
Dr-Zaguia-CSI2101-W08 1

CSI 2101- Mathematical Induction

Many statements assert that a property of the
 form P(n) is true for all integers n.

Examples:
For every positive integer n: n! ≤ nn

Every set with n elements, has 2n Subsets.

Induction is one of the most important
 techniques for proving statements of that
 form.

Dr-Zaguia-CSI2101-W08 2

Mathematical Induction
For example, consider the following algorithm:

sum = 0;
for(i=1; i≤n; i++) {
 sum = sum + 2*i-1;
}

What is its output?

•  n=1 … 1

•  n=2 … 1+3 = 4

•  n=3 … 1+3+5 = 9

•  n=4 … 1+3+5+7 = 16

We suspect that the output is n2

•  but how to prove it?

Dr-Zaguia-CSI2101-W08 3

 Mathematical Induction

Use induction to prove that the sum of the first n odd integers is n2.
 What’s the hypothesis? P(n) – sum of first n odd integers =
 n2.

Base case (n=1): the sum of the first 1 odd integer is 12.
 Since 1 = 12 

Inductive Step: show that ∀(k>=1) P(k) → P(k+1).
How? Let k>=1. Assume P(k): the sum of the first k odd integers is k2.
That is assume that 1 + 3 + … + (2k - 1) = k2

And prove P(k+1): the sum of the first (k+1) odd integers is (k+1)2.
1 + 3 + … + (2k-1) + (2k+1) = k2 + (2k + 1) = (k+1)2.

Prove a base case (n=1)
Prove P(k)→P(k+1)

By inductive hypothesis = k2

QED
Therefore P(k+1) is true

Dr-Zaguia-CSI2101-W08 4

 What did we do?
  basic step:

  prove P(1)
  inductive step:

  assume P(n) and prove P(n+1) (i.e prove P(n) → P(n+1))

•  Mathematical Induction is a rule of inference that tells us:

•  P(1)
•  ∀k (P(k) → P(k+1))
•  --------------------------
•  ∴ ∀n P(n)

 Mathematical Induction

Why Mathematical Induction works?

It is enough to prove that this rule
 of inference is valid

Dr-Zaguia-CSI2101-W08 5

Mathematical Induction
Well-Ordered-Principle

Definition: A set S is “well-ordered” if every non-empty
 subset of S has a least element.

Given (we take as an axiom):
 the set of natural numbers (N) is well-ordered.

  Is the set of integers (Z) well ordered?
  Is the set of non-negative reals (R) well ordered?

No.
{ x ∈ Z : x < 0 } has no

 least element.
No.

{ x ∈ R : x > 1 } has no
 least element.

Dr-Zaguia-CSI2101-W08 6

Proof that Mathematical Induction Works

 By contradiction using the Well-Ordered-Principle. Assume that
Mathematical Induction does not work.

We assume that both hypothesis, i.e. the basic step P(1) and
the induction step (P(k) →P(k+1)) are both true but there
still exists c such that ¬ P(c).

Let S be the set of all elements x for which ¬P(x).

By the well ordered principle, S has a smallest element a.

Because P(1), we know that a ≠ 1. Therefore we can
consider b = a-1.

Because a was the smallest element of S, b is not in S.
Therefore P(b) holds. By modus ponens using the induction
step, we get P(a), which is a contradiction.

Dr-Zaguia-CSI2101-W08 7

Writing a Proof by Induction

State the hypothesis very clearly:
 P(n) is true for all integers n≥b – state the property P
 in English

Identify the base case
 P(b) holds because …

Inductive Step - Assuming the inductive hypothesis P(k) for
 k>=b, prove that P(k+1) holds; i.e., P(k) → P(k+1)

Conclusion: By induction we have shown that P(k) holds for
 all k>b (b is what was used for the base case).

Dr-Zaguia-CSI2101-W08 8

 Mathematical Induction

Another example: Use induction to prove that the
1 + 2 + 22 + … + 2n = 2n+1 – 1, for all non-negative integers n.

1 - Base case

Prove P(k)→P(k+1) 2 – Inductive Hypothesis
Assume P(k) for some k>=0, that is, 1 + 2 + 22 + … + 2k = 2 k+1 – 1 and

 prove P(k+1).

