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CSI 2101- Mathematical Induction 

Many statements assert that a property of the
 form P(n) is true for all integers n. 

Examples: 
For every  positive integer n: n! ≤ nn 

Every set with n elements, has 2n Subsets.  

Induction is one of the most important 
 techniques for proving statements of that
 form. 
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Mathematical Induction 
For example, consider the following algorithm: 

sum = 0; 
for(i=1; i≤n; i++) { 
     sum = sum + 2*i-1; 
} 

What is its output? 

•  n=1 … 1 

•  n=2 … 1+3 = 4 

•  n=3 …  1+3+5 = 9 

•  n=4 …  1+3+5+7 = 16 

We suspect that the output is n2 

•  but how to prove it? 
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 Mathematical Induction 

Use induction to prove that the sum of the first n odd integers is n2.
 What’s the hypothesis? P(n) – sum of first n odd integers = 
 n2. 

Base case (n=1): the sum of the first 1 odd integer is 12.   
            Since 1 = 12   

Inductive Step: show  that ∀(k>=1) P(k) → P(k+1). 
How?   Let k>=1. Assume P(k): the sum of the first k odd integers is k2.  
That is assume that  1 + 3 + … + (2k - 1) = k2 

And prove P(k+1): the sum of the first (k+1) odd integers is (k+1)2.  
1 + 3 + … + (2k-1) + (2k+1) = k2 + (2k + 1) = (k+1)2.  

Prove a base case (n=1) 
Prove P(k)→P(k+1) 

By inductive hypothesis = k2 

QED 
Therefore P(k+1) is true 
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   What did we do? 
   basic step:  

  prove P(1) 
   inductive step:  

  assume P(n) and prove P(n+1) (i.e prove P(n) → P(n+1)) 

•  Mathematical Induction is a rule of inference that tells us: 

•  P(1) 
•  ∀k (P(k)  → P(k+1)) 
•  -------------------------- 
•  ∴ ∀n P(n) 

 Mathematical Induction 

Why Mathematical Induction works? 

It is enough to prove that this rule
 of inference is valid 
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Mathematical Induction 
Well-Ordered-Principle  

Definition: A set S is “well-ordered” if every non-empty
 subset of S has a least element. 

Given (we take as an axiom):  
 the set of natural numbers (N) is well-ordered. 

  Is the set of integers (Z) well ordered? 
  Is the set of non-negative reals (R) well ordered? 

No.   
{ x ∈ Z : x < 0 } has no

 least element. 
No.   

{ x ∈ R : x > 1 } has no
 least element. 
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Proof that Mathematical Induction Works 

 By contradiction using the Well-Ordered-Principle. Assume that 
Mathematical Induction does not work. 

We assume that both hypothesis, i.e. the basic step P(1) and 
the induction step (P(k) →P(k+1)) are both true but there 
still exists c such that ¬ P(c). 

Let S be the set of all elements x for which ¬P(x). 

By the well ordered principle, S has a smallest element a. 

Because P(1), we know that a ≠ 1. Therefore we can 
consider b = a-1. 

Because a was the smallest element of S, b is not in S. 
Therefore P(b) holds. By modus ponens using the induction 
step, we get P(a), which is a contradiction. 
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Writing a Proof by Induction 

State the hypothesis  very clearly: 
 P(n) is true for all   integers n≥b – state the property P
 in English 

Identify the  base case  
  P(b) holds because …  

Inductive Step - Assuming the inductive hypothesis P(k) for
 k>=b, prove that P(k+1) holds; i.e.,  P(k) → P(k+1) 

Conclusion: By induction we have shown that P(k) holds for
 all k>b (b is what was used for the base case). 
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 Mathematical Induction 

Another example: Use induction to prove that the  
1 + 2 + 22 + … + 2n = 2n+1 – 1, for all non-negative integers n. 

1 - Base case   

Prove P(k)→P(k+1) 2 – Inductive Hypothesis 
Assume P(k) for some  k>=0,  that is, 1 + 2 + 22 + … + 2k = 2 k+1 – 1 and

 prove P(k+1). 

