
Dr-Zaguia-CSI2101-W08 1

CSI 2101- Mathematical Induction

Many statements assert that a property of the
 form P(n) is true for all integers n.

Examples:
For every positive integer n: n! ≤ nn

Every set with n elements, has 2n Subsets.

Induction is one of the most important
 techniques for proving statements of that
 form.

Dr-Zaguia-CSI2101-W08 2

Mathematical Induction
For example, consider the following algorithm:

sum = 0;
for(i=1; i≤n; i++) {
 sum = sum + 2*i-1;
}

What is its output?

•  n=1 … 1

•  n=2 … 1+3 = 4

•  n=3 … 1+3+5 = 9

•  n=4 … 1+3+5+7 = 16

We suspect that the output is n2

•  but how to prove it?

Dr-Zaguia-CSI2101-W08 3

 Mathematical Induction

Use induction to prove that the sum of the first n odd integers is n2.
 What’s the hypothesis? P(n) – sum of first n odd integers =
 n2.

Base case (n=1): the sum of the first 1 odd integer is 12.
 Since 1 = 12

Inductive Step: show that ∀(k>=1) P(k) → P(k+1).
How? Let k>=1. Assume P(k): the sum of the first k odd integers is k2.
That is assume that 1 + 3 + … + (2k - 1) = k2

And prove P(k+1): the sum of the first (k+1) odd integers is (k+1)2.
1 + 3 + … + (2k-1) + (2k+1) = k2 + (2k + 1) = (k+1)2.

Prove a base case (n=1)
Prove P(k)→P(k+1)

By inductive hypothesis = k2

QED
Therefore P(k+1) is true

Dr-Zaguia-CSI2101-W08 4

 What did we do?
  basic step:

  prove P(1)
  inductive step:

  assume P(n) and prove P(n+1) (i.e prove P(n) → P(n+1))

•  Mathematical Induction is a rule of inference that tells us:

•  P(1)
•  ∀k (P(k) → P(k+1))
•  --------------------------
•  ∴ ∀n P(n)

 Mathematical Induction

Why Mathematical Induction works?

It is enough to prove that this rule
 of inference is valid

Dr-Zaguia-CSI2101-W08 5

Mathematical Induction
Well-Ordered-Principle

Definition: A set S is “well-ordered” if every non-empty
 subset of S has a least element.

Given (we take as an axiom):
 the set of natural numbers (N) is well-ordered.

  Is the set of integers (Z) well ordered?
  Is the set of non-negative reals (R) well ordered?

No.
{ x ∈ Z : x < 0 } has no

 least element.
No.

{ x ∈ R : x > 1 } has no
 least element.

Dr-Zaguia-CSI2101-W08 6

Proof that Mathematical Induction Works

 By contradiction using the Well-Ordered-Principle. Assume that
Mathematical Induction does not work.

We assume that both hypothesis, i.e. the basic step P(1) and
the induction step (P(k) →P(k+1)) are both true but there
still exists c such that ¬ P(c).

Let S be the set of all elements x for which ¬P(x).

By the well ordered principle, S has a smallest element a.

Because P(1), we know that a ≠ 1. Therefore we can
consider b = a-1.

Because a was the smallest element of S, b is not in S.
Therefore P(b) holds. By modus ponens using the induction
step, we get P(a), which is a contradiction.

Dr-Zaguia-CSI2101-W08 7

Writing a Proof by Induction

State the hypothesis very clearly:
 P(n) is true for all integers n≥b – state the property P
 in English

Identify the base case
 P(b) holds because …

Inductive Step - Assuming the inductive hypothesis P(k) for
 k>=b, prove that P(k+1) holds; i.e., P(k) → P(k+1)

Conclusion: By induction we have shown that P(k) holds for
 all k>b (b is what was used for the base case).

Dr-Zaguia-CSI2101-W08 8

 Mathematical Induction

Another example: Use induction to prove that the
1 + 2 + 22 + … + 2n = 2n+1 – 1, for all non-negative integers n.

1 - Base case

Prove P(k)→P(k+1) 2 – Inductive Hypothesis
Assume P(k) for some k>=0, that is, 1 + 2 + 22 + … + 2k = 2 k+1 – 1 and

 prove P(k+1).

