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CSI 2101- Mathematical Induction 

Many statements assert that a property of the
 form P(n) is true for all integers n. 

Examples: 
For every  positive integer n: n! ≤ nn 

Every set with n elements, has 2n Subsets.  

Induction is one of the most important 
 techniques for proving statements of that
 form. 
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Mathematical Induction 
For example, consider the following algorithm: 

sum = 0; 
for(i=1; i≤n; i++) { 
     sum = sum + 2*i-1; 
} 

What is its output? 

•  n=1 … 1 

•  n=2 … 1+3 = 4 

•  n=3 …  1+3+5 = 9 

•  n=4 …  1+3+5+7 = 16 

We suspect that the output is n2 

•  but how to prove it? 
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 Mathematical Induction 

Use induction to prove that the sum of the first n odd integers is n2.
 What’s the hypothesis? P(n) – sum of first n odd integers = 
 n2. 

Base case (n=1): the sum of the first 1 odd integer is 12.   
            Since 1 = 12   

Inductive Step: show  that ∀(k>=1) P(k) → P(k+1). 
How?   Let k>=1. Assume P(k): the sum of the first k odd integers is k2.  
That is assume that  1 + 3 + … + (2k - 1) = k2 

And prove P(k+1): the sum of the first (k+1) odd integers is (k+1)2.  
1 + 3 + … + (2k-1) + (2k+1) = k2 + (2k + 1) = (k+1)2.  

Prove a base case (n=1) 
Prove P(k)→P(k+1) 

By inductive hypothesis = k2 

QED 
Therefore P(k+1) is true 
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   What did we do? 
   basic step:  

  prove P(1) 
   inductive step:  

  assume P(n) and prove P(n+1) (i.e prove P(n) → P(n+1)) 

•  Mathematical Induction is a rule of inference that tells us: 

•  P(1) 
•  ∀k (P(k)  → P(k+1)) 
•  -------------------------- 
•  ∴ ∀n P(n) 

 Mathematical Induction 

Why Mathematical Induction works? 

It is enough to prove that this rule
 of inference is valid 
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Mathematical Induction 
Well-Ordered-Principle  

Definition: A set S is “well-ordered” if every non-empty
 subset of S has a least element. 

Given (we take as an axiom):  
 the set of natural numbers (N) is well-ordered. 

  Is the set of integers (Z) well ordered? 
  Is the set of non-negative reals (R) well ordered? 

No.   
{ x ∈ Z : x < 0 } has no

 least element. 
No.   

{ x ∈ R : x > 1 } has no
 least element. 
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Proof that Mathematical Induction Works 

 By contradiction using the Well-Ordered-Principle. Assume that 
Mathematical Induction does not work. 

We assume that both hypothesis, i.e. the basic step P(1) and 
the induction step (P(k) →P(k+1)) are both true but there 
still exists c such that ¬ P(c). 

Let S be the set of all elements x for which ¬P(x). 

By the well ordered principle, S has a smallest element a. 

Because P(1), we know that a ≠ 1. Therefore we can 
consider b = a-1. 

Because a was the smallest element of S, b is not in S. 
Therefore P(b) holds. By modus ponens using the induction 
step, we get P(a), which is a contradiction. 
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Writing a Proof by Induction 

State the hypothesis  very clearly: 
 P(n) is true for all   integers n≥b – state the property P
 in English 

Identify the  base case  
  P(b) holds because …  

Inductive Step - Assuming the inductive hypothesis P(k) for
 k>=b, prove that P(k+1) holds; i.e.,  P(k) → P(k+1) 

Conclusion: By induction we have shown that P(k) holds for
 all k>b (b is what was used for the base case). 
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 Mathematical Induction 

Another example: Use induction to prove that the  
1 + 2 + 22 + … + 2n = 2n+1 – 1, for all non-negative integers n. 

1 - Base case   

Prove P(k)→P(k+1) 2 – Inductive Hypothesis 
Assume P(k) for some  k>=0,  that is, 1 + 2 + 22 + … + 2k = 2 k+1 – 1 and

 prove P(k+1). 

