ x, y, z:  y | x  ∧ z|x →yz/GCD(y,z) | x

(will prove Proposition 2 and Lemma 3 afterward, when we know more 
about number theory)
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Proof of Theorem

Theorem: The product of any three consecutive integers is 
divisible by 6.

Proof: Let n be an arbitrary integer. 

From Lemma 2 it follows that either 2|n or 2|(n+1).  Combining 
with Lemma 1 we deduce that 2|n(n+1) and therefore (applying 
Lemma 1 once more) also 2|n(n+1)(n+2).

By Lemma 2 it follows that 3|n or 3|(n+1) or 3|(n+2). Applying 
Lemma 1 twice we obtain 3|n(n+1)(n+2).

Therefore 2 | n(n+1)(n+2) and 3 | n(n+1)(n+1). According to  
Lemma 1 it follows that 6=2*3 | n(n+1)(n+2)
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Proof by Contradiction

A – We want to prove p.
We show  that:
(1) ¬p → F; (i.e.,   a False  statement)
(2) We conclude that ¬p is false since (1) is True and 

therefore p is True.

B – We want to show p → q
(1) Assume the negation of the conclusion, i.e., ¬q 
(2) Use show that (p ∧ ¬q ) → F
(3) Since ((p ∧ ¬q ) → F) ⇔ (p → q) (why?)  we are done
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Theorem “If 3n+2 is odd, then n is odd”

Let p = “3n+2 is odd” and q = “n is odd”

1 – assume  p and ¬q i.e., 3n+2 is odd and n is not odd 
2 – because n is not odd, it is even
3 – if n is even, n = 2k for some k, and therefore 3n+2 = 3 (2k) + 

2 = 2 (3k + 1), which is even
4 so we have a contradiction, 3n+2 is odd and 3n+2 is even 

therefore we conclude p → q, i.e., “If 3n+2 is odd, then n is 
odd”

Q.E.D.

Example 1: Proof by Contradiction
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Classic proof that √2 is irrational.

• Suppose √2 is rational.  Then √2 = a/b for some integers a 
and b (relatively prime).

• Thus 2 = a2/b2 and then 2b2 = a2.
• Therefore a2 is even and so a is even, that is (a=2k for some 

k).
• We deduce that 2b2 = (2k)2 = 4k2 and so b2 = 2k2

• Therefore b2 is even, and so b is even (b = 2k for some k

But if a and b are both 
even, then they are not 

relatively prime!

Example2: Proof by Contradiction

contradiction
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You’re going to let me get away with that?

• a2 is even, and so a is even (a = 2k for some k)??

• So a really is even.

contradiction

• Suppose to the contrary that a is not even.

• Then a = 2k + 1 for some integer k

• Then a2 = (2k + 1)(2k + 1) = 4k2 + 4k + 1

• Therefore a2 is odd.

Example2: Proof by Contradiction
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More examples/exercises

Examples:
• there is no greatest integer

• Proposition 2: Out of k consecutive integers, exactly one is 
divisible by k. 

• there is no greatest prime number

OK, we know what is an irrational number, and we know there is one √2

• the sum of an irrational number and an rational number is irrational

• there exist irrational numbers a and b such that ab is rational

• non-constructive existential proof
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Proof by contraposition

Proof by contraposition

• we want to prove ∀x (P(x) → Q(x))

• rewrite as ∀x (¬Q(x) → ¬P(x))  (contrapositive of the 
original)

• prove the contrapositive using direct proof:

• let x is an arbitrary element of the domain such that 
Q(x) is false

• show that P(x) is true
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Proof of a statement p → q
Use the equivalence to :¬q → ¬ p (the contrapositive)
So, we can prove the implication p → q  by first assuming ¬q, and showing that 

¬p follows.

Example: Prove that if a and b are integers, and a + b ≥ 15, then a ≥ 8 or b ≥ 8.

(a + b ≥ 15) → (a ≥ 8) v (b ≥ 8)

(Assume ¬q)        Suppose (a < 8) ∧ (b < 8).
(Show ¬p) Then (a ≤ 7) ∧ (b ≤ 7).

Therefore  (a + b) ≤ 14.
Thus (a + b) < 15.