1 + 2 + 22 + … + 2k + 2 k+1 = (2 k+1 -1)+ 2 k+1 – 1 = 2*2 k+1 – 1 = 2 k+2 -1  

  n = 0  10 = 21-1. 

∀n ≥ 0 P(n) is true, where P(n): 1 + 2 + 22 + … + 2n = 2 n+1 – 1 

Prove P(0) 

By inductive hypothesis = 2 k+1 – 1  
Therefore P(k+1) is true 
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 Mathematical Induction 

Proof by induction that P(n) is true for all n ≥ 0 

1- Base case P(0): a set S with 0 elements has  20=1 subsets. 
   S={}, then S has a unique subset {} and thus P(0) is true 

Another example: 
Prove P(n) using induction where  

 P(n): a set S with n elements has  2n subsets. 

Example: if S={1, 2, 3} then S has 8=23 subsets, these are  
 {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} 



Dr-Zaguia-CSI2101-W08 10 

Generating subsets of a set S with k+1 
elements from a set T with k elements 

QED 

Mathematical Induction 

T 

S 

{a} 

x 

x 

S 
{a} 

x 

2- Inductive Step: ∀k P(k) → P(k+1), i.e, assuming P(k) is true
 for some k>=0, we must show that P(k+1) is true.  

Let k>=0. Assume that any set with k elements has  2k subsets. 
 Let S be a set with k+1 elements. Thus, S = T ∪ {a}, where
 T is a set with k elements.  

For each subset  X of T there are exactly two subsets of S,
 namely X and X ∪ {a}. Because there are 2k subsets of S
 (inductive hypothesis), there are 2 × 2k = 2k+1 subsets of T. 

Therefore P(k+1) is true 
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Mathematical Induction:  
Deficient Tiling 

A 2n x 2n sized grid is deficient if all but one cell is tiled. 

2n 

2n P(n): all 2^n x 2^n sized deficient
 grids can be tiled with right
 triominoes, which are pieces that
 cover three squares at a time, like
 this: 

We want to show that for all n ≥ 1, P(n) is true 
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 Mathematical Induction:  
Deficient Tiling 

P(1) - Is it true for 21 x 21 grids? 

YES  

  Base Case: 
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Mathematical Induction:  
Deficient Tiling 

Inductive Step: 
Let k>=1. We assume that we can tile a 2k x 2k

 deficient board using our designer tiles. We
 use this to prove that we can tile a 2k+1 x 2k+1

 deficient board using our designer tiles. 
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2k 

2k 2k 

2k 

2k+1 

OK!!
 (by
 IH) 

? 

? 

? 

Mathematical Induction:  
Deficient Tiling 
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2k 
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 (by
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 (by
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 (by
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Mathematical Induction:  
Deficient Tiling 
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Mathematical Induction:  
Deficient Tiling 
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So, we can tile a 2k x 2k 
deficient board using our 
designer tiles. 

What does this mean for 22k mod 3? = 1  (also do direct proof by induction) 

Mathematical Induction:  
Deficient Tiling 
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Mathematical Induction – Exercises 

Prove that a chess knight (horse) can visit every square in an infinite 
chessboard. 

Prove that n lines separate the plane into (n2+n+2)/2 regions if no 
two lanes are parallel and no three lines pass through the same point. 

Prove that  

½ * ¾ * … * (2n-1)/2n < 1/√3n 

•  can’t really prove it directly, but can prove a stronger statement 

½ * ¾ * … * (2n-1)/2n < 1/√(3n+1) 

•  sometimes called inductive loading 
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Mathematical Induction – Common Errors 

What is wrong with the following “proof” of “All horses are of the 
same colour” 

Base step: One horse has one colour 

Induction step: Assume k horses have the same colour, we show 
that k+1 horses have the same colour. 

Take the first k horses of our k+1 horses. By induction hypothesis 
they are of the same colour. The same holds for the last k horses. 
As these two sets overlap, they both must be of the same colour, 
i.e. all k+1 horses are of the same colour. 

first k horses 

last k horses 
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Strong Induction 

P(n): a chocolate bar of size nx1 squares needs exactly
 n-1 breaks to break it into the basic squares. 

