

Induction is one of the most important techniques for proving statements of that form.

Mathematical Induction

For example, consider the following algorithm:

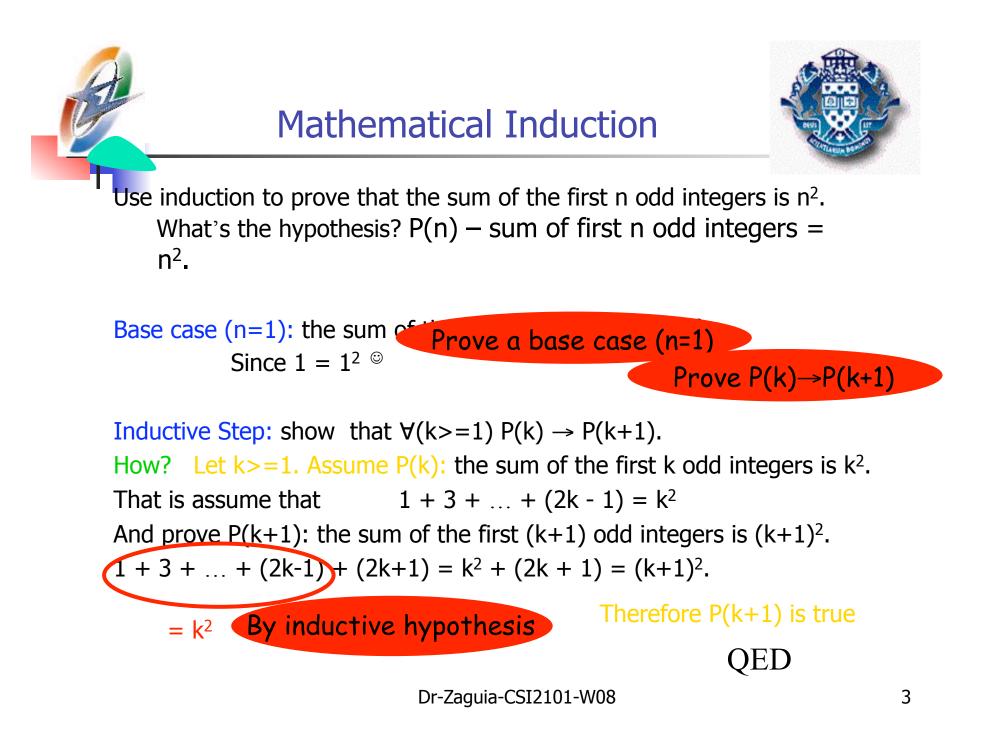
```
sum = 0;
for(i=1; i≤n; i++) {
    sum = sum + 2*i-1;
}
```

What is its output?

- n=1 ... 1
- n=2 ... 1+3 = 4
- n=3 ... 1+3+5 = 9
- n=4 ... 1+3+5+7 = 16

We suspect that the output is n^2

• but how to prove it?



Mathematical Induction

What did we do?

- basic step:
 - prove P(1)
- inductive step:
 - assume P(n) and prove P(n+1) (i.e prove $P(n) \rightarrow P(n+1)$)
- Mathematical Induction is a rule of inference that tells us:
- P(1)
- $\forall k (P(k) \rightarrow P(k+1))$
- ------
- ∴ ∀n P(n)

Why Mathematical Induction works?

It is enough to prove that this rule of inference is valid

Mathematical Induction Well-Ordered-Principle

Definition: A set S is "well-ordered" if every non-empty subset of S has a least element.

Given (we take as an axiom):

the set of natural numbers (N) is well-ordered.

Is the set of integers (Z) well ordered?

Is the set of non-negative reals (R) well ordered?

Proof that Mathematical Induction Works

By contradiction using the Well-Ordered-Principle. Assume that Mathematical Induction does not work.