1 + 2 + 22 + … + 2k + 2 k+1 = (2 k+1 -1)+ 2 k+1 – 1 = 2*2 k+1 – 1 = 2 k+2 -1

 n = 0 10 = 21-1.

∀n ≥ 0 P(n) is true, where P(n): 1 + 2 + 22 + … + 2n = 2 n+1 – 1

Prove P(0)

By inductive hypothesis = 2 k+1 – 1
Therefore P(k+1) is true

Dr-Zaguia-CSI2101-W08 9

 Mathematical Induction

Proof by induction that P(n) is true for all n ≥ 0

1- Base case P(0): a set S with 0 elements has 20=1 subsets.
 S={}, then S has a unique subset {} and thus P(0) is true

Another example:
Prove P(n) using induction where

 P(n): a set S with n elements has 2n subsets.

Example: if S={1, 2, 3} then S has 8=23 subsets, these are
 {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

Dr-Zaguia-CSI2101-W08 10

Generating subsets of a set S with k+1
elements from a set T with k elements

QED

Mathematical Induction

T

S

{a}

x

x

S
{a}

x

2- Inductive Step: ∀k P(k) → P(k+1), i.e, assuming P(k) is true
 for some k>=0, we must show that P(k+1) is true.

Let k>=0. Assume that any set with k elements has 2k subsets.
 Let S be a set with k+1 elements. Thus, S = T ∪ {a}, where
 T is a set with k elements.

For each subset X of T there are exactly two subsets of S,
 namely X and X ∪ {a}. Because there are 2k subsets of S
 (inductive hypothesis), there are 2 × 2k = 2k+1 subsets of T.

Therefore P(k+1) is true

Dr-Zaguia-CSI2101-W08 11

Mathematical Induction:
Deficient Tiling

A 2n x 2n sized grid is deficient if all but one cell is tiled.

2n

2n P(n): all 2^n x 2^n sized deficient
 grids can be tiled with right
 triominoes, which are pieces that
 cover three squares at a time, like
 this:

We want to show that for all n ≥ 1, P(n) is true

Dr-Zaguia-CSI2101-W08 12

 Mathematical Induction:
Deficient Tiling

P(1) - Is it true for 21 x 21 grids?

YES 

  Base Case:

Dr-Zaguia-CSI2101-W08 13

Mathematical Induction:
Deficient Tiling

Inductive Step:
Let k>=1. We assume that we can tile a 2k x 2k

 deficient board using our designer tiles. We
 use this to prove that we can tile a 2k+1 x 2k+1

 deficient board using our designer tiles.

Dr-Zaguia-CSI2101-W08 14

2k

2k 2k

2k

2k+1

OK!!
 (by
 IH)

?

?

?

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 15

2k

2k 2k

2k

2k+1

OK!!
 (by
 IH)

OK!!
 (by
 IH)

OK!!
 (by
 IH)

OK!!
 (by
 IH)

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 16

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 17

So, we can tile a 2k x 2k
deficient board using our
designer tiles.

What does this mean for 22k mod 3? = 1 (also do direct proof by induction)

Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08 18

Mathematical Induction – Exercises

Prove that a chess knight (horse) can visit every square in an infinite
chessboard.

Prove that n lines separate the plane into (n2+n+2)/2 regions if no
two lanes are parallel and no three lines pass through the same point.

Prove that

½ * ¾ * … * (2n-1)/2n < 1/√3n

•  can’t really prove it directly, but can prove a stronger statement

½ * ¾ * … * (2n-1)/2n < 1/√(3n+1)

•  sometimes called inductive loading

Dr-Zaguia-CSI2101-W08 19

Mathematical Induction – Common Errors

What is wrong with the following “proof” of “All horses are of the
same colour”

Base step: One horse has one colour

Induction step: Assume k horses have the same colour, we show
that k+1 horses have the same colour.

Take the first k horses of our k+1 horses. By induction hypothesis
they are of the same colour. The same holds for the last k horses.
As these two sets overlap, they both must be of the same colour,
i.e. all k+1 horses are of the same colour.

first k horses

last k horses

Dr-Zaguia-CSI2101-W08 20

Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly
 n-1 breaks to break it into the basic squares.