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true 

Inductive Step: show  that ∀(k>=1) P(k) → P(k+1). 
Assume P(k) for some k>=1: a chocolate bar of size kx1 squares needs
 exactly k-1 breaks to break it into the basic squares. and deduce P(k+1). 
We break the (k+1)x1 chocol. bar into 2 pieces with sizes m and (k+1)-m.  
Using the inductive hypothesis …..??? 

How can we use the inductive hypothesis P(k)??? We have a problem! 

  Use  strong induction. 
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Strong Induction 

Normal induction: To prove that P(n) is true for all 
positive integers n: 

Base step: prove P(1)  

Induction step: prove P(n) → P(n+1) 

Strong induction: To prove that P(n) is true for all 
positive integers n: 

Base step: prove P(1)  

Induction step: prove P(1)∧P(2)∧ … ∧P(n) → 
P(n+1) 
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Strong Induction 

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to
 break it into the basic squares. 

Using Strong induction: 

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true 
Inductive Step: show  that ∀(k>=1) P(1) ∧ P(2) ∧ … ∧ P(k)→ P(k+1). 

We break the (k+1)x1 chocolate bar into 2 pieces with sizes m and
 (k+1)-m. Since both m and (k+1-m) are grether than 0 and less
 than k+1, then by the strong induction hypothesis, we need m-1
 breaks for the first piece and (k+1-m)-1= k-m for the second
 piece.  

So in total we will need (m-1) + (k-m) + 1= k = (k+1)-1 breaks for
 the chocolate bar with size k+1 The break used the first time 
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Strong Induction 

Prove the following using strong induction; P(n): each postage of  n 
cents with n at least 18 can be paid by 4c and 7c stamps. 

Show that if in a round-robin tournament there exists a cycle of “player A 
beats player B”, then there must be a cycle of length 3. 

Theorem: Every simple polygon of n sides can be triangulated into n-2
 triangles. 

Theorem: Every triangulation of a simple polygon of n ≥ 4 sides has at
 least two triangles in the triangulation with two edges on the sides of the
 polygon. 

Theorem: Show that there is a rational number between any two real 
numbers. 
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Recursive definition 
(note 2009: topic delayed until after midterm) 

  Recursion is the general term for the practice
 of defining an object in terms of itself  
  or of part of itself 
  This may seem circular, but it isn’t necessarily. 

  An inductive proof establishes the truth of P(
n+1) recursively in terms of P(n). 

  There are also recursive algorithms,
 definitions, functions, sequences, sets, and
 other structures 
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Recursive definition 

Recursive (Inductive) Definition of a Function: 

Define f(1) (perhaps also f(2), f(3)…f(k) for some constant k)  

Define f(n+1) using f(i) for i smaller then n+1 

Example 1: 

f(1) = 2, f(n+1) = 2f(n)   What is the explicit value of  f(n)? 

Example 2: 

g(1) = 1, g(n+1) = (n+1)g(n)    What is the explicit value of  g(n)? 

We can guess the solution and then use proof by induction to do a 
formal check 
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Recursive definition 

Example 1: 
f(1) = 2, f(n+1) = 2f(n)   What is the explicit value of  f(n)? 
Proof by induction that f(n) = 2n for every n ≥1.  (what is P(k)?) 
Base step: n=1  f(1)= 2 = 21. True 
Induct. step: Let k>=1.Assume that f(k) = 2k and deduce that f(k+1)=2

k+1 

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis f(k)
 = 2k and therefore f(k+1) = 2*2k = 2k+1. This finishes the inductive
 step. 

  Example 2:   g(1) = 1, g(n+1) = (n+1)g(n) 
Proof by induction that g(n) = n! for every n ≥1. (what is P(k)?) 
Base step: n=1  g(1)= 1 = 1!. True. 
Induct. step: Let k >=1. Assume that g(k) = k! and deduce that g(

k+1)=(k+1)! 