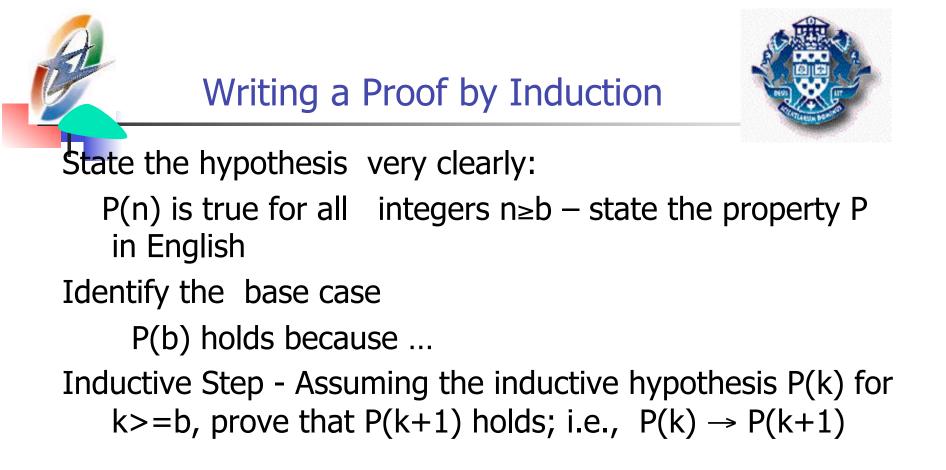
We assume that both hypothesis, i.e. the basic step P(1) and the induction step $(P(k) \rightarrow P(k+1))$ are both true but there still exists c such that $\neg P(c)$.

Let S be the set of all elements x for which $\neg P(x)$.

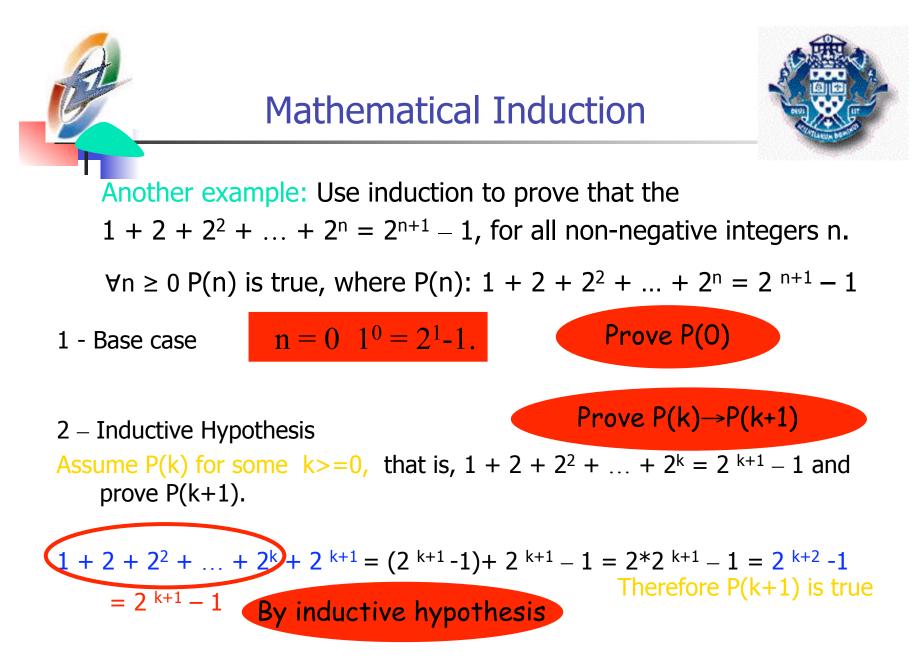
By the well ordered principle, S has a smallest element a.

Because P(1), we know that $a \neq 1$. Therefore we can consider $\mathbf{b} = \mathbf{a} - \mathbf{1}$.

Because a was the smallest element of S_{r} b is not in S. Therefore P(b) holds. By modus ponens using the induction step, we get P(a), which is a contradiction. Dr-Zaguia-CSI2101-W08 6



Conclusion: By induction we have shown that P(k) holds for all k>b (b is what was used for the base case).



Mathematical Induction

Another example:

Prove P(n) using induction where P(n): a set S with n elements has 2^n subsets.

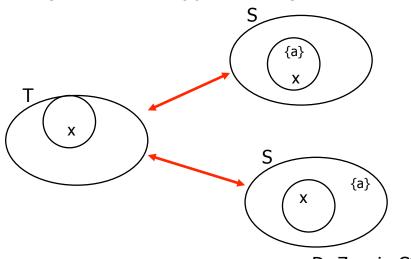
Example: if S= $\{1, 2, 3\}$ then S has 8=2³ subsets, these are $\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$

Proof by induction that P(n) is true for all $n \ge 0$

1- Base case P(0): a set S with 0 elements has $2^0=1$ subsets. S={}, then S has a unique subset {} and thus P(0) is true

Mathematical Induction

- **2-** Inductive Step: $\forall k P(k) \rightarrow P(k+1)$, i.e, assuming P(k) is true for some $k \ge 0$, we must show that P(k+1) is true.
- Let k>=0. Assume that any set with k elements has 2^k subsets. Let S be a set with k+1 elements. Thus, S = T \cup {a}, where T is a set with k elements.
- For each subset X of T there are exactly two subsets of S, namely X and X \cup {a}. Because there are 2^k subsets of S (inductive hypothesis), there are 2 × 2^k = 2^{k+1} subsets of T.