Example 1: Proof by Contraposition

QED
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Example 2: Proof by Contraposition

Theorem:
For n integer , if  3n + 2 is odd, then  n is odd.  
I.e. For n integer,  3n+2 is odd  → n is odd

Proof by Contraposition:  
Let p --- “3n + 2” is odd; q --- “n is odd”; we want to show that  p → q 
The contraposition  of our theorem is ¬q → ¬p

n is even → 3n + 2 is even 
Now we can use a direct proof:

Assume ¬q , i.e, n is even therefore n = 2 k for some k. 
Therefore 3 n + 2 = 3 (2k) + 2 = 6 k + 2 = 2 (3k + 1) which is 
even.

QED
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Contradiction vs Contraposition

Can we convert every proof by contraposition into proof by 
contradiction?
Proof of  ∀x (P(x) → Q(x)) by contraposition:

Let c is an arbitrary element such that Q(c) is false

… (sequence of steps)

¬P(c)

Proof of ∀x (P(x) → Q(x)) by contradiction:

Let ∃x such that P(x) and ¬Q(x)

then ¬Q(c)                // existential instantiation

… same sequence of steps

Contradiction: P(c) and ¬P(c)
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Contradiction vs Contraposition

So, which one to use?
Contraposition advantage:

• you don’t have to make potentially error-prone negation of the 
statement

• you know what you want to prove

Contraposition disadvantage:

• usable only for statements that are universal and conditional
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Proof Strategy

Statement: For all elements in the domain, if P(x) then Q(x)

Imagine elements which satisfy P(x). Ask yourself “Must they satisfy Q(x)?”

• if you feel “yes”, use the reasons why you feel so as a basis of direct proof

• if it is not clear that “yes” is the answer, think why you think so, maybe 
that will guide you to find a counterexample

• if you can’t find a counterexample, try to think/observe why

• maybe from assuming that P(x) ∧¬Q(x) you can derive contradiction

• maybe from assuming that P(x) ∧¬Q(x) you can derive ¬P(x)

There are no easy ‘cookbooks’ for proofs

• but seeing many different proofs (and yourself proving statements) you 
learn many useful techniques and tricks that might be applicable
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More examples/exercises

Prove that there are no integer solutions for x2+3y2=8

Prove that there are no integer solutions for x2-y2 = 14

Prove there is a winning strategy for the first player in the 
Chomp game

Prove that a chessboard can be tiled by dominoes.

Prove that a chessboard without a corner cannot be tiled 
by dominoes.

Prove that a chessboard with diagonal corners removed 
cannot be tiled by dominoes.
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More examples/exercises

Prove that xn+yn = zn has no integers solutions with xyz ≠0 
for n>2.

Fermat’s last theorem (took hundreds of years to 
prove, the proof is hundreds of pages)

The 3x+1 conjecture: Does this program terminate for 
every integer i?

while(i>1) {
if (even(x)) x = x/2;
else x = 3x+1;

}
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Common Mistakes

• arguing from examples

• we notice that 3, 5, 7, 11, 13, 17, 19 are prime, we therefore 
conclude that all odd numbers are prime???

• the code produces correct output for the test cases, therefore it will 
always produce correct output

• using the same letter to mean two different things

• ∃xP(x) ∧ ∃xQ(x)     does not imply there is c such that (P(c) ∧Q(c))       
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Common Mistakes

Some other common mistakes:

1. The mistake of Affirming the Consequent
2. The mistake of Denying the Antecedent
3. Begging the question or circular reasoning
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The Mistake  of Affirming the 
Consequent  

If the butler did it he has blood on his hands.
The butler had blood on his hands.
Therefore, the butler did it.

This argument has the form
P→Q
Q
∴ P

or ((P→Q) ∧ Q)→P     which is not a tautology and therefore not a valid rule 
of inference
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The Mistake of Denying the 
Antecedent

If the butler is nervous, he did it.
The butler is really mellow.
Therefore, the butler didn't do it.

This argument has the form
P→Q
¬P
∴ ¬Q

or ((P→Q) ∧ ¬P)→ ¬Q which is not a tautology 
and therefore not a valid rule of inference
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Begging the question or circular reasoning

This occurs when we use the truth of the statement 
being proved (or something equivalent) in the proof 
itself.

Example:
Conjecture: if n2 is even then n is even.
Proof: If n2 is even then n2 = 2k for some k. Let  n = 
2l for some l. Hence, x must be even.

(Note that the  statement n = 2l is introduced without 
any argument showing it.)
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Methods of Proof

Direct Proof
Proof by Contraposition
Proof by Contradiction
Proof of Equivalences
Proof by Cases
Existence Proofs
Counterexamples