1 + 2 + 22 + … + 2k + 2 k+1 = (2 k+1 -1)+ 2 k+1 – 1 = 2*2 k+1 – 1 = 2 k+2 -1

 n = 0 10 = 21-1.

∀n ≥ 0 P(n) is true, where P(n): 1 + 2 + 22 + … + 2n = 2 n+1 – 1

Prove P(0)

By inductive hypothesis = 2 k+1 – 1
Therefore P(k+1) is true

Dr-Zaguia-CSI2101-W08 9

 Mathematical Induction

Proof by induction that P(n) is true for all n ≥ 0

1- Base case P(0): a set S with 0 elements has 20=1 subsets.
 S={}, then S has a unique subset {} and thus P(0) is true

Another example:
Prove P(n) using induction where

 P(n): a set S with n elements has 2n subsets.

Example: if S={1, 2, 3} then S has 8=23 subsets, these are
 {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

Dr-Zaguia-CSI2101-W08 10

Generating subsets of a set S with k+1
elements from a set T with k elements

QED

Mathematical Induction

T

S

{a}

x

x

S
{a}

x

2- Inductive Step: ∀k P(k) → P(k+1), i.e, assuming P(k) is true
 for some k>=0, we must show that P(k+1) is true.

Let k>=0. Assume that any set with k elements has 2k subsets.
 Let S be a set with k+1 elements. Thus, S = T ∪ {a}, where
 T is a set with k elements.

For each subset X of T there are exactly two subsets of S,
 namely X and X ∪ {a}. Because there are 2k subsets of S
 (inductive hypothesis), there are 2 × 2k = 2k+1 subsets of T.

Therefore P(k+1) is true

Dr-Zaguia-CSI2101-W08 11

Mathematical Induction:
Deficient Tiling

A 2n x 2n sized grid is deficient if all but one cell is tiled.

2n

2n P(n): all 2^n x 2^n sized deficient
 grids can be tiled with right
 triominoes, which are pieces that
 cover three squares at a time, like
 this:

We want to show that for all n ≥ 1, P(n) is true

Dr-Zaguia-CSI2101-W08 12

 Mathematical Induction:
Deficient Tiling

P(1) - Is it true for 21 x 21 grids?

YES

  Base Case:

Dr-Zaguia-CSI2101-W08 13

Mathematical Induction:
Deficient Tiling

Inductive Step:
Let k>=1. We assume that we can tile a 2k x 2k

 deficient board using our designer tiles. We
 use this to prove that we can tile a 2k+1 x 2k+1

 deficient board using our designer tiles.

Dr-Zaguia-CSI2101-W08 14

2k

2k 2k

2k

2k+1

OK!!
 (by
 IH)

?

?

?

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 15

2k

2k 2k

2k

2k+1

OK!!
 (by
 IH)

OK!!
 (by
 IH)

OK!!
 (by
 IH)

OK!!
 (by
 IH)

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 16

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 17

So, we can tile a 2k x 2k
deficient board using our
designer tiles.

What does this mean for 22k mod 3? = 1 (also do direct proof by induction)

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 18

Mathematical Induction – Exercises

Prove that a chess knight (horse) can visit every square in an infinite
chessboard.

Prove that n lines separate the plane into (n2+n+2)/2 regions if no
two lanes are parallel and no three lines pass through the same point.

Prove that

½ * ¾ * … * (2n-1)/2n < 1/√3n

•  can’t really prove it directly, but can prove a stronger statement

½ * ¾ * … * (2n-1)/2n < 1/√(3n+1)

•  sometimes called inductive loading

Dr-Zaguia-CSI2101-W08 19

Mathematical Induction – Common Errors

What is wrong with the following “proof” of “All horses are of the
same colour”

Base step: One horse has one colour

Induction step: Assume k horses have the same colour, we show
that k+1 horses have the same colour.

Take the first k horses of our k+1 horses. By induction hypothesis
they are of the same colour. The same holds for the last k horses.
As these two sets overlap, they both must be of the same colour,
i.e. all k+1 horses are of the same colour.

first k horses

last k horses

Dr-Zaguia-CSI2101-W08 20

Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly
 n-1 breaks to break it into the basic squares.