1 + 2 + 22 + … + 2k + 2 k+1 = (2 k+1 -1)+ 2 k+1 – 1 = 2*2 k+1 – 1 = 2 k+2 -1  

  n = 0  10 = 21-1. 

∀n ≥ 0 P(n) is true, where P(n): 1 + 2 + 22 + … + 2n = 2 n+1 – 1 

Prove P(0) 

By inductive hypothesis = 2 k+1 – 1  
Therefore P(k+1) is true 
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 Mathematical Induction 

Proof by induction that P(n) is true for all n ≥ 0 

1- Base case P(0): a set S with 0 elements has  20=1 subsets. 
   S={}, then S has a unique subset {} and thus P(0) is true 

Another example: 
Prove P(n) using induction where  

 P(n): a set S with n elements has  2n subsets. 

Example: if S={1, 2, 3} then S has 8=23 subsets, these are  
 {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} 



Dr-Zaguia-CSI2101-W08 10 

Generating subsets of a set S with k+1 
elements from a set T with k elements 

QED 

Mathematical Induction 

T 

S 

{a} 

x 

x 

S 
{a} 

x 

2- Inductive Step: ∀k P(k) → P(k+1), i.e, assuming P(k) is true
 for some k>=0, we must show that P(k+1) is true.  

Let k>=0. Assume that any set with k elements has  2k subsets. 
 Let S be a set with k+1 elements. Thus, S = T ∪ {a}, where
 T is a set with k elements.  

For each subset  X of T there are exactly two subsets of S,
 namely X and X ∪ {a}. Because there are 2k subsets of S
 (inductive hypothesis), there are 2 × 2k = 2k+1 subsets of T. 

Therefore P(k+1) is true 
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Mathematical Induction:  
Deficient Tiling 

A 2n x 2n sized grid is deficient if all but one cell is tiled. 

2n 

2n P(n): all 2^n x 2^n sized deficient
 grids can be tiled with right
 triominoes, which are pieces that
 cover three squares at a time, like
 this: 

We want to show that for all n ≥ 1, P(n) is true 
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 Mathematical Induction:  
Deficient Tiling 

P(1) - Is it true for 21 x 21 grids? 

YES  

  Base Case: 
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Mathematical Induction:  
Deficient Tiling 

Inductive Step: 
Let k>=1. We assume that we can tile a 2k x 2k

 deficient board using our designer tiles. We
 use this to prove that we can tile a 2k+1 x 2k+1

 deficient board using our designer tiles. 
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2k 

2k 2k 

2k 

2k+1 

OK!!
 (by
 IH) 

? 

? 

? 

Mathematical Induction:  
Deficient Tiling 
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2k 

2k 2k 

2k 

2k+1 

OK!!
 (by
 IH) 

OK!!
 (by
 IH) 

OK!!
 (by
 IH) 

OK!!
 (by
 IH) 

Mathematical Induction:  
Deficient Tiling 
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Mathematical Induction:  
Deficient Tiling 
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So, we can tile a 2k x 2k 
deficient board using our 
designer tiles. 

What does this mean for 22k mod 3? = 1  (also do direct proof by induction) 

Mathematical Induction:  
Deficient Tiling 



Dr-Zaguia-CSI2101-W08 18 

Mathematical Induction – Exercises 

Prove that a chess knight (horse) can visit every square in an infinite 
chessboard. 

Prove that n lines separate the plane into (n2+n+2)/2 regions if no 
two lanes are parallel and no three lines pass through the same point. 

Prove that  

½ * ¾ * … * (2n-1)/2n < 1/√3n 

•  can’t really prove it directly, but can prove a stronger statement 

½ * ¾ * … * (2n-1)/2n < 1/√(3n+1) 

•  sometimes called inductive loading 
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Mathematical Induction – Common Errors 

What is wrong with the following “proof” of “All horses are of the 
same colour” 

Base step: One horse has one colour 

Induction step: Assume k horses have the same colour, we show 
that k+1 horses have the same colour. 