Therefore P(k+1) is true

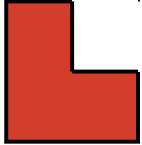
QED

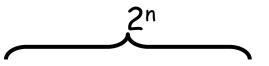
Generating subsets of a set S with k+1 elements from a set T with k elements

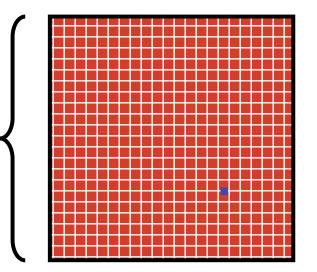
A $2^n \times 2^n$ sized grid is *deficient* if all but one cell is tiled.

P(n): all 2ⁿ x 2ⁿ sized deficient grids can be tiled with right triominoes, which are pieces that cover three squares at a time, like

this:

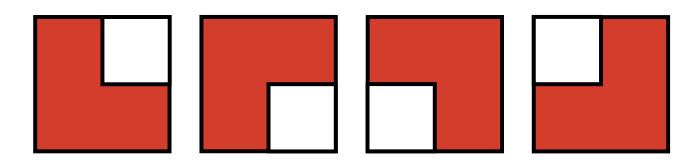






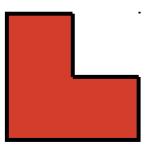
We want to show that for all $n \ge 1$, P(n) is true

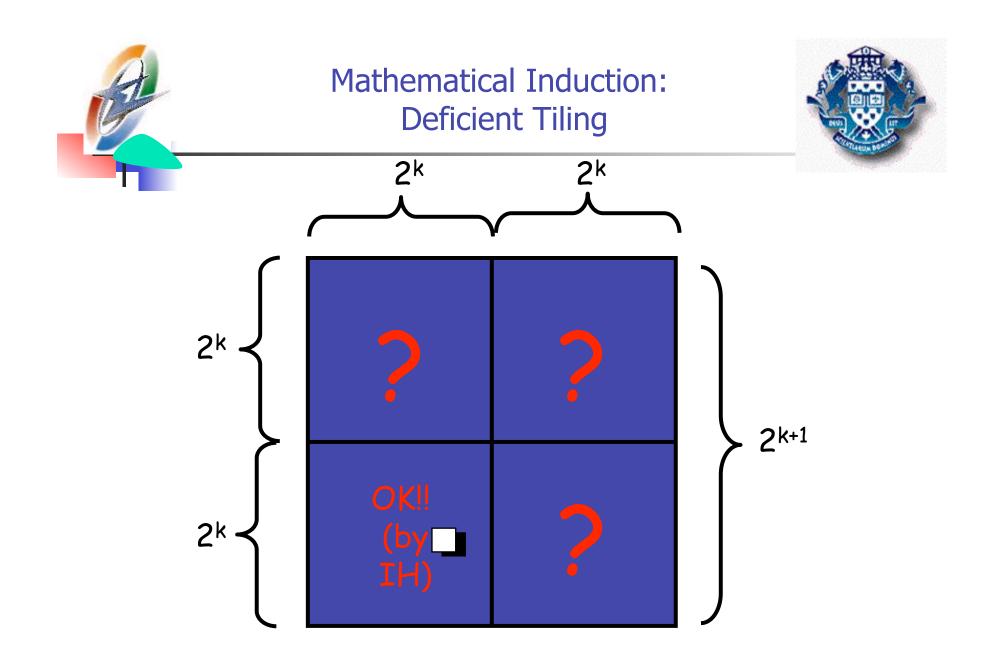
Base Case:
P(1) - Is it true for 2¹ x 2¹ grids?