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true

Inductive Step: show that ∀(k>=1) P(k) → P(k+1).
Assume P(k) for some k>=1: a chocolate bar of size kx1 squares needs
 exactly k-1 breaks to break it into the basic squares. and deduce P(k+1).
We break the (k+1)x1 chocol. bar into 2 pieces with sizes m and (k+1)-m.
Using the inductive hypothesis …..???

How can we use the inductive hypothesis P(k)??? We have a problem!

 Use strong induction.

Dr-Zaguia-CSI2101-W08 21

Strong Induction

Normal induction: To prove that P(n) is true for all
positive integers n:

Base step: prove P(1)

Induction step: prove P(n) → P(n+1)

Strong induction: To prove that P(n) is true for all
positive integers n:

Base step: prove P(1)

Induction step: prove P(1)∧P(2)∧ … ∧P(n) →
P(n+1)

Dr-Zaguia-CSI2101-W08 22

Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to
 break it into the basic squares.

Using Strong induction:

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true
Inductive Step: show that ∀(k>=1) P(1) ∧ P(2) ∧ … ∧ P(k)→ P(k+1).

We break the (k+1)x1 chocolate bar into 2 pieces with sizes m and
 (k+1)-m. Since both m and (k+1-m) are grether than 0 and less
 than k+1, then by the strong induction hypothesis, we need m-1
 breaks for the first piece and (k+1-m)-1= k-m for the second
 piece.

So in total we will need (m-1) + (k-m) + 1= k = (k+1)-1 breaks for
 the chocolate bar with size k+1 The break used the first time

Dr-Zaguia-CSI2101-W08 23

Strong Induction

Prove the following using strong induction; P(n): each postage of n
cents with n at least 18 can be paid by 4c and 7c stamps.

Show that if in a round-robin tournament there exists a cycle of “player A
beats player B”, then there must be a cycle of length 3.

Theorem: Every simple polygon of n sides can be triangulated into n-2
 triangles.

Theorem: Every triangulation of a simple polygon of n ≥ 4 sides has at
 least two triangles in the triangulation with two edges on the sides of the
 polygon.

Theorem: Show that there is a rational number between any two real
numbers.

Dr-Zaguia-CSI2101-W08 24

Recursive definition
(note 2009: topic delayed until after midterm)

  Recursion is the general term for the practice
 of defining an object in terms of itself
  or of part of itself
  This may seem circular, but it isn’t necessarily.

  An inductive proof establishes the truth of P(
n+1) recursively in terms of P(n).

  There are also recursive algorithms,
 definitions, functions, sequences, sets, and
 other structures

Dr-Zaguia-CSI2101-W08 25

Recursive definition

Recursive (Inductive) Definition of a Function:

Define f(1) (perhaps also f(2), f(3)…f(k) for some constant k)

Define f(n+1) using f(i) for i smaller then n+1

Example 1:

f(1) = 2, f(n+1) = 2f(n) What is the explicit value of f(n)?

Example 2:

g(1) = 1, g(n+1) = (n+1)g(n) What is the explicit value of g(n)?

We can guess the solution and then use proof by induction to do a
formal check

Dr-Zaguia-CSI2101-W08 26

Recursive definition

Example 1:
f(1) = 2, f(n+1) = 2f(n) What is the explicit value of f(n)?
Proof by induction that f(n) = 2n for every n ≥1. (what is P(k)?)
Base step: n=1 f(1)= 2 = 21. True
Induct. step: Let k>=1.Assume that f(k) = 2k and deduce that f(k+1)=2

k+1

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis f(k)
 = 2k and therefore f(k+1) = 2*2k = 2k+1. This finishes the inductive
 step.

  Example 2: g(1) = 1, g(n+1) = (n+1)g(n)
Proof by induction that g(n) = n! for every n ≥1. (what is P(k)?)
Base step: n=1 g(1)= 1 = 1!. True.
Induct. step: Let k >=1. Assume that g(k) = k! and deduce that g(

k+1)=(k+1)!

By definition of the function g, g(k+1) = (k+1) f(k). By induction
 hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k!= (k+1)!. This
 finishes the inductive step.