Take the first k horses of our k+1 horses. By induction hypothesis 
they are of the same colour. The same holds for the last k horses. 
As these two sets overlap, they both must be of the same colour, 
i.e. all k+1 horses are of the same colour. 

first k horses 

last k horses 
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Strong Induction 

P(n): a chocolate bar of size nx1 squares needs exactly
 n-1 breaks to break it into the basic squares. 

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true 

Inductive Step: show  that ∀(k>=1) P(k) → P(k+1). 
Assume P(k) for some k>=1: a chocolate bar of size kx1 squares needs
 exactly k-1 breaks to break it into the basic squares. and deduce P(k+1). 
We break the (k+1)x1 chocol. bar into 2 pieces with sizes m and (k+1)-m.  
Using the inductive hypothesis …..??? 

How can we use the inductive hypothesis P(k)??? We have a problem! 

  Use  strong induction. 
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Strong Induction 

Normal induction: To prove that P(n) is true for all 
positive integers n: 

Base step: prove P(1)  

Induction step: prove P(n) → P(n+1) 

Strong induction: To prove that P(n) is true for all 
positive integers n: 

Base step: prove P(1)  

Induction step: prove P(1)∧P(2)∧ … ∧P(n) → 
P(n+1) 
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Strong Induction 

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to
 break it into the basic squares. 

Using Strong induction: 

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true 
Inductive Step: show  that ∀(k>=1) P(1) ∧ P(2) ∧ … ∧ P(k)→ P(k+1). 

We break the (k+1)x1 chocolate bar into 2 pieces with sizes m and
 (k+1)-m. Since both m and (k+1-m) are grether than 0 and less
 than k+1, then by the strong induction hypothesis, we need m-1
 breaks for the first piece and (k+1-m)-1= k-m for the second
 piece.  

So in total we will need (m-1) + (k-m) + 1= k = (k+1)-1 breaks for
 the chocolate bar with size k+1 The break used the first time 
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Strong Induction 

Prove the following using strong induction; P(n): each postage of  n 
cents with n at least 18 can be paid by 4c and 7c stamps. 

Show that if in a round-robin tournament there exists a cycle of “player A 
beats player B”, then there must be a cycle of length 3. 

Theorem: Every simple polygon of n sides can be triangulated into n-2
 triangles. 

Theorem: Every triangulation of a simple polygon of n ≥ 4 sides has at
 least two triangles in the triangulation with two edges on the sides of the
 polygon. 

Theorem: Show that there is a rational number between any two real 
numbers. 
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Recursive definition 
(note 2009: topic delayed until after midterm) 

  Recursion is the general term for the practice
 of defining an object in terms of itself  
  or of part of itself 
  This may seem circular, but it isn’t necessarily. 

  An inductive proof establishes the truth of P(
n+1) recursively in terms of P(n). 

  There are also recursive algorithms,
 definitions, functions, sequences, sets, and
 other structures 
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Recursive definition 

Recursive (Inductive) Definition of a Function: 

Define f(1) (perhaps also f(2), f(3)…f(k) for some constant k)  

Define f(n+1) using f(i) for i smaller then n+1 

Example 1: 

f(1) = 2, f(n+1) = 2f(n)   What is the explicit value of  f(n)? 

Example 2: 

g(1) = 1, g(n+1) = (n+1)g(n)    What is the explicit value of  g(n)? 

We can guess the solution and then use proof by induction to do a 
formal check 
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Recursive definition 

Example 1: 
f(1) = 2, f(n+1) = 2f(n)   What is the explicit value of  f(n)? 
Proof by induction that f(n) = 2n for every n ≥1.  (what is P(k)?) 
Base step: n=1  f(1)= 2 = 21. True 
Induct. step: Let k>=1.Assume that f(k) = 2k and deduce that f(k+1)=2

k+1 

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis f(k)
 = 2k and therefore f(k+1) = 2*2k = 2k+1. This finishes the inductive
 step. 

  Example 2:   g(1) = 1, g(n+1) = (n+1)g(n) 
Proof by induction that g(n) = n! for every n ≥1. (what is P(k)?) 
Base step: n=1  g(1)= 1 = 1!. True. 
Induct. step: Let k >=1. Assume that g(k) = k! and deduce that g(

k+1)=(k+1)! 