By definition of the function g, g(k+1) = (k+1) f(k). By induction
 hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k!= (k+1)!. This
 finishes the inductive step. 
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Recursive definition 

   Example 3:  f(n) – Fibonacci numbers 

f(1) = 1, f(2) = 1, 

f(n+1)  = f(n) + f(n-1) 

How fast do the Fibonacci numbers grow? 

Theorem: ∀n≥3, f(n) > α(n-2) where α=(1+√5)/2 

Proof: By induction. How can we prove this? (what is P(k)?)  (~1.61,2.61) 

•  base step: n = 3: f(3) = 2 > α , f(4) = 3 >(3+√5)/2 = α2  

•  induction step: Let n >= 4. note that α2 = α+1, since α is a root of x2-
x-1 = 0. Therefore αn-1 = α2αn-3 = (α+1)αn-3 = αn-2+αn-3 

•  by induction hypothesis, f(n) < αn-2, f(n-1)<αn-3, therefore as f(n
+1) = f(n)+f(n-1), also f(n+1)<αn-2+αn-3 = αn-1 
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Careful with Recursive Definitions 

The function defined has to be well defined 

•  it is defined for each element of its domain (often positive integers) 

•  it is defined unambiguously (no two different values) 

Consider: 

•  F(n) = 1+F(n/2) for n≥1 and F(1) = 1 

•  F(n) = 1+F(n-2) for n ≥1 and F(1) = 0 

•  F(n) = 1+F(n/3) for even n≥3, and F(1) = F(2) = 1 

•  F(n) = 1+F(F(n-1)) for n ≥2 and F(1) = 2 

Problems 



Dr-Zaguia-CSI2101-W08 29 

Recursively Defined Sets and Structures 

  An infinite set S may be defined recursively, by
 giving: 
  A small finite set of base elements of S. 
  A rule for constructing new elements of S from previously

-established elements. 
  Implicitly, S has no other elements but these. 

Example: S is the subset of Z (integers) defined by: 
BASIS STEP: 3∈S, and  
RECURSIVE STEP: if x,y ∈S then x+y ∈S. 

    What is S? 
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Recursively Defined Sets and Structures 

Example:  Set of strings Σ* over alphabet Σ: 

Base step: the empty string γ∈Σ* 

Induction step: If w∈Σ* and x ∈Σ then also wx  ∈ Σ* 
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Recursively Defined Sets and Structures 

Example:  Let Σ be a set of symbols (the alphabet) and Σ* be a set of 
strings over this alphabet. Concatenation (denoted by “.”) of two 
strings is recursively defined as follows: 

Base step: If w∈Σ* then, w.γ = w, where γ is the empty string 

Induction step: If w1∈Σ* and w2∈Σ* and x∈Σ, then w1.(w2x)=(w1.w2)x 

Well-formed formulae of propositional logic: 

Base step: T, F and s, where s is a propositional variable, are well-
formed formulaes 
Induction step: If E and F are well-formed formulae, then also 
(¬E), (E∧F), (E∨F), (E→F) and (E↔F) are well formed formulae 

•  how would you define well-formed arithmetic expressions? 
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Recursively Defined Sets and Structures 

The set of full binary trees can be defined recursively: 

Basic step: There is a full binary tree consisting only of a single 
vertex r. 

Recursive step: If T1 and T2 are disjoint full binary trees, there is a 
full binary tree denoted by T1.T2, consisting of a root r together 
with edges connecting the root to each of the roots of the left 
subtree T1 and the right subtree T2. 

We define The height h(T) of a full binary tree T recursively 
Basic step: The height of the full binary tree consisting of only a
 root r is h(T)=0. 
Recursive step: If T1 and T2 are full binary tree, then the full binary
 tree T=T1.T2 has height h(T)= 1 + max(h(T1), h(T2)). 
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Recursively Defined Sets and Structures 

  Give recursive definition of  
   a rooted tree 
   a binary tree 
  internal and leaf vertices of a tree 
   length of a string 
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Structural Induction 
(note 2009: topic delayed until after midterm) 

Prove that every well-formed formula of propositional logic has 
equal number of left and right parenthesis 

Base step: T, F and propositional variables do not contain 
parenthesis (so their number is equal) 