Dr-Zaguia-CSI2101-W08 27

Recursive definition

 Example 3: f(n) – Fibonacci numbers

f(1) = 1, f(2) = 1,

f(n+1) = f(n) + f(n-1)

How fast do the Fibonacci numbers grow?

Theorem: ∀n≥3, f(n) > α(n-2) where α=(1+√5)/2

Proof: By induction. How can we prove this? (what is P(k)?) (~1.61,2.61)

•  base step: n = 3: f(3) = 2 > α , f(4) = 3 >(3+√5)/2 = α2

•  induction step: Let n >= 4. note that α2 = α+1, since α is a root of x2-
x-1 = 0. Therefore αn-1 = α2αn-3 = (α+1)αn-3 = αn-2+αn-3

•  by induction hypothesis, f(n) < αn-2, f(n-1)<αn-3, therefore as f(n
+1) = f(n)+f(n-1), also f(n+1)<αn-2+αn-3 = αn-1

Dr-Zaguia-CSI2101-W08 28

Careful with Recursive Definitions

The function defined has to be well defined

•  it is defined for each element of its domain (often positive integers)

•  it is defined unambiguously (no two different values)

Consider:

•  F(n) = 1+F(n/2) for n≥1 and F(1) = 1

•  F(n) = 1+F(n-2) for n ≥1 and F(1) = 0

•  F(n) = 1+F(n/3) for even n≥3, and F(1) = F(2) = 1

•  F(n) = 1+F(F(n-1)) for n ≥2 and F(1) = 2

Problems

Dr-Zaguia-CSI2101-W08 29

Recursively Defined Sets and Structures

  An infinite set S may be defined recursively, by
 giving:
  A small finite set of base elements of S.
  A rule for constructing new elements of S from previously

-established elements.
  Implicitly, S has no other elements but these.

Example: S is the subset of Z (integers) defined by:
BASIS STEP: 3∈S, and
RECURSIVE STEP: if x,y ∈S then x+y ∈S.

 What is S?

Dr-Zaguia-CSI2101-W08 30

Recursively Defined Sets and Structures

Example: Set of strings Σ* over alphabet Σ:

Base step: the empty string γ∈Σ*

Induction step: If w∈Σ* and x ∈Σ then also wx ∈ Σ*

Dr-Zaguia-CSI2101-W08 31

Recursively Defined Sets and Structures

Example: Let Σ be a set of symbols (the alphabet) and Σ* be a set of
strings over this alphabet. Concatenation (denoted by “.”) of two
strings is recursively defined as follows:

Base step: If w∈Σ* then, w.γ = w, where γ is the empty string

Induction step: If w1∈Σ* and w2∈Σ* and x∈Σ, then w1.(w2x)=(w1.w2)x

Well-formed formulae of propositional logic:

Base step: T, F and s, where s is a propositional variable, are well-
formed formulaes
Induction step: If E and F are well-formed formulae, then also
(¬E), (E∧F), (E∨F), (E→F) and (E↔F) are well formed formulae

•  how would you define well-formed arithmetic expressions?

Dr-Zaguia-CSI2101-W08 32

Recursively Defined Sets and Structures

The set of full binary trees can be defined recursively:

Basic step: There is a full binary tree consisting only of a single
vertex r.

Recursive step: If T1 and T2 are disjoint full binary trees, there is a
full binary tree denoted by T1.T2, consisting of a root r together
with edges connecting the root to each of the roots of the left
subtree T1 and the right subtree T2.

We define The height h(T) of a full binary tree T recursively
Basic step: The height of the full binary tree consisting of only a
 root r is h(T)=0.
Recursive step: If T1 and T2 are full binary tree, then the full binary
 tree T=T1.T2 has height h(T)= 1 + max(h(T1), h(T2)).