By definition of the function g, g(k+1) = (k+1) f(k). By induction
 hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k!= (k+1)!. This
 finishes the inductive step. 
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Recursive definition 

   Example 3:  f(n) – Fibonacci numbers 

f(1) = 1, f(2) = 1, 

f(n+1)  = f(n) + f(n-1) 

How fast do the Fibonacci numbers grow? 

Theorem: ∀n≥3, f(n) > α(n-2) where α=(1+√5)/2 

Proof: By induction. How can we prove this? (what is P(k)?)  (~1.61,2.61) 

•  base step: n = 3: f(3) = 2 > α , f(4) = 3 >(3+√5)/2 = α2  

•  induction step: Let n >= 4. note that α2 = α+1, since α is a root of x2-
x-1 = 0. Therefore αn-1 = α2αn-3 = (α+1)αn-3 = αn-2+αn-3 

•  by induction hypothesis, f(n) < αn-2, f(n-1)<αn-3, therefore as f(n
+1) = f(n)+f(n-1), also f(n+1)<αn-2+αn-3 = αn-1 
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Careful with Recursive Definitions 

The function defined has to be well defined 

•  it is defined for each element of its domain (often positive integers) 

•  it is defined unambiguously (no two different values) 

Consider: 

•  F(n) = 1+F(n/2) for n≥1 and F(1) = 1 

•  F(n) = 1+F(n-2) for n ≥1 and F(1) = 0 

•  F(n) = 1+F(n/3) for even n≥3, and F(1) = F(2) = 1 

•  F(n) = 1+F(F(n-1)) for n ≥2 and F(1) = 2 

Problems 
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Recursively Defined Sets and Structures 

  An infinite set S may be defined recursively, by
 giving: 
  A small finite set of base elements of S. 
  A rule for constructing new elements of S from previously

-established elements. 
  Implicitly, S has no other elements but these. 

Example: S is the subset of Z (integers) defined by: 
BASIS STEP: 3∈S, and  
RECURSIVE STEP: if x,y ∈S then x+y ∈S. 

    What is S? 
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Recursively Defined Sets and Structures 

Example:  Set of strings Σ* over alphabet Σ: 

Base step: the empty string γ∈Σ* 

Induction step: If w∈Σ* and x ∈Σ then also wx  ∈ Σ* 
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Recursively Defined Sets and Structures 

Example:  Let Σ be a set of symbols (the alphabet) and Σ* be a set of 
strings over this alphabet. Concatenation (denoted by “.”) of two 
strings is recursively defined as follows: 

Base step: If w∈Σ* then, w.γ = w, where γ is the empty string 

Induction step: If w1∈Σ* and w2∈Σ* and x∈Σ, then w1.(w2x)=(w1.w2)x 

Well-formed formulae of propositional logic: 

Base step: T, F and s, where s is a propositional variable, are well-
formed formulaes 
Induction step: If E and F are well-formed formulae, then also 
(¬E), (E∧F), (E∨F), (E→F) and (E↔F) are well formed formulae 

•  how would you define well-formed arithmetic expressions? 
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Recursively Defined Sets and Structures 

The set of full binary trees can be defined recursively: 

Basic step: There is a full binary tree consisting only of a single 
vertex r. 

Recursive step: If T1 and T2 are disjoint full binary trees, there is a 
full binary tree denoted by T1.T2, consisting of a root r together 
with edges connecting the root to each of the roots of the left 
subtree T1 and the right subtree T2. 

We define The height h(T) of a full binary tree T recursively 
Basic step: The height of the full binary tree consisting of only a
 root r is h(T)=0. 
Recursive step: If T1 and T2 are full binary tree, then the full binary
 tree T=T1.T2 has height h(T)= 1 + max(h(T1), h(T2)). 
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Recursively Defined Sets and Structures 

  Give recursive definition of  
   a rooted tree 
   a binary tree 
  internal and leaf vertices of a tree 
   length of a string 



Dr-Zaguia-CSI2101-W08 34 

Structural Induction 
(note 2009: topic delayed until after midterm) 

Prove that every well-formed formula of propositional logic has 
equal number of left and right parenthesis 