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true

Inductive Step: show that ∀(k>=1) P(k) → P(k+1).
Assume P(k) for some k>=1: a chocolate bar of size kx1 squares needs
 exactly k-1 breaks to break it into the basic squares. and deduce P(k+1).
We break the (k+1)x1 chocol. bar into 2 pieces with sizes m and (k+1)-m.
Using the inductive hypothesis …..???

How can we use the inductive hypothesis P(k)??? We have a problem!

 Use strong induction.

Dr-Zaguia-CSI2101-W08 21

Strong Induction

Normal induction: To prove that P(n) is true for all
positive integers n:

Base step: prove P(1)

Induction step: prove P(n) → P(n+1)

Strong induction: To prove that P(n) is true for all
positive integers n:

Base step: prove P(1)

Induction step: prove P(1)∧P(2)∧ … ∧P(n) →
P(n+1)

Dr-Zaguia-CSI2101-W08 22

Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to
 break it into the basic squares.

Using Strong induction:

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true
Inductive Step: show that ∀(k>=1) P(1) ∧ P(2) ∧ … ∧ P(k)→ P(k+1).

We break the (k+1)x1 chocolate bar into 2 pieces with sizes m and
 (k+1)-m. Since both m and (k+1-m) are grether than 0 and less
 than k+1, then by the strong induction hypothesis, we need m-1
 breaks for the first piece and (k+1-m)-1= k-m for the second
 piece.

So in total we will need (m-1) + (k-m) + 1= k = (k+1)-1 breaks for
 the chocolate bar with size k+1 The break used the first time

Dr-Zaguia-CSI2101-W08 23

Strong Induction

Prove the following using strong induction; P(n): each postage of n
cents with n at least 18 can be paid by 4c and 7c stamps.

Show that if in a round-robin tournament there exists a cycle of “player A
beats player B”, then there must be a cycle of length 3.

Theorem: Every simple polygon of n sides can be triangulated into n-2
 triangles.

Theorem: Every triangulation of a simple polygon of n ≥ 4 sides has at
 least two triangles in the triangulation with two edges on the sides of the
 polygon.

Theorem: Show that there is a rational number between any two real
numbers.

Dr-Zaguia-CSI2101-W08 24

Recursive definition
(note 2009: topic delayed until after midterm)

  Recursion is the general term for the practice
 of defining an object in terms of itself
  or of part of itself
  This may seem circular, but it isn’t necessarily.

  An inductive proof establishes the truth of P(
n+1) recursively in terms of P(n).

  There are also recursive algorithms,
 definitions, functions, sequences, sets, and
 other structures

Dr-Zaguia-CSI2101-W08 25

Recursive definition

Recursive (Inductive) Definition of a Function:

Define f(1) (perhaps also f(2), f(3)…f(k) for some constant k)

Define f(n+1) using f(i) for i smaller then n+1

Example 1:

f(1) = 2, f(n+1) = 2f(n) What is the explicit value of f(n)?

Example 2:

g(1) = 1, g(n+1) = (n+1)g(n) What is the explicit value of g(n)?

We can guess the solution and then use proof by induction to do a
formal check

Dr-Zaguia-CSI2101-W08 26

Recursive definition

Example 1:
f(1) = 2, f(n+1) = 2f(n) What is the explicit value of f(n)?
Proof by induction that f(n) = 2n for every n ≥1. (what is P(k)?)
Base step: n=1 f(1)= 2 = 21. True
Induct. step: Let k>=1.Assume that f(k) = 2k and deduce that f(k+1)=2

k+1

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis f(k)
 = 2k and therefore f(k+1) = 2*2k = 2k+1. This finishes the inductive
 step.

  Example 2: g(1) = 1, g(n+1) = (n+1)g(n)
Proof by induction that g(n) = n! for every n ≥1. (what is P(k)?)
Base step: n=1 g(1)= 1 = 1!. True.
Induct. step: Let k >=1. Assume that g(k) = k! and deduce that g(

k+1)=(k+1)!

By definition of the function g, g(k+1) = (k+1) f(k). By induction
 hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k!= (k+1)!. This
 finishes the inductive step.