Dr-Zaguia-CSI2101-W08 33

Recursively Defined Sets and Structures

  Give recursive definition of
  a rooted tree
  a binary tree
  internal and leaf vertices of a tree
  length of a string

Dr-Zaguia-CSI2101-W08 34

Structural Induction
(note 2009: topic delayed until after midterm)

Prove that every well-formed formula of propositional logic has
equal number of left and right parenthesis

Base step: T, F and propositional variables do not contain
parenthesis (so their number is equal)

Induction step: in every way to construct well-formed formula,
analyse number of parenthesis assuming ok for building blocks

Structural induction of P(x) for every element x of a
recursively defined set S:

Base step: prove P(x) for each element x of the base step
definition of S

Induction step: for every way to construct an element x of S
from elements y1, y2, .. yk, show that P(y1)∧P(y2)… ∧P(yk)
→ P(x)

Dr-Zaguia-CSI2101-W08 35

Structural Induction

Theorem: Let T be a full binary tree with n(T) vertices and height h(T),
 then n(T) ≤ 2 h(T)+1 -1

 [Note: P(k) becomes now P(T)!!!]
Proof using structural induction:
Basis step: for the full binary tree consisting of just the root r, n(T)=1 and

 h(T)=0, thus n(T)=1 ≤ 20+1 -1 =1. Inequality is true.
Inductive step:
We assume that n(T1) ≤ 2 h(T1)+1 -1 and n(T2) ≤ 2 h(T2)+1 -1 for two full

 binary trees T1 and T2. According to the recursive formulae:
 n(T)=n(T1)+n(T2)+1 and h(T)= 1 + max(h(T1), h(T2)), thus

n(T)=n(T1)+n(T2)+1 ≤ (2 h(T1)+1 -1) + (2 h(T2)+1 -1) +1
 ≤ (2 h(T1)+1 + 2 h(T2)+1) -1
 ≤ 2*max (2 h(T1)+1, 2 h(T2)+1) -1
 ≤ 2*2 max (h(T1)+1, h(T2)+1) -1
 ≤ 2*2 h(T) -1 = 2 h(T)+1 -1

Recursive definition of height

Dr-Zaguia-CSI2101-W08 36

Structural Induction

Exercises

Let l(x) denote the length of a string x. Prove that
l(x.y) =l(x)+l(y).

Every quantified formula has an equivalent one which
is in prenex normal form.

Dr-Zaguia-CSI2101-W08 37

Recursive Algorithms

Dr-Zaguia-CSI2101-W08 38

Recursion and Iteration

What about the Fibonacci sequence?

int fibRec(int n) {
 if (n <=2) return 1;
 else return fib(n-1)+fib(n-2)
}

can we do it iteratively?

int fibIter(int n) {
 int a = b = c = 1;
 for(i=2; i<n; i++) {
 c = a+b;
 a = b;
 b = c;
 }
 return c
}

Dr-Zaguia-CSI2101-W08 39

Recursion and Iteration

Search for an element in a list

We traverse sequentially the array starting from the first cell until
 we find x or we finish the array

procedure search(a: series; i, j: integer; x: item to be found)
 if ai = x return i
if i = j return 0
return search(i+1, j, x)

No real advantage in using recursion here

location := i
while (location ≤ j) and (S[location] ≠ x) do

 location := location+1
if location > j then

 location := 0

Dr-Zaguia-CSI2101-W08 40

Recursion and Iteration

When the list is already sorted, we can use a faster search:
 Binary search

procedure binarySearch(a, x, i, j)
{Find location of x in a, ≥i and <=j}
m := (i + j)/2 {Go to halfway point.}
if x = am return m
if x<am ∧ i<m return {If it’s to the left,}
 binarySearch(a,x,i,m−1){Check that ½}
else if am<x ∧ m<j return {If it’s to right,}
 binarySearch(a,x,m+1,j){Check that ½}
else return 0 {No more items, failure.}

Dr-Zaguia-CSI2101-W08 41

Recursion and Iteration

Since 1 = n/2k then k = log n and thus Binary search needs

log n + 1 comparisons.
Sequential search needs at most n comparisons

TBS(n) = (k+1) * 1 = k+1

Number of recursive calls Number of comparisons par call

Complexity of sequential search: TSS(n) = T(n-1) + n

Complexity of sequential search: TBS(n) = T(n/2) + 1

Dr-Zaguia-CSI2101-W08 42

Recursion and Iteration

  Comparing both search algorithms:

Size Sequential Binary

 128 128 8
 1024 1024 11
1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

Binary search is much faster however the list
 must be sorted