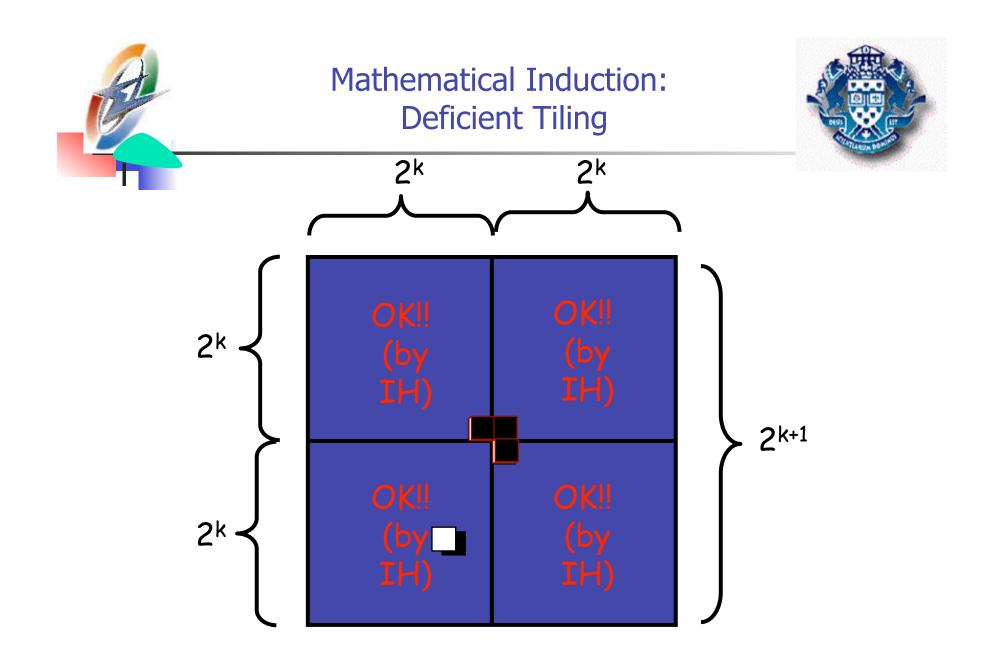


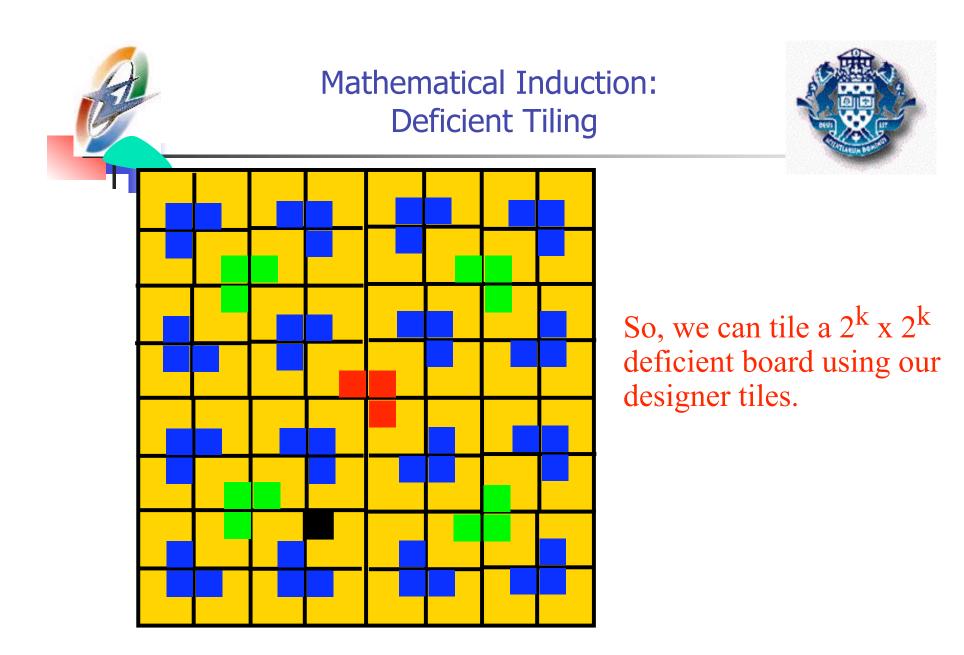
Inductive Step:

Let $k \ge 1$. We assume that we can tile a $2^k \ge 2^k$ deficient board using our designer tiles. We use this to prove that we can tile a $2^{k+1} \ge 2^{k+1}$ deficient board using our designer tiles.









What does this mean for $2^{2k} \mod 3$? = 1 (also do direct proof by induction) Dr-Zaguia-CSI2101-W08

Mathematical Induction – Exercises

Prove that a chess knight (horse) can visit every square in an infinite chessboard.

Prove that n lines separate the plane into $(n^2+n+2)/2$ regions if no two lanes are parallel and no three lines pass through the same point.