Induction step: in every way to construct well-formed formula, 
analyse number of parenthesis assuming ok for building blocks 

Structural induction of P(x) for every element x of a 
recursively defined set S: 

Base step: prove P(x) for each element x of the base step 
definition of S 

Induction step:  for every way to construct an element x of S 
from elements y1, y2, .. yk, show that P(y1)∧P(y2)… ∧P(yk) 
→ P(x) 



Dr-Zaguia-CSI2101-W08 35 

Structural Induction 

Theorem: Let  T be a full binary tree with n(T) vertices and height h(T),
 then n(T) ≤ 2 h(T)+1 -1    

                                                   [Note: P(k) becomes now P(T)!!!] 
Proof using structural induction: 
Basis step: for the full binary tree consisting of just the root r, n(T)=1 and

 h(T)=0, thus n(T)=1 ≤ 20+1 -1 =1. Inequality is true. 
Inductive step:  
We assume that n(T1) ≤ 2 h(T1)+1 -1 and n(T2) ≤ 2 h(T2)+1 -1 for two full

 binary trees T1 and T2. According to the recursive formulae:
 n(T)=n(T1)+n(T2)+1 and h(T)= 1 + max(h(T1), h(T2)), thus 

n(T)=n(T1)+n(T2)+1  ≤ (2 h(T1)+1 -1) + (2 h(T2)+1 -1) +1 
    ≤ (2 h(T1)+1 + 2 h(T2)+1) -1 
    ≤ 2*max (2 h(T1)+1, 2 h(T2)+1) -1 
    ≤ 2*2 max (h(T1)+1, h(T2)+1) -1 
    ≤ 2*2 h(T) -1 = 2 h(T)+1 -1  

Recursive definition of height 
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Structural Induction 

Exercises 

Let l(x) denote the length of a string x. Prove that 
l(x.y) =l(x)+l(y). 

Every quantified formula has an equivalent one which 
is in prenex normal form. 



Dr-Zaguia-CSI2101-W08 37 

Recursive Algorithms 
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Recursion and Iteration 

What about the Fibonacci sequence? 

int fibRec(int n) { 
    if (n <=2 ) return 1; 
    else return fib(n-1)+fib(n-2) 
} 

can we do it iteratively? 

int fibIter(int n) { 
    int a = b = c = 1; 
    for(i=2; i<n; i++) {  
        c = a+b; 
        a = b; 
        b = c; 
    } 
    return c 
} 
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Recursion and Iteration 

Search for an element in a list 

We traverse sequentially the array starting from the first cell until
 we find x or we finish the array 

procedure search(a: series; i, j: integer; x: item to be found) 
 if ai = x return i  
if i = j return 0   
return search(i+1, j, x) 

No real advantage in using recursion here 

location := i 
while (location  ≤ j) and (S[location] ≠  x) do 

 location := location+1 
if location > j then  

 location := 0 
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Recursion and Iteration 

When the list is already sorted, we can use a faster search:
 Binary search 

procedure binarySearch(a, x, i, j) 
{Find location of x in a, ≥i and <=j}  
m := (i + j)/2          {Go to halfway point.} 
if x = am return m           
if x<am ∧ i<m return      {If it’s to the left,}
  binarySearch(a,x,i,m−1){Check that ½} 
else if am<x ∧ m<j return   {If it’s to right,} 
   binarySearch(a,x,m+1,j){Check that ½} 
else return 0        {No more items, failure.} 
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Recursion and Iteration 

Since 1 = n/2k   then k = log n and thus Binary search needs  

log n + 1 comparisons. 
Sequential search needs at most n comparisons 

TBS(n) = (k+1) * 1 = k+1 

Number of recursive calls Number of comparisons par call 

Complexity of sequential search:  TSS(n) = T(n-1) + n 

Complexity of sequential search:  TBS(n) = T(n/2) + 1 
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Recursion and Iteration 

  Comparing both search algorithms: 

Size    Sequential        Binary 

  128    128    8 
 1024    1024   11 
1,048,576        1,048,576   21 
4,294,967,296  4,294,967,296   33 

Binary search is much faster however the list
 must be sorted 