Dr-Zaguia-CSI2101-W08 27

Recursive definition

 Example 3: f(n) – Fibonacci numbers

f(1) = 1, f(2) = 1,

f(n+1) = f(n) + f(n-1)

How fast do the Fibonacci numbers grow?

Theorem: ∀n≥3, f(n) > α(n-2) where α=(1+√5)/2

Proof: By induction. How can we prove this? (what is P(k)?) (~1.61,2.61)

•  base step: n = 3: f(3) = 2 > α , f(4) = 3 >(3+√5)/2 = α2

•  induction step: Let n >= 4. note that α2 = α+1, since α is a root of x2-
x-1 = 0. Therefore αn-1 = α2αn-3 = (α+1)αn-3 = αn-2+αn-3

•  by induction hypothesis, f(n) < αn-2, f(n-1)<αn-3, therefore as f(n
+1) = f(n)+f(n-1), also f(n+1)<αn-2+αn-3 = αn-1

Dr-Zaguia-CSI2101-W08 28

Careful with Recursive Definitions

The function defined has to be well defined

•  it is defined for each element of its domain (often positive integers)

•  it is defined unambiguously (no two different values)

Consider:

•  F(n) = 1+F(n/2) for n≥1 and F(1) = 1

•  F(n) = 1+F(n-2) for n ≥1 and F(1) = 0

•  F(n) = 1+F(n/3) for even n≥3, and F(1) = F(2) = 1

•  F(n) = 1+F(F(n-1)) for n ≥2 and F(1) = 2

Problems

Dr-Zaguia-CSI2101-W08 29

Recursively Defined Sets and Structures

  An infinite set S may be defined recursively, by
 giving:
  A small finite set of base elements of S.
  A rule for constructing new elements of S from previously

-established elements.
  Implicitly, S has no other elements but these.

Example: S is the subset of Z (integers) defined by:
BASIS STEP: 3∈S, and
RECURSIVE STEP: if x,y ∈S then x+y ∈S.

 What is S?

Dr-Zaguia-CSI2101-W08 30

Recursively Defined Sets and Structures

Example: Set of strings Σ* over alphabet Σ:

Base step: the empty string γ∈Σ*

Induction step: If w∈Σ* and x ∈Σ then also wx ∈ Σ*

Dr-Zaguia-CSI2101-W08 31

Recursively Defined Sets and Structures

Example: Let Σ be a set of symbols (the alphabet) and Σ* be a set of
strings over this alphabet. Concatenation (denoted by “.”) of two
strings is recursively defined as follows:

Base step: If w∈Σ* then, w.γ = w, where γ is the empty string

Induction step: If w1∈Σ* and w2∈Σ* and x∈Σ, then w1.(w2x)=(w1.w2)x

Well-formed formulae of propositional logic:

Base step: T, F and s, where s is a propositional variable, are well-
formed formulaes
Induction step: If E and F are well-formed formulae, then also
(¬E), (E∧F), (E∨F), (E→F) and (E↔F) are well formed formulae

•  how would you define well-formed arithmetic expressions?

Dr-Zaguia-CSI2101-W08 32

Recursively Defined Sets and Structures

The set of full binary trees can be defined recursively:

Basic step: There is a full binary tree consisting only of a single
vertex r.

Recursive step: If T1 and T2 are disjoint full binary trees, there is a
full binary tree denoted by T1.T2, consisting of a root r together
with edges connecting the root to each of the roots of the left
subtree T1 and the right subtree T2.

We define The height h(T) of a full binary tree T recursively
Basic step: The height of the full binary tree consisting of only a
 root r is h(T)=0.
Recursive step: If T1 and T2 are full binary tree, then the full binary
 tree T=T1.T2 has height h(T)= 1 + max(h(T1), h(T2)).