Prove that

½ * ¾ * … * (2n-1)/2n < 1/√3n

• can't really prove it directly, but can prove a stronger statement

 $\frac{1}{2} * \frac{3}{4} * \dots * (2n-1)/2n < 1/\sqrt{(3n+1)}$

sometimes called inductive loading

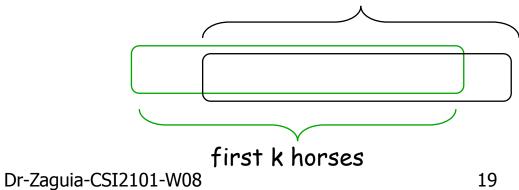
Mathematical Induction – Common Errors

What is wrong with the following "proof" of "All horses are of the same colour"

Base step: One horse has one colour

Induction step: Assume k horses have the same colour, we show that k+1 horses have the same colour.

Take the first k horses of our k+1 horses. By induction hypothesis they are of the same colour. The same holds for the last k horses. As these two sets overlap, they both must be of the same colour, i.e. all k+1 horses are of the same colour.



P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to break it into the basic squares.

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true

Inductive Step: show that $\forall (k \ge 1) P(k) \rightarrow P(k+1)$. Assume P(k) for some k \ge 1: a chocolate bar of size kx1 squares needs exactly k-1 breaks to break it into the basic squares. and deduce P(k+1). We break the (k+1)x1 chocol. bar into 2 pieces with sizes m and (k+1)-m. Using the inductive hypothesis???

How can we use the inductive hypothesis P(k)??? We have a problem!

Use strong induction.

Normal induction: To prove that **P(n)** is true for all positive integers **n**:

Base step: prove P(1)

Induction step: prove $P(n) \rightarrow P(n+1)$

Strong induction: To prove that **P(n)** is true for all positive integers **n**:

Base step: prove P(1)

Induction step: prove $P(1) \land P(2) \land \dots \land P(n) \rightarrow P(n+1)$

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to break it into the basic squares.

Using Strong induction:

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true Inductive Step: show that $\forall (k \ge 1) P(1) \land P(2) \land ... \land P(k) \rightarrow P(k+1)$.

- We break the (k+1)x1 chocolate bar into 2 pieces with sizes m and (k+1)-m. Since both m and (k+1-m) are grether than 0 and less than k+1, then by the strong induction hypothesis, we need m-1 breaks for the first piece and (k+1-m)-1 = k-m for the second piece.
- So in total we will need (m-1) + (k-m) + 1 = k = (k+1)-1 breaks for the chocolate bar with size k+1 The break used the first time

Prove the following using strong induction; P(n): each postage of n cents with n at least 18 can be paid by 4c and 7c stamps.

Show that if in a round-robin tournament there exists a cycle of "player A beats player B", then there must be a cycle of length 3.

Theorem: Every simple polygon of **n** sides can be triangulated into **n-2** triangles.

Theorem: Every triangulation of a simple polygon of $n \ge 4$ sides has at least two triangles in the triangulation with two edges on the sides of the polygon.

Theorem: Show that there is a rational number between any two real numbers.

Recursive definition (note 2009: topic delayed until after midterm)

- Recursion is the general term for the practice of defining an object in terms of *itself*
 - or of part of itself
 - This may seem circular, but it isn't necessarily.
- An inductive proof establishes the truth of P(n+1) recursively in terms of P(n).
- There are also recursive *algorithms*, *definitions*, *functions*, *sequences*, *sets*, and other structures

Recursive definition

Recursive (Inductive) Definition of a Function:

Define f(1) (perhaps also f(2), f(3)...f(k) for some constant k) Define f(n+1) using f(i) for i smaller then n+1

Example 1:

f(1) = 2, f(n+1) = 2f(n) What is the explicit value of f(n)?

Example 2:

g(1) = 1, g(n+1) = (n+1)g(n) What is the explicit value of g(n)?

We can guess the solution and then use proof by induction to do a formal check

Recursive definition

Example 1:

f(1) = 2, f(n+1) = 2f(n)What is the explicit value of f(n)?Proof by induction that $f(n) = 2^n$ for every $n \ge 1$. (what is P(k)?)Base step: n=1 $f(1)=2=2^1$. True

Induct. step: Let $k \ge 1$. Assume that $f(k) = 2^k$ and deduce that f(k+1)=2

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis $f(k) = 2^k$ and therefore $f(k+1) = 2^*2^k = 2^{k+1}$. This finishes the inductive step.