Base step: T, F and propositional variables do not contain 
parenthesis (so their number is equal) 

Induction step: in every way to construct well-formed formula, 
analyse number of parenthesis assuming ok for building blocks 

Structural induction of P(x) for every element x of a 
recursively defined set S: 

Base step: prove P(x) for each element x of the base step 
definition of S 

Induction step:  for every way to construct an element x of S 
from elements y1, y2, .. yk, show that P(y1)∧P(y2)… ∧P(yk) 
→ P(x) 
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Structural Induction 

Theorem: Let  T be a full binary tree with n(T) vertices and height h(T),
 then n(T) ≤ 2 h(T)+1 -1    

                                                   [Note: P(k) becomes now P(T)!!!] 
Proof using structural induction: 
Basis step: for the full binary tree consisting of just the root r, n(T)=1 and

 h(T)=0, thus n(T)=1 ≤ 20+1 -1 =1. Inequality is true. 
Inductive step:  
We assume that n(T1) ≤ 2 h(T1)+1 -1 and n(T2) ≤ 2 h(T2)+1 -1 for two full

 binary trees T1 and T2. According to the recursive formulae:
 n(T)=n(T1)+n(T2)+1 and h(T)= 1 + max(h(T1), h(T2)), thus 

n(T)=n(T1)+n(T2)+1  ≤ (2 h(T1)+1 -1) + (2 h(T2)+1 -1) +1 
    ≤ (2 h(T1)+1 + 2 h(T2)+1) -1 
    ≤ 2*max (2 h(T1)+1, 2 h(T2)+1) -1 
    ≤ 2*2 max (h(T1)+1, h(T2)+1) -1 
    ≤ 2*2 h(T) -1 = 2 h(T)+1 -1  

Recursive definition of height 
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Structural Induction 

Exercises 

Let l(x) denote the length of a string x. Prove that 
l(x.y) =l(x)+l(y). 

Every quantified formula has an equivalent one which 
is in prenex normal form. 
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Recursive Algorithms 
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Recursion and Iteration 

What about the Fibonacci sequence? 

int fibRec(int n) { 
    if (n <=2 ) return 1; 
    else return fib(n-1)+fib(n-2) 
} 

can we do it iteratively? 

int fibIter(int n) { 
    int a = b = c = 1; 
    for(i=2; i<n; i++) {  
        c = a+b; 
        a = b; 
        b = c; 
    } 
    return c 
} 
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Recursion and Iteration 

Search for an element in a list 

We traverse sequentially the array starting from the first cell until
 we find x or we finish the array 

procedure search(a: series; i, j: integer; x: item to be found) 
 if ai = x return i  
if i = j return 0   
return search(i+1, j, x) 

No real advantage in using recursion here 

location := i 
while (location  ≤ j) and (S[location] ≠  x) do 

 location := location+1 
if location > j then  

 location := 0 
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Recursion and Iteration 

When the list is already sorted, we can use a faster search:
 Binary search 

procedure binarySearch(a, x, i, j) 
{Find location of x in a, ≥i and <=j}  
m := (i + j)/2          {Go to halfway point.} 
if x = am return m           
if x<am ∧ i<m return      {If it’s to the left,}
  binarySearch(a,x,i,m−1){Check that ½} 
else if am<x ∧ m<j return   {If it’s to right,} 
   binarySearch(a,x,m+1,j){Check that ½} 
else return 0        {No more items, failure.} 
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Recursion and Iteration 

Since 1 = n/2k   then k = log n and thus Binary search needs  

log n + 1 comparisons. 
Sequential search needs at most n comparisons 

TBS(n) = (k+1) * 1 = k+1 

Number of recursive calls Number of comparisons par call 

Complexity of sequential search:  TSS(n) = T(n-1) + n 

Complexity of sequential search:  TBS(n) = T(n/2) + 1 
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Recursion and Iteration 

  Comparing both search algorithms: 

Size    Sequential        Binary 

  128    128    8 
 1024    1024   11 
1,048,576        1,048,576   21 
4,294,967,296  4,294,967,296   33 

Binary search is much faster however the list
 must be sorted 