Dr-Zaguia-CSI2101-W08 33

Recursively Defined Sets and Structures

  Give recursive definition of
  a rooted tree
  a binary tree
  internal and leaf vertices of a tree
  length of a string

Dr-Zaguia-CSI2101-W08 34

Structural Induction
(note 2009: topic delayed until after midterm)

Prove that every well-formed formula of propositional logic has
equal number of left and right parenthesis

Base step: T, F and propositional variables do not contain
parenthesis (so their number is equal)

Induction step: in every way to construct well-formed formula,
analyse number of parenthesis assuming ok for building blocks

Structural induction of P(x) for every element x of a
recursively defined set S:

Base step: prove P(x) for each element x of the base step
definition of S

Induction step: for every way to construct an element x of S
from elements y1, y2, .. yk, show that P(y1)∧P(y2)… ∧P(yk)
→ P(x)

Dr-Zaguia-CSI2101-W08 35

Structural Induction

Theorem: Let T be a full binary tree with n(T) vertices and height h(T),
 then n(T) ≤ 2 h(T)+1 -1

 [Note: P(k) becomes now P(T)!!!]
Proof using structural induction:
Basis step: for the full binary tree consisting of just the root r, n(T)=1 and

 h(T)=0, thus n(T)=1 ≤ 20+1 -1 =1. Inequality is true.
Inductive step:
We assume that n(T1) ≤ 2 h(T1)+1 -1 and n(T2) ≤ 2 h(T2)+1 -1 for two full

 binary trees T1 and T2. According to the recursive formulae:
 n(T)=n(T1)+n(T2)+1 and h(T)= 1 + max(h(T1), h(T2)), thus

n(T)=n(T1)+n(T2)+1 ≤ (2 h(T1)+1 -1) + (2 h(T2)+1 -1) +1
 ≤ (2 h(T1)+1 + 2 h(T2)+1) -1
 ≤ 2*max (2 h(T1)+1, 2 h(T2)+1) -1
 ≤ 2*2 max (h(T1)+1, h(T2)+1) -1
 ≤ 2*2 h(T) -1 = 2 h(T)+1 -1

Recursive definition of height

Dr-Zaguia-CSI2101-W08 36

Structural Induction

Exercises

Let l(x) denote the length of a string x. Prove that
l(x.y) =l(x)+l(y).

Every quantified formula has an equivalent one which
is in prenex normal form.

Dr-Zaguia-CSI2101-W08 37

Recursive Algorithms

Dr-Zaguia-CSI2101-W08 38

Recursion and Iteration

What about the Fibonacci sequence?

int fibRec(int n) {
 if (n <=2) return 1;
 else return fib(n-1)+fib(n-2)
}

can we do it iteratively?

int fibIter(int n) {
 int a = b = c = 1;
 for(i=2; i<n; i++) {
 c = a+b;
 a = b;
 b = c;
 }
 return c
}

Dr-Zaguia-CSI2101-W08 39

Recursion and Iteration

Search for an element in a list

We traverse sequentially the array starting from the first cell until
 we find x or we finish the array

procedure search(a: series; i, j: integer; x: item to be found)
 if ai = x return i
if i = j return 0
return search(i+1, j, x)

No real advantage in using recursion here

location := i
while (location ≤ j) and (S[location] ≠ x) do

 location := location+1
if location > j then

 location := 0

Dr-Zaguia-CSI2101-W08 40

Recursion and Iteration

When the list is already sorted, we can use a faster search:
 Binary search

procedure binarySearch(a, x, i, j)
{Find location of x in a, ≥i and <=j}
m := (i + j)/2 {Go to halfway point.}
if x = am return m
if x<am ∧ i<m return {If it’s to the left,}
 binarySearch(a,x,i,m−1){Check that ½}
else if am<x ∧ m<j return {If it’s to right,}
 binarySearch(a,x,m+1,j){Check that ½}
else return 0 {No more items, failure.}

Dr-Zaguia-CSI2101-W08 41

Recursion and Iteration

Since 1 = n/2k then k = log n and thus Binary search needs

log n + 1 comparisons.
Sequential search needs at most n comparisons

TBS(n) = (k+1) * 1 = k+1

Number of recursive calls Number of comparisons par call

Complexity of sequential search: TSS(n) = T(n-1) + n

Complexity of sequential search: TBS(n) = T(n/2) + 1

Dr-Zaguia-CSI2101-W08 42

Recursion and Iteration

  Comparing both search algorithms:

Size Sequential Binary

 128 128 8
 1024 1024 11
1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

Binary search is much faster however the list
 must be sorted