Example 2: g(1) = 1, g(n+1) = (n+1)g(n)

Proof by induction that g(n) = n! for every $n \ge 1$. (what is P(k)?) Base step: n=1 g(1)=1=1!. True.

- Induct. step: Let $k \ge 1$. Assume that g(k) = k! and deduce that g(k+1)=(k+1)!
- By definition of the function g, g(k+1) = (k+1) f(k). By induction hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k! = (k+1)!. This finishes the inductive step.

Recursive definition

Example 3: f(n) – Fibonacci numbers f(1) = 1, f(2) = 1,f(n+1) = f(n) + f(n-1)How fast do the Fibonacci numbers grow? **Theorem:** $\forall n \ge 3$, $f(n) > \alpha^{(n-2)}$ where $\alpha = (1+\sqrt{5})/2$ **Proof:** By induction. How can we prove this? (what is P(k)?) (~1.61,2.61) • base step: n = 3: $f(3) = 2 > \alpha$, $f(4) = 3 > (3+\sqrt{5})/2 = \alpha^2$ • induction step: Let $n \ge 4$. note that $\alpha^2 = \alpha + 1$, since α is a root of x^2 x-1 = 0. Therefore $\alpha^{n-1} = \alpha^2 \alpha^{n-3} = (\alpha+1)\alpha^{n-3} = \alpha^{n-2} + \alpha^{n-3}$ • by induction hypothesis, $f(n) < \alpha^{n-2}$, $f(n-1) < \alpha^{n-3}$, therefore as $f(n) < \alpha^{n-2}$, $f(n-1) < \alpha^{n-3}$, therefore as $f(n) < \alpha^{n-3}$, $f(n) < \alpha^{n-3}$, f(n) <+1) = f(n)+f(n-1), also $f(n+1) < \alpha^{n-2} + \alpha^{n-3} = \alpha^{n-1}$

Careful with Recursive Definitions

The function defined has to be well defined

- it is defined for each element of its domain (often positive integers)
- it is defined unambiguously (no two different values)

Consider:

- $F(n) = 1 + F(\lfloor n/2 \rfloor)$ for $n \ge 1$ and F(1) = 1
- F(n) = 1+F(n-2) for n ≥1 and F(1) = 0• F(n) = 1+F(n/3) for even n≥3, and F(1) = F(2) = 1

• F(n) = 1 + F(F(n-1)) for $n \ge 2$ and F(1) = 2

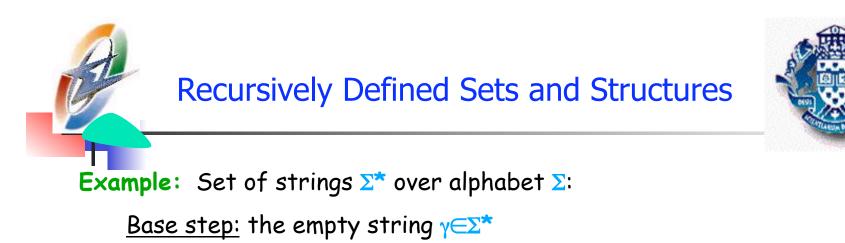
Problems

Recursively Defined Sets and Structures

- An infinite set S may be defined recursively, by giving:
 - A small finite set of *base* elements of *S*.
 - A rule for constructing new elements of *S* from previously -established elements.
 - Implicitly, S has no other elements but these.

Example: S is the subset of Z (integers) defined by: BASIS STEP: $3 \in S$, and RECURSIVE STEP: if $x, y \in S$ then $x+y \in S$.

What is *S*?



<u>Induction step</u>: If $w \in \Sigma^*$ and $x \in \Sigma$ then also $wx \in \Sigma^*$

Recursively Defined Sets and Structures

Example: Let Σ be a set of symbols (the alphabet) and Σ^* be a set of strings over this alphabet. Concatenation (denoted by ".") of two strings is recursively defined as follows:

<u>Base step</u>: If $w \in \Sigma^*$ then, $w \cdot \gamma = w$, where γ is the empty string

<u>Induction step</u>: If $w_1 \in \Sigma^*$ and $w_2 \in \Sigma^*$ and $x \in \Sigma$, then $w_1 \cdot (w_2 \times) = (w_1 \cdot w_2) \times (w_2 \times w_1) = (w_1 \cdot w_2) \times (w_2 \times w_1) = (w_1 \cdot w_2) \times (w_2 \cdot w_1) = (w_1 \cdot w_2) + (w_2 \cdot w_2) = (w_1 \cdot w_2) + (w_2 \cdot w_1) = (w_1 \cdot w_2) + (w_2 \cdot w_2) = (w_1 \cdot w_2) = ($

Well-formed formulae of propositional logic:

<u>Base step:</u> T, F and s, where s is a propositional variable, are wellformed formulaes

<u>Induction step</u>: If E and F are well-formed formulae, then also $(\neg E)$, $(E \land F)$, $(E \lor F)$, $(E \to F)$ and $(E \leftrightarrow F)$ are well formed formulae

• how would you define well-formed arithmetic expressions?

Recursively Defined Sets and Structures

The set of full binary trees can be defined recursively:

Basic step: There is a full binary tree consisting only of a single vertex r.

Recursive step: If T1 and T2 are disjoint full binary trees, there is a full binary tree denoted by T1.T2, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T1 and the right subtree T2.

We define The height h(T) of a full binary tree T recursively Basic step: The height of the full binary tree consisting of only a root r is h(T)=0. Recursive step: If T1 and T2 are full binary tree, then the full binary tree T=T1.T2 has height h(T)=1 + max(h(T1), h(T2)).

- **Recursively Defined Sets and Structures**
- Give recursive definition of
 - a rooted tree
 - a binary tree
 - internal and leaf vertices of a tree
 - length of a string

Structural Induction (note 2009: topic delayed until after midterm)

Prove that every well-formed formula of propositional logic has equal number of left and right parenthesis

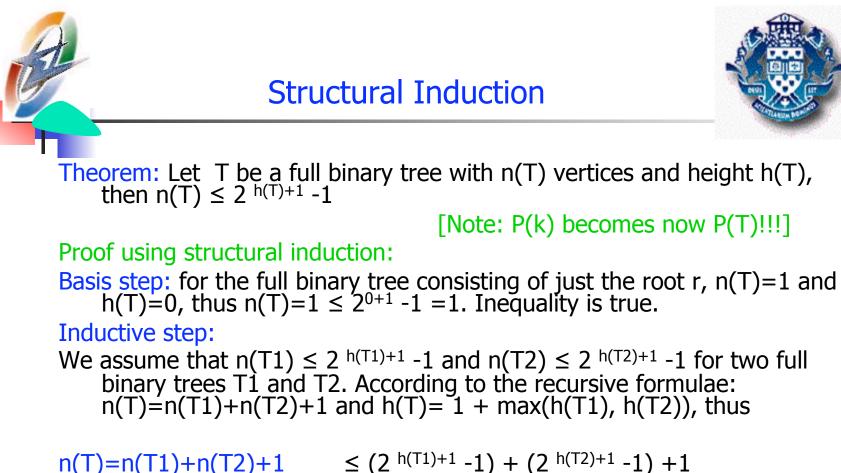
Base step: **T**, **F** and propositional variables do not contain parenthesis (so their number is equal)

<u>Induction step:</u> in every way to construct well-formed formula, analyse number of parenthesis assuming ok for building blocks

Structural induction of **P(x)** for every element **x** of a recursively defined set **S**:

<u>Base step:</u> prove P(x) for each element x of the base step definition of S

<u>Induction step</u>: for every way to construct an element **x** of **S** from elements y_1, y_2, \dots, y_k , show that $P(y_1) \land P(y_2) \dots \land P(y_k) \rightarrow P(x)$



Theorem: Let T be a full binary tree with n(T) vertices and height h(T), then n(T) $\leq 2^{h(T)+1} - 1$

[Note: P(k) becomes now P(T)!!!]

We assume that $n(T1) \le 2^{h(T1)+1} - 1$ and $n(T2) \le 2^{h(T2)+1} - 1$ for two full binary trees T1 and T2. According to the recursive formulae: n(T)=n(T1)+n(T2)+1 and h(T)=1 + max(h(T1), h(T2)), thus

 $n(T)=n(T1)+n(T2)+1 \leq (2^{h(T1)+1}-1) + (2^{h(T2)+1}-1) + 1$ $\leq (2^{h(T1)+1} + 2^{h(T2)+1}) - 1$ $\leq 2^{*}$ max (2 h(T1)+1, 2 h(T2)+1) -1 < 2*2 max (h(T1)+1, h(T2)+1) -1 $\leq 2*2^{h(T)} - 1 = 2^{h(T)+1} - 1$

Recursive definition of height

Structural Induction

Exercises

Let l(x) denote the length of a string x. Prove that l(x.y) = l(x)+l(y).

Every quantified formula has an equivalent one which is in prenex normal form.

Recursive Algorithms

Recursive definitions can be used to describe algorithms.

Typical problem solving approach: solve the problem for smaller/ simpler subproblems and obtain the result from that:

```
int fact(int n) {
    if (n == 1) return 1;
    else return n*fact(n-1);
}
int gcd(int a, int b) {
    if a == 0 return b;
    else return gcd(b mod a, a);
}
```

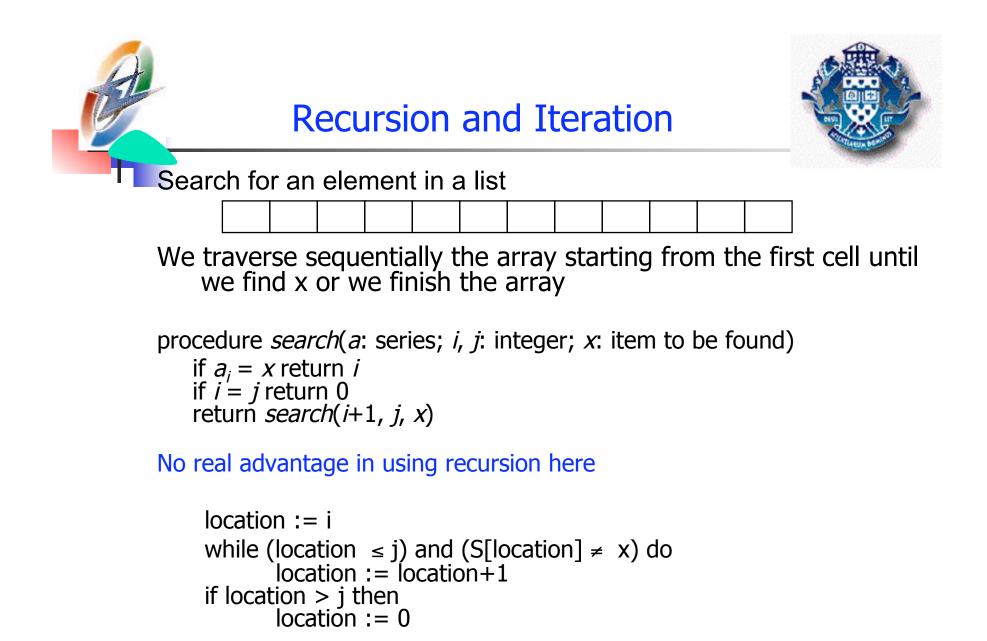

Recursion and Iteration

What about the Fibonacci sequence?

```
int fibRec(int n) {
    if (n <=2) return 1;
    else return fib(n-1)+fib(n-2)
}</pre>
```

```
can we do it iteratively?
```

```
int fibIter(int n) {
    int a = b = c = 1;
    for(i=2; i<n; i++) {
        c = a+b;
        a = b;
        b = c;
    }
    return c
}</pre>
```



When the list is already sorted, we can use a faster search: Binary search

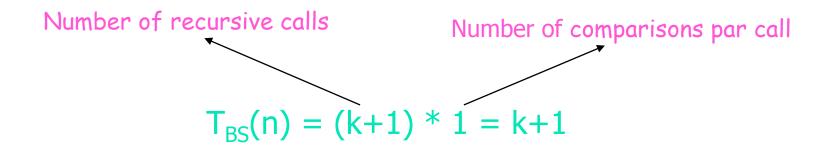
procedure *binarySearch*(*a*, *x*, *i*, *j*) {Find location of *x* in *a*, $\geq i$ and $\langle =j$ } $m := \lfloor (i + j)/2 \rfloor$ {Go to halfway point.} if $x = a_m$ return *m* if $x < a_m \land i < m$ return {If it's to the left,} *binarySearch*(*a*,*x*,*i*,*m*-1){Check that 1/2} else if $a_m < x \land m < j$ return {If it's to right,} *binarySearch*(*a*,*x*,*m*+1,*j*){Check that 1/2} else return 0 {No more items, failure.}

Recursion and Iteration

Complexity of sequential search: $T_{SS}(n) = T(n-1) + n$

Complexity of sequential search: $T_{BS}(n) = T(n/2) + 1$

Since $1 = n/2^k$ then $k = \log n$ and thus Binary search needs $\log n + 1$ comparisons. Sequential search needs at most n comparisons



Comparing both search algorithms:

Size	Sequential	Binary
128	128	8
1024	1024	11
1,048,576	1,048,576	21
4,294,967,296	4,294,967,296	33

Binary search is much faster however the list must be sorted